
Statistical Mechanics 

A lot can be accomplished without ever acknowledging the existence of molecules.  
Indeed, much of thermodynamics exists for just this purpose.  Thermodynamics permits 
us to explain and predict phenomena that depend crucially on the fact that our world 
comprises countless molecules, and it does this without ever recognizing their existence.  
In fact, establishment of the core ideas of thermodynamics predates the general 
acceptance of the atomic theory of matter.  Thermodynamics is a formalism with which 
we can organize and analyze macroscopic experimental observations, so that we have an 
intelligent basis for making predictions from limited data.  Thermodynamics was 
developed to solve practical problems, and it is a marvelous feat of science and 
engineering. 

Of course, to fully understand and manipulate the world we must deal with the molecules.  
But this does not require us to discard thermodynamics.  On the contrary, 
thermodynamics provides the right framework for constructing a molecular 
understanding of macroscopic behavior.  Thermodynamics identifies the interesting 
macroscopic features of a system. Statistical mechanics is the formalism that connects 
thermodynamics to the microscopic world.  Remember that a statistic is a quantitative 
measure of some collection of objects. An observation of the macroscopic world is 
necessarily an observation of some statistic of the molecular behaviors.  The laws of 
thermodynamics derive largely from laws of statistics, in particular the simplifications 
found in the statistics of large numbers of objects. These objects—molecules—obey 
mechanical laws that govern their behaviors; these laws, through the filter of statistics, 
manifest themselves as macroscopic observables such as the equation of state, heat 
capacity, vapor pressure, and so on.  The correct mechanics of molecules is of course 
quantum mechanics, but in a large number of situations a classical treatment is 
completely satisfactory. 

A principal aim of molecular simulation is to permit calculation of the macroscopic 
behaviors of a system that is defined in terms of a microscopic model, a model for the 
mechanical interactions between the molecules.  Clearly then, statistical mechanics 
provides the appropriate theoretical framework for conducting molecular simulations.  In 
this section we summarize from statistical mechanics the principal ideas and results that 
are needed to design, conduct, and interpret molecular simulations.  Our aim is not to be 
rigorous or comprehensive in our presentation.  The reader needing a more detailed 
justification for the results given here is referred to one of the many excellent texts on the 
topic.  Our focus at present is with thermodynamic behaviors of equilibrium systems, so 
we will not at this point go into the ideas needed to understand the microscopic origins of 
transport properties, such as viscosity, thermal conductivity and diffusivity. 

Ensembles 

A key concept in statistical mechanics is the ensemble.  An ensemble is a collection of 
microstates of system of molecules, all having in common one or more extensive 
properties.  Additionally, an ensemble defines a probability distribution π accords a 



weight to each element (microstate) of the ensemble.  These statements require some 
elaboration.  A microstate of a system of molecules is a complete specification of all 
positions and momenta of all molecules (i.e., all atoms in all molecules, but for brevity 
we will leave this implied).  This is to be distinguished from a thermodynamic state, 
which entails specification of very few features, e.g. just the temperature, density and 
total mass.  An extensive quantity is used here in the same sense it is known in 
thermodynamics—it is a property that relates to the total amount of material in the 
system.  Most frequently we encounter the total energy, the total volume, and/or the total 
number of molecules (of one or more species, if a mixture) as extensive properties.  Thus 
an ensemble could be a collection of all the ways that a set of N molecules could be 
arranged (specifying the location and momentum of each) in a system of fixed volume.  
As an example, in Illustration 1 we show a few elements of an ensemble of five 
molecules. 

If a particular extensive variable is not selected as one that all elements of the ensemble 

have in common, then all physically possible values of that variable are represented in the 
collection.  For example, Illustration 2 presents some of the elements of an ensemble in 
which only the total number of molecules is fixed.  The elements are not constrained to 
have the same volume, so all possible volumes from zero to infinity are represented.  
Likewise in both Illustrations 1 and 2 the energy is not selected as one of the common 
extensive variables.  So we see among the displayed elements configurations in which 
molecules overlap.  These high-energy states are included in the ensemble, even though 
we do not expect them to arise in the real system.  The likelihood of observing a given 
element of an ensemble—its physical relevance—comes into play with the probability 
distribution π that forms part of the definition of the ensemble. 



Any extensive property omitted from the specification of the ensemble is replaced by its 
conjugate intensive property.  So, for example, if the energy is not specified to be 
common to all ensemble elements, then there is a temperature variable associated with 
the ensemble.  These intensive properties enter into the weighting distribution π in a way 
that will be discussed shortly.  It is common to refer to an ensemble by the set of 
independent variables that make up its definition.  Thus the TVN ensemble collects all 
microstates of the same volume and molecular number, and has temperature as the third 
independent variable.  The more important ensembles have specific names given to them.  
These are 

• Microcanonical ensemble (EVN) 

• Canonical ensemble (TVN) 

• Isothermal-isobaric ensemble (TPN) 

• Grand-canonical ensemble (TVµ) 

These are summarized in Illustration 3, with a schematic of the elements presented for 
each ensemble. 

 



Postulates 

Statistical mechanics rests on two postulates: 

1. Postulate of equal a priori probabilities.  This postulate applies to the microcanonical 
(EVN) ensemble.  Simply put, it asserts that the weighting function π is a constant in 
the microcanonical ensemble.  All microstates of equal energy are accorded the same 
weight.   

2. Postulate of ergodicity.  This postulate states that the time-averaged properties of a 
thermodynamic system—the properties manifested by the collection of molecules as 
they proceed through their natural dynamics—are equal to the properties obtained by 
weighted averaging over all microstates in the ensemble. 

The postulates are arguably the least arbitrary statements that one might make to begin 
the development of statistical mechanics.  They are non-trivial but almost self-evident, 
and it is important that they be stated explicitly.  They pertain to the behavior of an 
isolated system, so they eliminate all the complications introduced by interactions with 
the surroundings of the system.  The first postulate says that in an isolated system there 
are no special microstates; each microstate is no more or less important than any other.   

Note that conservation of energy requires that the dynamical evolution of a system 
proceeds through the elements of the microcanonical ensemble.  Measurements of 
equilibrium thermodynamic properties can be taken during this process, and these 
measurements relate to some statistic (e.g., an average) for the collective system (later in 
this section we consider what types of ensemble statistics correspond to various 
thermodynamic observables).  Of course, as long as we are not talking about dynamical 
properties, these measurements (statistics) do not depend on the order in which the 
elements of the ensemble are sampled.  This point cannot be disputed.  What is in 
question, however, is whether the dynamical behavior of the system will truly sample all 
(or a fully representative subset of all) elements of the microcanonical ensemble.  In fact, 
this is not the outcome in many experimental situations.  The collective dynamics may be 
too sluggish to visit all members of the ensemble within a reasonable time.  In these cases 
we fault the dynamics.  Instead of changing our definition of equilibrium to match each 
particular experimental situation, we maintain that equilibrium behavior is by definition 
that which samples a fully representative set of the elements of the governing ensemble.  
From this perspective the ergodic postulate becomes more of a definition than an axiom. 

Other ensembles 

A statistical mechanics of isolated systems is not convenient.  We need to treat systems in 
equilibrium with thermal, mechanical, and chemical reservoirs.    Much of the formalism 
of statistical mechanics is devised to permit easy application of the postulates to non-
isolated systems.  This parallels the development of the formalism of thermodynamics, 
which begins by defining the entropy as a quantity that is maximized for an isolated 
system at equilibrium.  Thermodynamics then goes on to define the other thermodynamic 



potentials, such as the Helmholtz and Gibbs free energies, which are found to obey 
similar extremum principles for systems at constant temperature and/or pressure.   

The ensemble concept is central to the corresponding statistical mechanics development.  
For example, a closed system at fixed volume, but in thermal contact with a heat 
reservoir, samples a collection of microstates that make up the canonical ensemble.  The 
approach to treating these systems is again based on the ensemble average.  The 
thermodynamic properties of an isothermal system can be computed as appropriate 
statistics applied to the elements of the canonical ensemble, without regard to the 
microscopic dynamics.  Importantly, the weighting applied to this ensemble is not as 
simple as that postulated for the microcanonical ensemble.  But through an appropriate 
construction it can be derived from the principle of equal a priori  probabilities. We will 
not present this derivation here, except to mention that the only additional assumption it 
invokes involves the statistics of large samples.  Details may be found in standard texts in 
statistical mechanics. 

The weighting distributions for the four major ensembles are included in the table of 
Illustration 3.  Let us examine the canonical-ensemble form. 

 

The symbol β here (and universally in the statistical mechanics literature) represents 
1/kT, where k is Boltzmann’s constant; in this manner the temperature influences the 
properties of the ensemble.  The term  is known as the Boltzmann factor of the 
energy Ei.  Note that the weighting accorded to a microstate depends only on its energy; 
states of equal energy have the same weight.  The normalization constant Q is very 
important, and will be discussed in more detail below.  Note also that the quantity E/T, 
which appears in the exponent, in thermodynamics is the term subtracted from the 
entropy to form the constant-temperature Legendre transform, commonly known as the 
Helmholtz free energy (divided by T).  This weighting distribution makes sense  
physically.  Given that we must admit all microstates, regardless of their energy, we now 
see that the unphysical microstates are excluded not by fiat but by their weighting.  
Microstates with overlapping molecules are of extremely high energy.  The Boltzmann 
factor is practically zero in such instances, and thus the weighting is negligible.  As the 
temperature increases, higher-energy microstates have a proportionately larger influence 
on the ensemble averages. 

Turning now to the NPT-ensemble weighting function, we begin to uncover a pattern. 

  

The weight depends on the energy and the volume of the microstate (remember that this 
isothermal-isobaric ensemble includes microstates of all possible volumes).  The pressure 
influences the properties through its effect on the weighting distribution.  The term in the 



exponent is again that which is subtracted from the entropy to define the NPT Legendre 
transform, the Gibbs free energy.  We now turn to the connection between the 
thermodynamic potential and the normalization constant of the distribution. 

Partition functions and bridge equations 

The connection to thermodynamics is yet to be made, and without it we cannot relate our 
ensemble averages to thermodynamic observables.  As alluded above, the connection 
comes between the thermodynamic potential and the normalization constants of the 
weighting functions.  These factors have a fancy name: we know them as partition 
functions, but the German name is more descriptive:  germanname, which means “sum 
over states”.  Because they normalize the weighting function, they represent a sum over 
all microstates of the ensemble, summing the Boltzmann factor for each element.  The 
bridge equations relating these functions to their thermodynamic potentials are 
summarized in Illustration 4.   We assert the results, again without proof.  Below we 
show several examples of their plausibility, in that they give very sensible prescriptions 
for the ensemble averages needed to evaluate some specific thermodynamic properties 
from molecular behaviors.  

 

Ensemble averaging 

Let us begin now to become more specific in what we mean by ensemble averaging.  The 
usual development begins with quantum mechanics, because in quantum mechanics the 
elements of an ensemble form a discrete set, as given by the solutions of the time-
independent Schrödinger equation.  They may be infinite in number, but they are at least 
countably infinite, and therefore it is possible to imagine gathering a set of these discrete 
states to form an ensemble.  The transition to classical mechanics then requires an 



awkward (or a least tedious) handling of the conversion to a continuum.  We will bypass 
this process and move straight to classical mechanics, appealing more to concepts rather 
than rigor in the development. 

For a given N and V, an element of an ensemble corresponds to a point in classical phase 
space, Γ.  Phase space refers to the (highly dimensional) space of all positions and 
momenta of (all atoms of) all molecules: .  Each molecule occupies a space 
of dimension d, meaning that each r and p is a d-dimensional vector, and Γ is then a 2dN-
dimensional space (e.g., for 100 atoms occupying a three-dimensional space, Γ form a 
600-dimensional space).  We consider now an observable A(Γ) defined for each point in 
phase space, for example the total intermolecular energy.  For a discrete set of 
microstates, the ensemble average of A  is 

  

In the continuum phase space, for the canonical ensemble this average takes the form 

  

The sum becomes an integral over all positions and momenta.  Every possible way of 
arranging the atoms in the volume V is included; likewise all possible momenta, from 
minus- to plus-infinity are included. The Boltzmann weighting factor  filters out 
the irrelevant configurations.  Two other terms arise in the integral.  The factor involving 
Planck’s constant h is an inescapable remnant of the quantum mechanical origins of the 
ensemble.  As a crude explanation, one might think of the transition to the classical 
continuum as a smearing out of each of the true quantum states of the system.  The 
“distance” between each adjacent point in quantum phase space is proportional to h, so 
the volume of these smeared-out regions goes as h3N, and this must be divided out to 
renormalize the sum.  Note also that the term in h cancels the dimensions of the 
integration variables rNpN.  The other term in the integral, N!, eliminates overcounting of 
the microstates.  Each bona fide, unique element of the ensemble arises in this phase-
space integral N! times.  This happens because all molecules move over all of the system 
volume, and multiple configurations arise that differ only in the labeling of the 
molecules.  For indistinguishable molecules the labels are physically irrelevant, so these 
labeling permutations should not all contribute to the phase-space integral.  The 
expression for the canonical-ensemble partition function follows likewise 

  

With a suitable choice of coordinates, it is possible to separate the total energy E into a 
kinetic part K that depends only on the momentum coordinates, and a potential part U 
that likewise depends only on the position coordinates: 

  



The kinetic energy is quadratic in the momenta 

  

and this contribution can be treated analytically in the partition function: 

  

where  is known as the thermal de Broglie wavelength and ZN as defined 

here is the configurational integral (some authors define it to not include the N! term).  
The momentum contributions drop out of ensemble averages of observables that depend 
only on coordinates 

  

This formula sees broad use in molecular simulation. 

Time Averaging and Ergodicity (A brief aside) 

The ergodic postulate relates the ensemble average to a time average, so it is worthwhile 
to cast the time average in an explicit mathematical form.  This type of average becomes 
important when considering the molecular-dynamical behavior that underlies 
macroscopic transport processes.  A full treatment of the topic comes later in this course. 

The time average is taken over all states encountered in a dynamical trajectory of the 
system.  It can be written thus 

  

The positions and momenta are given as functions of time  via the 

governing mechanics.  As indicated, these depend on their values at the initial time, t = 0.  
However, if the dynamics is ergodic (it can reach all elements of the corresponding 
microcanonical ensemble), then in the limit of infinite time the initial conditions become 
irrelevant (with the notable qualification that the initial conditions specify the total 
energy, and thus designate the particular microcanonical (EVN) ensemble that is 
sampled; a more precise statement is that the time average is independent of which 
member of a given microcanonical ensemble is chosen as the initial condition). 



As stated above, if a dynamical process is capable of reaching a representative set 

elements of an ensemble (since the number of elements is infinite, the complete set of 
states can never be reached), we say that the process is ergodic.  Illustration 5 shows a 
schematic representation of a case in which the dynamics is not ergodic.  It is useful to 
generalize this idea to processes that are not necessarily following the true dynamics of 
the system.  Any algorithm that purports to generate a representative set of configurations 
from the ensemble may be view in terms of its ergodicity.  It is ergodic if it does generate 
a representative sample (in the time it is given to proceed). 

An applet demonstrating non-ergodic behavior is presented in Illustration 6. 

Simple Thermodynamic Averages 

Internal energy 

The ensemble average of the internal energy must certainly correspond to the 
thermodynamic quantity known as the internal energy.  How could there be any disputing 
this?  Well, let us not take it for granted, and instead set about proving this result from the 
preceding developments.  It is actually very simple to do, and it sets the stage for more 
difficult derivations of the same type. 

The Gibbs-Helmholtz equation of thermodynamics states   

  

If we apply the canonical-ensemble bridge equation to write the Helmholtz free energy A 
in terms of the partition function we have the following 

Phase space 



  

which is what we set out to prove.  Other simple averages, such as the average volume in 
the NPT ensemble, or the average number of molecules in the grand-canonical ensemble, 
can be confirmed to connect to the expected thermodynamic observables in a similar 
fashion.  We leave this verification as an exercise to the reader. 

We can take our result for the energy one step further by introducing the separation of the 
energy into its kinetic and potential contributions, as discussed above:   

  

So the kinetic-energy contribution can be treated analytically, and we arrive at the well-
known result that each configuration coordinate contributes kT/2 to the internal kinetic 
energy.  This result is known as the principle of equipartition, indicating that the kinetic 
energy distributes equally among all microscopic degrees of freedom.   

If the potential energy is zero, the system behaves as an ideal gas and the total internal 
energy is just that given by the kinetic contribution.  In many circumstances the 
simplicity of the kinetic part leads us to ignore it while we focus on the more interesting 
potential contribution.  It then becomes easy to forget the kinetic part altogether, and to 
speak of the potential energy as if it were the only contributor to the internal energy.  The 
tacit understanding is that we all know the kinetic part is there and should be added in if 
the internal energy is needed for any practical application (e.g., computing a heating 
requirement). 

Temperature 

Many simulations are conducted in constant-temperature ensembles, and there is no need 
to measure the temperature.  However, elementary molecular dynamics simulations 
sample the microcanonical ensemble, and thus the temperature is not a quantity known a 
priori.  In this ensemble  the total energy is constant, but this energy continually 



redistributes between kinetic and potential forms.  The standard means for measuring the 
temperature rests on the notion of equipartition, discussed in the previous section.  
Temperature is expressed in terms of an average of the kinetic energy, thus   

  

Recently Evans has developed an expression for the appropriate ensemble average 
needed to evaluate the temperature.  His approach does not rely on equipartition, but 
instead appeals to the more fundamental definition of temperature as the change in the 
entropy with energy in an isolated system.  We will present this formulation later. 

Pressure 

Derivation of a working equation for the pressure is much trickier.  Previously we saw 
the pressure computed as an average of the momentum flux arising from the collisions of 
hard spheres with the walls containing them.  We have since learned how to use periodic 
boundary conditions to conduct simulations without walls, and this leaves us with a need 
for another route to measurement of the pressure in our simulations.  We follow the same 
we introduced to connect the thermodynamic internal energy to an ensemble average, 
beginning now with the thermodynamic expression for the pressure: 

  

Where is V in the phase-space integral?  It lies in the limits of integration of the position 
integrals.  There is a standard trick used to move the volume dependence into a position 
where it is more easily differentiated.  It is worth describing this idea here, as it arises 
again in the simulation of systems at constant pressure, in which the volume fluctuates.  
Before going further, let us point out that the volume does not enter into the momentum 
integrals or the kinetic contribution to the energy.  Upon separating these parts in the 
manner shown above the volume derivative causes them to drop out, so we can simplify 
our starting point a bit by removing them now, thus: 

  



We now scale all the position coordinates by the linear dimension L of the volume (V = 
Ld).  To fix ideas, imagine that the volume is cubic in shape, as shown in Illustration 7.  
Taking for example a 2-dimensional space, we define scaled coordinates 

 (we introduce some useful shorthand notation here) 
and rewrite the configuration integral over a unit volume 

  

The internal energy U depends on volume through the pair separation vectors r = (Vs).  
Remember that the force on a molecule is the gradient of the potential 

  

and note that our coordinate scaling now maps changes in the volume to changes in the 
spatial positions of all the molecules, and through this process effects a change in the 
energy.  Consequently, the volume derivative can be expressed in terms of the forces on 
the molecules: 

  

If we define the virial W 

  

  
 

 

L 1 



then on executing all the volume derivatives needed for the pressure, we obtain 

  

The first part is just the ideal-gas contribution, while the second term entails the ensemble 
average.  This is known as the virial formula for the pressure (not to be confused with the 
low-density expansion of the pressure, known as the virial equation of state).  

One more step is needed to render this result into a useful form.  If the interactions 
between the molecules are pairwise additive—meaning that the potential energy can be 
written as a sum of terms each involving the coordinate of no more than two molecules—
then the force on a molecule can likewise be decomposed into a sum of pair terms.  
Considering that forces between molecules are equal in magnitude and opposite in 
direction, the virial can be expressed as a pair sum too 

  

where  and Fij is the force that molecule j exerts on molecule i.  For 
spherically symmetric intermolecular potentials,  this simplifies 
further 

  

Measurements of the pressure by molecular simulation are usually not accomplished to 
the same precision as measurements of the energy.  Adjacent molecules tend to position 
themselves about each other at the point where their mutual force is zero, which 
coincides with the minimum of their pair energy.  This means that that there are a 
substantial number of pair energies that have their maximum possible magnitude.  In 
contrast, many contributions to the pressure are from pairs having nearly zero force, or 
with positive and negative contributions that tend to cancel. 

These results for the pressure are valid equally to hard and soft potentials, but their 
application to hard potentials requires a bit of additional thinking.  As reviewed in an 
earlier chapter, for hard potentials the force is zero except at the moment of impact, 
where it is infinite for an instant in time.  The time integral of the force over this instant is 
the finite impulse that the spheres apply to each other, and it is this impulse that must be 
averaged to get the pressure.  Referring to the material presented earlier on hard-sphere 
collisions, we have 



  

Contributions to the average needed for the pressure are made only at each collision, so 
the pressure can be computed by summing this quantity over all collisions 

  

Note the velocities used here are those before the collision, when ; also, t in this 
equation is the total simulation time elapsed during all the collisions in the sum. 

Entropy and free energy 

At first glance seems that the free energy is the simplest of all properties to evaluate by 
molecular simulation.  After all, the bridge equation, the fundamental equation 
connecting thermodynamics to the partition function, gives the free energy explicitly.  
The problem is not one of principle, but of practice.  For (almost) all interesting systems, 
the phase-space integral that defines the partition function cannot be evaluated directly by 
any means.  It is certainly too complex to handle analytically, and it is even too difficult 
to treat numerically.  The applet in Illustration 8 should convey a real sense of the 
problem.  Any methodical algorithm (e.g., Simpson’s rule) applied to this high-
dimensional integral will take eons to complete.  The problem is discussed further in the 
section on Monte Carlo simulation. 

One might object that the same problem accompanies the evaluation of any ensemble 
average.  It is computationally impossible to perform a complete sum over all elements of 
the ensemble, so how can any average be computed?  The difference is that ensemble 
averages do not require all members to be counted in the average; it requires only that a 
representative sample be examined.  The ensemble average is a sum of individual 
observations of a property defined for each element of the ensemble.  In contrast, the free 
energy is a property of the entire ensemble.  The entropy, for example, is the total number 
of elements in the ensemble.  A representative sample of the ensemble cannot be used to 
tell how many members are left outside the sample.  To evaluate the free energy one 
must, in principle, enumerate all of the elements of the corresponding ensemble. 

The trick to calculating free energies by molecular simulation is to settle for computing 
free-energy differences.  This is not nearly as hard as computing an absolute free energy.  
Still there are many pitfalls, and free-energy calculation is a highly specialized technique 
in molecular simulation.  We reserve its discussion for another part of this book. 

Second-derivative properties 

The heat capacity is an example of a “2nd-derivative” property, in that it can be expressed 
as a second-derivative of a thermodynamic potential 



  

The formula for evaluating it by molecular simulation follows in simple way from the 
expression for the average energy.  For convenience in what follows we express the T-
derivative as a derivative of β = 1/kT 

  

The dependence on β is highlighted in red.  There are two parts, one involving the 
integrand, and the other involving the normalizing partition function.  Straightforward 
manipulations lead us to a simple expression for the heat capacity 

  

This is an interesting result.  The heat capacity is given in terms of the variance of the 
distribution of energies in the canonical ensemble.  A broad distribution of energies 
corresponds to a large heat capacity.  At low temperatures quantum effects become more 
important, because low energy become most relevant.  These quantum energies usually 
are widely separated, and their discretization severely limits the number that contribute to 
the ensemble.  The outcome is that the heat capacity can be much smaller than expected 
from a continuum treatment. 

Note that each of the averages used to calculate the heat capacity is a quantity of order 
N2, but their difference yields a quantity of order N (the heat capacity is an extensive 
thermodynamic variable).  This means that the heat capacity is computed as the small 
difference of large numbers.  Consequently it cannot be obtained to the same precision as 
the 1st-derivative properties such as the energy or even the pressure. 

The heat capacity is the variation in one ensemble average, , as the temperature is 
changed.  It might actually seem surprising that such a quantity can be measured at all 
with just a single simulation at one temperature.  There must be something going on in an 
ensemble at one temperature that tells us things about the ensemble at another 
temperature.  But such an observation is not so profound.  Remember that changing the 
temperature in the canonical ensemble merely changes the weighting assigned to the 
elements of the ensemble.  The elements themselves do not change, and they are all 
included in the ensemble regardless of the temperature.  Changing the temperature by a 
small amount changes the weighting of each ensemble element by a correspondingly 
small amount.  So members of the ensemble that prevail at one temperature are likely to 
be important at a temperature not far removed, so a single simulation can indeed provide 



information at more than one temperature.  This notion has recently come to be exploited 
to a high degree by the “histogram-reweighting” method, an advanced simulation 
technique that we discuss in a subsequent chapter. 

We find in general that 2nd-derivative properties are expressed as variances or 
covariances of the corresponding 1st-derivative properties.  Thus we have the 
compressibility given as the variance of the volume in the NPT ensemble 

  

or the molecule number in the grand-canonical ensemble 

  

While the coefficient of thermal expansion is given as the covariance in the NPT 
ensemble 

  

where  is the instantaneous enthalpy.  Relations for these quantities can also 
be written for the canonical ensemble using variances that involve the virial W. 

Fluctuations 

We turn now to the final topic we consider in our introductory survey of statistical 
mechanics.  We have emphasized the that macroscopic behavior of any system can be 
cast as the sum of properties of many different microstates that are each consistent with 
certain fixed macroscopic features (the total volume, for example).  Even though these 
microstates differ in many other ways, it seems sufficient to characterize the macroscopic 
observable in terms of a single ensemble average.  Thus the canonical-ensemble-averaged 
energy characterizes completely the thermodynamic internal energy.  Why are the deviant 
microstates irrelevant?  Put more bluntly, why does thermodynamics work?  As discussed 
at the beginning of this chapter, the answer lies in the statistics of large numbers.  
However, the number of molecules forming a classical thermodynamic system (of order 
1023) is astronomically greater than the number used in a molecular simulation (of order 
103).  Consequently some of the features we take for granted in thermodynamics may fail 
when applied to a molecular simulation.  Fortunately, it happens that 103 is plenty large 



enough for many purposes, but it pays to be aware of the danger in applying 
thermodynamics to small systems.  Thus we consider the topic briefly here. 

The ensemble average, or mean, is the statistic that connects to many thermodynamic 
observables.  To characterize the importance of configurations that differ from the mean, 
it is appropriate to examine the ensemble variance (or standard deviation).  To use a 
specific example, we will consider the energy.  How many members of the ensemble 
have energies that differ from the mean, or more precisely, what is the ensemble weight 
of the deviant members?  Illustration 9 provides a schematic of the question.  The 
standard deviation of the energy is the root-mean-square difference of each 
configuational energy from the average.  It is easy to show that this can be expressed as 
the difference in the “average square energy” and the “square of the average energy” 

  

We recently encountered the latter expression in our discussion of the heat capacity CV.  
Thus 

  

The important measure is the standard deviation relative to the mean 

p(E) 

E 

σE 

<E> 



  

Here we apply the experimental observation that the heat capacity is an extensive 
property.  For a macroscopic system, the ratio is of order 10-11: the likelihood of 
observing a microstate that differs from the average by one standard deviation is about 
one in one trillion.  This indicates a very sharply peaked distribution of energies, for 
which the mean is completely sufficient for its characterization.  For molecular 
simulation, the story is very different, and we see that we can expect to see fluctuations in 
the energy of order 1 to 10% when sampling the relevant members of the ensemble.  
Illustration 10 presents an applet that demonstrates the change in the magnitude of 
fluctuations with system size. 

A related issue is the matter of equivalence of ensembles.  The question here could be 
phased thus:   

• if I take a measurement of the pressure in a canonical ensemble at some volume; 

• and then input that pressure to an isothermal-isobaric ensemble; 

• will the NPT average of the volume equal the original canonical-ensemble volume?   

The answer is yes, but only for a sufficiently large system.  Averages from different 
ensembles are consistent only to within quantities of order 1/N.  We can demonstrate the 
discrepancy with a simple example based on the ideal gas.  The potential energy of an 
ideal gas is defined to be zero: .  Consequently, the canonical ensemble 
partition function can be evaluated analytically: 

  

and the equation of state is easily derived 

  

We could instead develop this result in the isothermal-isobaric ensemble.  The partition 
function there is 



 

The corresponding equation of state is given by 

  

from which 

  

where ρ = N/V is the number density.  Clearly this expression differs from the canonical-
ensemble result, but by a factor that vanishes in the thermodynamic limit of infinite N. 


