
Thermal Physics
RALPH BAIERLEIN
Wesleyan University

CAMBRIDGE
UNIVERSITY PRESS

�''$&��***���!�%�����#%���#%��'�%!&���''$&����#��#%����������������
���	����
�#*" #������%#!��''$&��***���!�%�����#%���#%����"�)�%&�',�#���+�'�%��#"�����%�������'����
��
���&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840227
https:/www.cambridge.org/core


Thermal Physics

Clear and reader-friendly, this is an ideal textbook for students seeking an up-to-date
introduction to thermal physics.

Written by an experienced teacher and extensively class-tested, Thermal Physics
provides a comprehensive grounding in thermodynamics, statistical mechanics, and kinetic
theory. A key feature of this text is its readily accessible introductory chapters, which begin
with a review of fundamental ideas. Entropy, conceived microscopically and statistically,
and the Second Law of Thermodynamics are introduced early in the book. Throughout,
new topics are built on a conceptual foundation of four linked elements: entropy and the
Second Law, the canonical probability distribution, the partition function, and the chemical
potential. As well as providing a solid preparation in the basics of the subject, the text goes
on to explain exciting recent developments such as Bose-Einstein condensation and
critical phenomena. Key equations are highlighted throughout, and each chapter contains a
summary of essential ideas and an extensive set of problems of varying degrees of
difficulty. A solutions manual is available for instructors.

Suitable for both undergraduates and graduates in physics and astronomy.

Born in 1936 and educated at Harvard and Princeton Universities, Ralph Baierlein is
currently Charlotte Ayres Professor of Physics at Wesleyan University, Middletown,
Connecticut. He is a fellow of the American Physical Society and in 1998 received a
Distinguished Service Citation from the American Association of Physics Teachers. He is
also author of other university textbooks including Atoms and Information Theory,
Newtonian Dynamics, and Newton to Einstein: The Trail of Light.
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Preface

Several aims guided me while I wrote. My first goal was to build from the familiar to
the abstract and still get to entropy, conceived microscopically, in the second chapter. I
sought to keep the book crisp and lean: derivations were to be succinct and simple;
topics were to be those essential for physics and astronomy. From the professor's
perspective, a semester is a short time, and few undergraduate curricula can devote
more than a semester to thermal physics.

Modularity was another aim. Instructors' tastes vary greatly, and so I sought
maximal flexibility in what to teach and when to cover it. The book's logical structure
is displayed in figure PL Chapters 1 to 3 develop topics that appear in the typical fat
textbook for introductory physics but are rarely assimilated by students in that course,
if the instructor even gets to the topics. Thus the book presumes only an elementary
knowledge of classical mechanics and some rudimentary ideas from quantum theory,
primarily the de Broglie relationship p = h/X and the idea of energy eigenstates.

A benefit of modularity is that one can study chapter 13—the classical theory—any
time after chapter 5. I placed the classical theory so far back in the book because I
think students should get to use the quantum machinery of chapters 4 and 5 on some
important physics before they face the development of more formalism. But students
need not go through chapters 10, 11, and 12 before they do the classical theory.
Chapter 13 is relatively easy, and so it is a good break after an intense chapter (such as
chapter 6 or 9). In my own teaching, I tuck in chapter 13 after chapter 9.

The book's conceptual core consists of four linked elements: entropy and the Second
Law of Thermodynamics, the canonical probability distribution, the partition function,
and the chemical potential. You may welcome the conceptual economy. All too easily,
thermal physics seems to require a radically new tool for every new topic. My aim is
to use the four elements again and again, so that my students become comfortable with
them and even moderately proficient.

A note about teaching strategy may be welcome. My students come to thermal
physics without knowing that the density in an isothermal atmosphere drops off
exponentially. Therefore, I assign problem 7.1 (the first problem in chapter 7) early
enough so that my students have done the problem before I start to talk about chapter 7
in class. Thus the students know what should emerge from the statistical calculation in
section 7.1, the calculation that "discovers" the chemical potential.

With gratitude, I acknowledge the advice and expertise of colleagues. At Wesleyan
University, my thanks go to William Herbst, Lutz Hiiwel, Richard Lindquist, Stewart
Novick, and Brian Stewart. Faculty around the globe read the first draft and offered me

XI
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Xll Preface

Second Law
Evolution to macrostate

of maximum multiplicity

Empirical gas law

S = k In (multiplicity)
q

AS ^ ^ with = iff "slow"
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Blackbody radiation
and Debye model ,

Canonical probability distribution
Qxp(-Ej/kT)

Carnot cycle
T defined by efficiency and
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I fixed external
parameters ^ A
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phase space . ^

Chemical potential
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Transport processes
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8,9

Free energies: F and G
Minimum properties
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Approaching zero
Third Law; T < 0

14

Chemical equilibrium
11

Phase equilibrium
12

Critical phenomena
16

Figure PI The logical structure of this book. The number in a box's lower right corner denotes
the chapter that develops the topic. This flow chart is, of course, a bare-bones outline; looking at
the table of contents or leafing through the pages will reveal the subtopics.

suggestions; I send thanks to Professors Michael Broide, Richard J. Cook, Hans
Kolbenstvedt, Daniel Mustaki, Steven T. Ratliff, and Yako Yafet.

My heartfelt thanks go to Janet Morgan, who rescued me when my computer lost its
ability to print h, choked over fractional exponents, and otherwise subjected me to the
trials of high-tech writing. I thank Vacek Miglus for setting up demonstrations and for
making a video of the blackboards after class.

Comments by students were a great help, and so I send my appreciation to Andrew
Billeb and Kristin Burgess.
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Preface xiii

A sabbatical at Northern Arizona University enabled me to produce the second
draft. My thanks go to the Department of Physics and Astronomy and to its chair,
Barry Lutz, for a congenial and productive stay.

Professor Carl Wieman and Michael Matthews provided the cover illustration: the
classic "photo" of Bose-Einstein condensation in gaseous rubidium. I thank them
here and provide a citation in the references for chapter 9.

As I have done with gratitude in other prefaces, I thank my wife Jean for her good
advice and steadfast support. At the Press, Rufus Neal and Rebecca Mikulin were
encouraging, effective, and a pleasure to work with. To them, I express my warm
appreciation.

Let me end the list here and note that, despite all the comments and advice, I remain
responsible for errors and infelicities.

For instructors, a solutions manual is available. Each problem has been worked out
(by me) in a format appropriate for posting or distribution to students.

Middletown, Connecticut
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1 Background
1.1 Heating and temperature
1.2 Some dilute gas relationships
1.3 The First Law of Thermodynamics
1.4 Heat capacity
1.5 An adiabatic process
1.6 The meaning of words
1.7 Essentials

Chapter 1 is meant as a review, for the most part. Indeed, if you have taken a good
general physics course, then much of chapters 2 and 3 will be review also. Thermal
physics has some subtle aspects, however, so it is best that we recapitulate basic ideas,
definitions, and relationships. We begin in section 1.1 with the ideas of heating
something and of temperature.

1.1 Heating and temperature

Suppose you want to fry two eggs, sunny-side up. You turn on the electric range and
put the copper-bottomed frying pan on the metal coil, which soon glows an orangish
red. The eggs begin to sizzle. From a physicist's point of view, energy is being
transferred by conduction from the red-hot coil through the copper-bottomed pan and
into the eggs. In a microscopic description of the process, one would say that, at the
surface of contact between iron coil and copper pan, the intense jiggling of the iron
atoms causes the adjacent copper atoms to vibrate more rapidly about their equilibrium
sites and to pass such an increase in microscopic kinetic energy along through the
thickness of the pan and finally into the eggs.

Meanwhile, your English muffin is in the toaster oven. Near the oven's roof, two
metal rods glow red-hot, but there is no direct contact between them and the muffin.
Rather, the hot metal radiates electromagnetic waves (of a wide spectrum of frequen-
cies but primarily in the infrared region); those waves travel 10 centimeters through air
to the muffin; and the muffin absorbs the electromagnetic waves and acquires their
energy. The muffin is being heated by radiation. Now the microscopic view is this: the
electrons and nuclei in the red-hot metal, being in erratic accelerated motion, emit
photons of a broad spectrum of frequencies and polarizations; the muffin absorbs the
photons.

Two more examples will suffice. In some early studies of paramagnetic salts at low
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1 Background

temperature, gamma rays were used to heat the samples by irradiation. At a club
picnic, the cans of soda and beer cool quite conveniently when immersed in a tub of
water and crushed ice.

What are the common characteristics of these diverse means of heating and cooling?
The following provides a partial list.

1. There is net transfer of energy (to or from the system, be it frying pan or muffin or
soda).

2. The amount of energy transferred may be controlled and known at the macroscopic
level but not at the microscopic level.

3. The transfer of energy does not require any change in the system's external
parameters.

The phrase "external parameters" is new and needs explanation, best given in the
context of physics applications rather than a kitchen or picnic. If steam is confined to a
hollow cylinder fitted with a movable piston, then the volume Fof the container is an
external parameter for the gas. For a piece of soft iron wrapped with many turns of
current-carrying wire, the magnetic field (produced by the electric current) is an
external parameter. For a crystal of barium titanate between the plates of a capacitor,
the electric field produced by the charges on the plates is an external parameter. In
general, any macroscopic environmental parameter that appears in the microscopic
mechanical expression for the energy of an atom or electron is an external parameter.
If you are familiar with quantum mechanics, then a more precise definition of an
external parameter is this: any macroscopic environmental parameter that appears in
the Schrodinger equation for an atom, electron, or entire physical system is an external
parameter.

In a fundamental way, one distinguishes two modes of energy transfer to a physical
system:

1. by heating (or cooling);
2. by changing one or more external parameters.

To be sure, both kinds of transfer may occur simultaneously (for example, if one
irradiates a sample at the same time that one changes the external magnetic field), but
the distinction remains absolutely vital.

Energy transfer produced by a change in external parameters is called work.
Again, if you are familiar with quantum mechanics, you may wonder, how would

heating be described in the Schrodinger equation? Consider the muffin that is being
toasted. The Schrodinger equation for the muffin must contain terms that describe the
interaction of organic molecules with the incident electromagnetic waves. But those
terms fluctuate rapidly and irregularly with time; at most one knows some average
value, perhaps a root mean square value for the electromagnetic fields of the waves.
Although it may be well-defined at the macroscopic level, energy transfer by heating is
inherently irregular and messy at the microscopic level. Later, in chapter 14, this
insight will prove to be crucial.

Whenever two objects can exchange energy by heating (or cooling), one says that
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1.1 Heating and temperature

they are in thermal contact. For heating by conduction, literal contact is required. For
heating by radiation, only a path for the electromagnetic radiation to get from one
object to the other is required.

Elementary physics often speaks of three ways of heating: conduction, convection,
and radiation. You may wonder, why is convection not mentioned here? Convection is
basically energy transport by the flow of some material, perhaps hot air, water, or
liquid sodium. Such "transport" is distinct from the "transfer" of energy to a physical
system from its environment. For our purposes, only conduction and radiation are
relevant.

To summarize: think of "heating" as a process of energy transfer, a process
accomplished by conduction or radiation.

Temperature
We return to the kitchen. In colloquial language, the red-hot coil on the stove is hotter
than was the copper-bottomed pan while it hung on the pot rack. In turn, the eggs, as
they came out of the refrigerator, were colder than the pan was. Figure 1.1 illustrates
the relationships. We can order objects in a sequence that tells us which will gain
energy (and which will lose energy) by heating when we place them in thermal
contact. Of two objects, the object that loses energy is the "hotter" one; the object that
gains energy is the "colder" one. Temperature is hotness measured on some definite
scale. That is, the goal of the "temperature" notion is to order objects in a sequence
according to their "hotness" and to assign to each object a number—its temperature—
that will facilitate comparisons of "hotness." A thermometer is any instrument that
measures the degree of hotness in a calibrated way.

Over the centuries, many ways have been found to achieve the ordering. The length
of a fine mercury column in glass constitutes a familiar thermometer, as does the
length of an alcohol column (dyed red) in glass. In a professional laboratory, tempera-
ture might be measured by the electrical resistance of a commercial carbon resistor, by
the vapor pressure of liquid helium, by the voltage produced in a copper-constantan
thermocouple, by the magnetic susceptibility of a paramagnetic salt such as cerium
magnesium nitrate, or by the spectral distribution of the energy of electromagnetic
waves, to name only five diverse methods. Calibration to an internationally adopted
temperature scale is an item that we take up in section 4.3.

Energy flow

Colder Hotter
than pan than pan

Figure 1.1 Ordering objects in a sequence according to energy transfer by heating. The broad
arrows indicate the direction of energy flow when the objects are placed in thermal contact.
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1 Background

Return for a moment to the club picnic mentioned earlier. If you put a can of warm
soda into the tub of water and crushed ice, the soda cools, that is to say, energy passes
by conduction from the soda through the can's aluminum wall and into the ice water.
In the course of an hour or so, the process pretty much runs its course: energy transfer
ceases, and the soda now has the same temperature as the ice water. One says that the
soda has come to "thermal equilibrium" with the ice water. More generally, the phrase
thermal equilibrium means that a system has settled down to the point where its
macroscopic properties are constant in time. Surely the microscopic motion of indivi-
dual atoms remains, and tiny fluctuations persist, but no macroscopic change with time
is discernible.

We will have more to say about temperature later in this chapter and in other
chapters. The essence of the temperature notion, however, is contained in the first
paragraph of this subsection. The paragraph is so short that one can easily under-
estimate its importance; I encourage you, before you go on, to read it again.

1.2 Some dilute gas relationships

As you read this, the air around you constitutes a dilute gas. The molecules of diatomic
nitrogen and oxygen are in irregular motion. The molecules collide with one another
as well as with the walls of the room, but most of the time they are out of the range of
one another's forces, so that—in some computations—we may neglect those inter-
molecular forces. Whenever we do indeed neglect the intermolecular forces, we will
speak of an ideal gas.

We will need several relationships that pertain to a dilute gas such as air under
typical room conditions. They are presented here.

Pressure according to kinetic theory
Consider an ideal gas consisting of only one molecular species, say, pure diatomic
nitrogen. There are N such molecules in a total volume V. In their collisions with the
container walls, the molecules exert a pressure. How does that pressure depend on the
typical speed of the molecules?

Because pressure is force (exerted perpendicular to the surface) per unit area, our
first step is to compute the force exerted by the molecules on a patch of wall area A.
To split the problem into manageable pieces, we write the word equation

/ momentum transferred \ ( number of collisions \
/ force on area A \ \ to wall per collision ) \ in time A^ J
\ due to molecules J ~ At '

(1.1)

where A^ is a short time interval. The reasoning is based on Newton's second law of
motion,
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1.2 Some dilute gas relationships

At'

where p denotes momentum and where we read from right to left to compute the force
produced by molecular collisions.

Figure 1.2 shows the wall area and a molecule traveling obliquely toward the wall.
When the molecule strikes the wall, its initial x-component of momentum mvx will
first be reduced to zero and will then be changed to —mvx in the opposite direction.
Thus, for such a molecule, we have

/ momentum transferred \
I to wall per collision J (1.2)

because only the x-component of momentum changes. The letter m denotes the
molecule's rest mass.

Only the velocity component vx transports molecules toward the wall; it carries
them a distance vxAt toward the wall in time At. To hit the wall in that time interval, a
molecule must be within the distance vxAt to start with. Consequently, we write

/number of collisions \ _ , A ..j /total number of molecules \
in time At i i per unit volume J'

As figure 1.2 illustrates, the factor vxAtA is the slant volume of perpendicular length
vxAt and cross-sectional area A in which a molecule with vx > 0 can be and still hit
the wall area A within time A^. The number density of molecules (regardless of their
velocity) is N j V, but only half the molecules have vx > 0 and hence travel toward the
wall (albeit obliquely so). Therefore, if all molecules with vx > 0 had the same value
for vx, then multiplication of vx At A by \{N / V) would give the number of collisions
in time A£. In a moment, we will correct for that temporary assumption.

• vxAt •

Figure 1.2 A molecule near the wall area A and traveling obliquely toward it.
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1 Background

Insert into equation (1.1) the two factors that we have worked out and then divide by
the area A to find the provisional expression

2mvx(vxMA)\{N/V)
pressure = ——*• . (1.4)

/\t A
One step remains to be taken. The product v2

x appears, and we must average over its
possible values. We can usefully relate that average to (v2), the average of the square
of the speed. (Angular brackets, ( ), denote an average. Another, analogous meaning
will be explained later, when it is first used.) Because v2 equals the sum of the squares
of the Cartesian components of velocity, the same equality is true for their averages:

= 3<i#; (1.5)

the second line follows because the averages of the squared Cartesian components
must be equal. Thus, denoting the pressure by P, we emerge with the relationship

The pressure is proportional to the average translational kinetic energy and to the
number density.

An empirical gas law
In the span from the seventeenth to the nineteenth centuries, experiments gave us an
empirical gas law:

The constant k is Boltzmann s constant,

k = 1.381 X 1(T23 joules/kelvin, (1.8)

and is entirely independent of the type of gas. The temperature T is the absolute
temperature, whose unit is the kelvin, for which the abbreviation is merely K. Precisely
how the absolute temperature is defined will be a major point in later chapters. You
may know a good deal about that topic already. For now, however, we may regard Tas
simply what one gets by adding 273.15 to the reading on a mercury thermometer that
is calibrated in degrees Celsius.

A brief history of this empirical gas law runs as follows. Around 1660, the
Englishmen Robert Boyle, Henry Power, and Richard Towneley found that the product
PV remains constant when air is compressed at constant temperature. In the years
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1.2 Some dilute gas relationships 7

1802-1805, the French chemist Joseph Louis Gay-Lussac showed that, at fixed
pressure, the volume is a linear function of the temperature. Gay-Lussac used literally
mercury thermometers and the Celsius scale. The accuracy of his measurements—
good for those days—led him to infer that absolute zero was approximately 267 °C
below the melting point of ice, close to the modern value of —273.15 °C.

By 1809, Gay-Lussac had found that reacting gases combine in a numerically
simple fashion. For example, one volume of oxygen requires two volumes of hydrogen
for complete combustion and yields two volumes of water vapor (all volumes being
measured at a fixed pressure and temperature). This information led Amadeo Avogadro
to suggest (in 1811) that equal volumes of different gases contain the same number of
molecules (again at given pressure and temperature). In modern language, the number
density N/V is the same for all dilute gases (at given pressure and temperature). The
empirical gas law, as displayed in (1.7), uniquely incorporates the experimental
insights of Boyle, Gay-Lussac, and Avogadro. All the functional dependences were
known and well-established before the first quarter of the nineteenth century was over.

Our version of the empirical law is microscopic in the sense that the number TV of
individual molecules appears. Although data for a microscopic evaluation of the
proportionality constant were available before the end of the nineteenth century, we
owe to Max Planck the notation k and the first evaluation. In his study of blackbody
radiation in 1900, Planck introduced two new constants, h and £, calling them
"Naturconstanten:" constants of Nature. To determine their numerical values, he
compared his theory with existing data on radiation (as will be described in section
6.3). Then, incorporating some work on gases by Ludwig Boltzmann, Planck showed
that his radiation constant k was also the proportionality constant in the microscopic
version of the empirical gas law.

Equation (1.7) is sometimes called the ideal gas law or the perfect gas law. Thus
far, I have chosen to use the phrase "empirical gas law" to emphasize that equation
(1.7) arose from experiments that actually measured P, V9 and T. Although the
relationship is accurate only for dilute gases, it is thoroughly grounded in experiment.
As it enters our development, there is nothing hypothetical about it. So long as the gas
is dilute, we can rely on the empirical gas law and can build on it.

Nevertheless, from here on I will conform to common usage and will refer to
equation (1.7) as the "classical ideal gas law" or, for short, the "ideal gas law."

Average translational kinetic energy
Both kinetic theory and the ideal gas law provide expressions for the pressure. Those
expressions must be numerically equal, and so comparison implies

(1.9)

We deduce that the average translational kinetic energy of a gas molecule is \
independent of the kind of gas.
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1 Background

To be sure, we must note the assumptions that went into this derivation. In working
out the kinetic theory's expression for pressure, we assumed that the gas may be treated
by classical Newtonian physics, that is, that neither quantum theory nor relativity
theory is required. Moreover, the ideal gas law fails at low temperatures and high
densities. Equation (1.9) is valid provided that the temperature is sufficiently high, but
not too high, and that the particle number density is sufficiently low. Some of these
criteria will be made more specific later, in chapters 5 and 8.

1.3 The First Law of Thermodynamics

The microscopic view of matter (where the "matter" might be a gas of diatomic
oxygen) sees matter as a collection of atomic nuclei and electrons. The gas can possess
energy in many forms:

• translational kinetic energy of the oxygen molecules,
• kinetic energy of nuclei vibrating and rotating relative to the molecular center of

mass,
• kinetic energy of the electrons relative to the nuclei,
• electrical potential energy of the nuclei and electrons within a molecule,
• intermolecular potential energy (primarily electrical in origin),
• magnetic potential energy if an external magnetic field is present (because a

diatomic oxygen molecule has a permanent magnetic dipole moment).

There can also be energies associated with the motion and location of the center of
mass (CM) of the entire gas: translational kinetic energy of the CM, kinetic energy of
bulk rotation about the CM, and gravitational potential energy of the CM, for example.
Usually the energies associated with the center of mass do not change in the processes
we consider; so we may omit them from the discussion. Rather, we focus on the items
in the displayed list (and others like them), which-collectively—constitute the internal
energy of the system.

The internal energy, denoted by E9 can change in fundamentally two ways:

1. by our heating (or cooling) the system;
2. by the system's doing work on its surroundings as one or more of its external

parameters change.

(If particles are permitted to enter and leave what one calls "the system," then their
passage may also change the system's energy. In the first five chapters, all systems
have a fixed number of particles, and so—for now—no change in energy with particle
passage need be included.) An infinitesimal change AE in the internal energy is
connected to items 1 and 2 by conservation of energy:

/ energy input \ = A£ ( work done by system \
y by heating J \ on surroundings ) '

The energy that is transferred into the system by heating either increases the internal
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1.3 The First Law of Thermodynamics 9

energy or provides energy for the work done by the system on its surroundings, or
both. For sound historical reasons, equation (1.10) is called the First Law of Thermo-
dynamics, although from a thoroughly modern point of view it is merely a statement of
energy conservation. The word thermodynamics itself comes from "therme," the
Greek word for "heat," and from "dynamics," the Greek word for "powerful" or
"forceful." In the nineteenth century, the discipline of "thermodynamics" arose from
the question, how can one best use heating processes to exert forces and to do work?
Indeed, a 24-year-old William Thomson, later to become Lord Kelvin, coined the
adjective "thermodynamic" in 1849 in a paper on the efficiency of steam engines.

Figure 1.3 and its caption contrast the nineteenth-century origin of thermodynamics
with a modern view of the same subject matter.

We need a way to write the word equation (1.10) in succinct symbolic form. The
lower case letter q will denote a small (or infinitesimal) amount of energy transferred
by heating; the capital letter Q will denote a large (or finite) amount of energy so
transferred. Analogously, the lower case letter w will denote a small (or infinitesimal)
amount of work done by the system; capital ^Fwill denote a large (or finite) amount of
work. Thus the First Law becomes

Figure 1.3 Individual xenon atoms spell out the IBM logo. Donald M. Eigler and Erhard K.
Schweizer moved the 35 atoms into position (on a nickel surface) with a scanning tunneling
microscope and then "took the picture" with that instrument. The work was reported in Nature
in April 1990. When thermodynamics was developed in the nineteenth century, the very
existence of atoms was uncertain, and so thermodynamics was constructed as a macroscopic,
phenomenological theory. Today we can safely build a theory of thermal physics on the basis of
atoms, electrons, nuclei, and photons.

By the way, xenon atoms are not shaped like chocolate kisses; the conical appearance is an
artifact of the technique. [Source: D. M. Eigler and E. K. Schweizer, "Positioning single atoms
with a scanning tunnelling microscope," Nature 344, 524-6 (5 April 1990). Also, D. M. Eigler,
private communication.]
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10 1 Background

q = AE + w.

A further remark about notation is in order. The symbol A always denotes "change
in the quantity whose symbol follows it." That change may be small (or infinitesimal),
as in AE here. But, at other times, A may denote a large or finite change in some
quantity. One needs to check each context.

The detailed expression for work done by the system depends (1) on which external
parameter changes and (2) on whether the system remains close to thermal equilibrium
during the change. Let us consider volume Fand the pressure exerted by a gas in a
hollow cylinder with a movable piston, as sketched in figure 1.4. For the small
increment A V in volume, accomplished by slow expansion, the work done by the gas
is this:

(work done by gas) = force X distance

pressure X area X distance

PAV. (1.12)

The last line follows because the volume change AV equals the cross-sectional area
times the distance through which the piston moves. The cylindrical shape helps us to
derive the PA V form, but the expression is more general and holds for any infinites-
imal (and slow) change in volume.

Thus, for a slow expansion, the First Law of Thermodynamics now takes the form

PAV. (1.13)

Figure 1.4 The gas expands from volume Fto volume V + AV, pushing on the piston as it goes.
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1.4 Heat capacity 11

1-4 Heat capacity

If we heat a dilute gas at constant volume, the molecules experience an increase in
their average translational kinetic energy. Equation (1.9) tells us that the temperature
increases also, and that agrees with common sense. The correlation of heating and
temperature change is usefully captured in a ratio:

/ energy input by heating \
I under specified conditions I

(ensuing change in temperature)

The ratio is called the system's heat capacity and is usually denoted by capital C,
sometimes with a subscript to identify the specified conditions. Thus the generic
expression is this:

/ energy input by heating \
= / heat capacity \ = \ under conditions X )

X ~ \ under conditions X ) ~ (ensuing change in temperature)'

where Xmay denote constant volume or constant pressure (or, for a magnetic system,
constant external magnetic field).

Using equations (1.14) and (1.13), we can write the heat capacity at constant volume
(and at constant values for any other external parameters) as

/ energy input by heating \
y at constant volume J

: AT

J L = AE=(dE\
AT AT \dTJr

Because all external parameters are held constant, no work is done, and so (1.13)
implies that the energy input by heating, q, manifests itself entirely as a change AE in
the internal energy. When a limit of infinitesimal transfer is taken, a partial derivative
is required because we stipulate that the variation of internal energy with temperature
is to be computed at constant external parameters; that is made explicit with paren-
theses and a subscript V. Succinctly, think of E as a function of T and V: E =
E(T, V); then differentiate with respect to T while holding Vfixed.

If the gas is monatomic and if equation (1.9) holds, then

where iV denotes the number of atoms.
As defined above, the heat capacity refers to the entire system. Frequently one finds
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12 1 Background

the expression (1.14) divided by the system's mass or by the number of constituent
particles. Such expressions give a heat capacity per unit mass or per particle. The
expressions are called specific heats. There is nothing intrinsically new in them. Those
quantities are merely more useful for tabulating physical properties and for comparing
different materials.

Heat capacity at constant pressure
If a gas may expand while being heated but is kept at a constant pressure, the
associated heat capacity—the heat capacity at constant pressure—is denoted Cp.
Again using equations (1.14) and (1.13), we have

/ energy input by heating \
y at constant pressure J

Cr~ AT
AE + PAV

AT
(1.17)

The quotients are easy to evaluate for an ideal gas (which may have polyatomic
molecules) under conditions of temperature and number density such that the ideal gas
law holds. We will call such a gas a classical ideal gas. Then the ideal gas law,
P = (N/V)kT, implies

whence

for small changes at constant pressure. The second term in the numerator of (1.17) will
produce a quotient that is merely Nk. In the absence of intermolecular forces and when
temperature and number density are such that the ideal gas law holds, the internal
energy E depends on T9 TV, and the molecular species, but not on the volume. Thus the
ratio AE/AT in (1.17) is numerically the same ratio that appeared in (1.15) and gave
Cy, the heat capacity at constant volume. In short, equation (1.17) may be written as

(1.18)

for a classical ideal gas.
The heat capacity is larger now because some energy goes into doing work as the

gas is heated (and expands).
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1.5 An adiabatic process 13

The mole
Tucked in here are a few paragraphs about the mole. To an accuracy of 1 percent, a
mole of any isotope is an amount whose mass, measured in grams, is equal to the sum
of the number of protons and neutrons in the isotope's nucleus. Rigorously, a mole of
any isotope or naturally occurring chemical element is an amount that contains the
same number of atoms as there are in 12 grams of the isotope 12C, that is, the carbon
atom that has six protons and six neutrons. The number of basic units itself is called
Avogadro's number (or constant) and has the (approximate) value NA = 6.022 X 1023

items per mole. A mole of a molecular species, such as water (H2O) or carbon dioxide
(CO2), is an amount that contains NA molecules of the species.

In the physics literature and in handbooks, heat capacities are often given in units
of J/(K • mol), where "mol" is an abbreviation for "mole." Division by Avogadro's
number NA will convert to units of J/(K • molecule) or whatever the individual entities
are: molecules, atoms, ions, etc.

The etymology of the word "mole" is curious and may help you to understand the
use in physics and chemistry. According to the Oxford English Dictionary, the Latin
word moles means "mass" in the loose sense of a large piece or lump of stuff. In the
seventeenth century, the Latin diminutive molecula spawned the English word "mol-
ecule," meaning a small or basic piece. In 1900, the German chemist Wilhelm Ostwald
lopped the "cule" off "molecule" and introduced the mole or mol in the sense defined
two paragraphs back.

The ideal gas law can be expressed in terms of the number of moles of gas, and that
version is common in chemistry. To see the connection, multiply numerator and
denominator of equation (1.7) by Avogadro's number NA and then factor as follows:

P = WA(NAk)T = ( nUmber ^ m°leS)RT. (1.19)

The quotient N/NA cites the amount of gas in moles. The symbol R denotes the gas
constant R = NAIC.

1.5 An adiabatic process

The form of the First Law, as expressed in equation (1.10), suggests that there are two
extremes for ways to change a system's internal energy E. In the preceding section we
saw one of those extremes: hold all external parameters fixed, so that no work is done,
and change E solely through energy input by heating. The opposite extreme consists of
no heating but some work done. Any process in which no heating (or cooling) occurs
is called adiabatic, from the Greek words a (not) + dia (through) + bainein (to go).
That is, in an adiabatic process, no energy goes through an interface by heating or
cooling. (If the adiabatic process occurs slowly, some work is sure to be done. If the
process occurs rapidly, for example, as an expansion into a vacuum, it may be that no
work is done on the environment.)
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14 1 Background

Another contrast is often made: between an adiabatic process and a process at
constant temperature. The latter is called an isothermal process, for the adjective
"isothermal" means "at constant temperature" or "for equal temperatures."

The adiabatic relation for a classical ideal gas
Consider a classical ideal gas. Figure 1.5 shows the effect of slow expansion under two
different circumstances: isothermal conditions and an adiabatic process. When the
temperature is fixed, the ideal gas law, P — (N/V)kT, asserts that the pressure drops
because the volume increases. The gas's internal energy, however, does not change. In
an expansion under adiabatic conditions, the internal energy drops because the gas
does work on its surroundings but no energy input by heating is available to compen-
sate. Thus the temperature drops. Consequently, in an adiabatic process, two factors
cause the pressure to drop—an increase in volume and a decrease in temperature—and
so the pressure drops faster.

To calculate the isothermal curve in figure 1.5, one supplements the ideal gas law
with the relation T = T^iai, which is to hold throughout the entire expansion. For the
adiabatic process, there must be an analogous supplementary relation. To derive it, we
return to the First Law of Thermodynamics, equation (1.13), note that "adiabatic"
implies q = 0, and write down energy conservation in the form

PAV. (1.20)

The ideal gas law enables us to express the pressure P in terms of temperature and
volume. As we noted in the preceding section, for a classical ideal gas the equation
AE = CVAT holds, and so (1.20) takes the form

0 = CvAT + — kTAV. (1.21)

Adiabatic

Figure 1.5 Comparing the run of pressure versus volume under two conditions: isothermal and
adiabatic.
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1.5 An adiabatic process 15

Now divide by CyT and prepare to integrate:

^ + ^ | ^ = 0. (1.22)

Each integration will produce a logarithm. Both tradition and convenience suggest
expressing Nk as the difference of two heat capacities; by (1.18),

Nk Cp-Cy
— — y — \

Cy Cy
where y is the traditional symbol for the ratio of heat capacities:

y = 7f~- (1-23)
Ly

Indefinite integration implies

In T + (y - l)ln V = const.

Combining the terms on the left yields

\n(TVy~l) = const.

The constancy of the right-hand side implies that the argument of the logarithm
remains constant:

TVy~l = new constant. (1.24)

This equation relates final and initial values of T and V during an adiabatic change of
volume:

TfVy~l = TiVy~\ (1.25)

Equation (1.24) augments the ideal gas law; both of them apply during the adiabatic
process. The stipulation of no energy transfer by heating constrains the triplet T9 P,
and V more than the ideal gas law alone would and hence generates the additional
relationship (1.24).

Precisely because the ideal gas law continues to hold, we may use it to eliminate T
in (1.24) in terms of the product PV/Nk. The new form of what is really the same
relationship becomes

PVy = another constant. (1.26)

This expression seems to be the easiest to remember. Starting from here, we recover
equation (1.24) by eliminating P9 the reverse of the recent step. Elimination of V from
(1.26) with the aid of the ideal gas law demonstrates the constancy of Pl~yjy. It
suffices to remember one form and to know that you can get the others by elimination.

The expansion of a warm, low density cloud as it rises in the sky is (approximately)
an adiabatic process. As the cloud rises into regions of lower pressure, it expands, does
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16 1 Background

work on its surroundings, and thereby loses internal energy. Consequently, its tempera-
ture drops, and more moisture condenses.

How general are the relationships (1.24) and (1.26)? We specified a classical ideal
gas and a slow process, so that the system remains close to thermal equilibrium. Those
are two restrictions. Beyond that, the step from (1.21) to (1.22) assumed implicitly that
Cy is independent of temperature. Often that assumption is a good approximation. For
example, it is fine for diatomic oxygen and nitrogen under typical room conditions. If
the temperature varies greatly, however, Cy will change; sections 11.3 and 13.4
explore this facet of diatomic molecules.

1.6 The meaning of words

If you glance back through the chapter, from its opening paragraph up to equation
(1.10), you will find that I spoke of heating things and of "energy input by heating."
Basically, I used verb-like forms of the word "heat." The focus was on energy transfer
by heating (or cooling), a transfer produced by conduction or radiation, and that
process is quite well-defined.

Historically, the word "heat" has been used as a noun as well, but such use—
although common—is often technically incorrect. The reason is this: there is no way to
identify a definite amount or kind of energy in a gas, say, as "heat." An example may
clarify this point.

Figure 1.6 shows two sequences of events. In sequence (a), hot steam doubles in
volume as it expands adiabatically into a vacuum. Because the water molecules hit
only fixed walls, they always rebound elastically. No energy is gained or lost in the
expansion, and so £fmai = înitial-

In sequence (b), the steam expands slowly and does work on a piston (which may be
connected to other machinery, so that the work does something genuinely useful, such
as turn the shaft of an electrical generator). The steam loses energy and also drops in
temperature. To compensate for the energy loss, in the last stage a burner heats the
water vapor, transferring energy by heating until the steam's energy returns to its initial
value. Thus £fmai = initial in this sequence also.

If a definite amount or kind of energy in the water vapor could be identified as
"heat," then there would have to be more of it at the end of sequence (b) than at the
end of sequence (a), for only in sequence (b) has any heating occurred. But in fact,
there is no difference, either macroscopic or microscopic, between the two final states.

An equivalent way to pose the problem is the following. The challenge is to identify
a definite amount or kind of energy in a gas that (1) increases when the gas is heated
by conduction or radiation and (2) remains constant during all adiabatic processes. No
one has met that challenge successfully.

"Heat" as a noun flourished during the days of the caloric theory, but by 1865 at
the latest, physicists knew that they should not speak of the "amount of heat" in a
gas. Such a concept is untenable, as the analysis with figure 1.6 showed. Usage that
is technically improper lingers nonetheless, and the phrase "heat capacity" is an
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1.6 The meaning of words 17

Initial Final
(a)

(b)

• •
•

•
. • • .

Vacuum

• •
• •

. • • • r

Figure 1.6 Two sequences from identical initial states of steam: (a) adiabatic expansion into a
vacuum (after a barrier is removed); (b) slow adiabatic expansion, with work being done,
followed by gentle heating. In both sequences, £fmai = initial- Some time may be required for
thermal equilibrium to be reached at the end of each sequence. Such time is incorporated into
the sequences.

egregious example. The literal meaning of the phrase would be "capacity for holding
heat," but that is not meaningful. The ratio in expression (1.14), however, is physically
meaningful because it refers only to the amount of energy that is transferred by
heating, and the process of heating is well-defined. From time to time, we will
calculate a "heat capacity." Interpret the phrase not literally but rather in the sense of
expression (1.14).

Even the words "heating" and "cooling" are used in more than one sense. Thus far,
I have used them exclusively to describe the transfer of energy by conduction or
radiation. The words are used also to describe any process in which the temperature
rises or drops. Thus, if we return to figure 1.6, the first stage of sequence (b) could be
described as "cooling by adiabatic expansion" because the temperature does drop. If
one were to push the piston back in and return the gas to its initial state, one could
describe that process as "heating by adiabatic compression" because the temperature
would rise to its initial value. In both cases the adjective "adiabatic" means "no
cooling or heating by conduction or radiation," but the temperature does change, and
that alone can be the meaning of the words "cooling" and "heating." Such usage is
not incorrect; it is just different, and one needs to be alert to such differences.

For a moment, imagine that you are baby-sitting your niece and nephew, Heather
and Walter, as they play at the beach. The 4-year-olds are carrying water from the lake
and pouring it into an old rowboat. Heather uses a green beach bucket; Walter
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18 1 Background

improvises with the rectangular Tupperware container that formerly held the celery
and carrot sticks. When you look in the rowboat, you see clear water filling it to a
depth of several centimeters.

While Heather is carrying water, you can distinguish her lake water from Walter's—
because it is in a green bucket—but once Heather has poured the water into the
rowboat, there is no way to distinguish the water that she carried from that which
Walter poured in or from the rainwater that was in the boat to start with.

The same possibilities and impossibilities hold for energy transferred by heating,
energy transferred by work done (by or on the system), and internal energy that was
present to start with. Energy that is being transferred by conduction or radiation may
be called "heat." That is a technically correct use of the word and, indeed, a correct
use as a noun. Once such energy has gotten into the physical system, however, it is just
an indistinguishable contribution to the internal energy. Only energy in transit may
correctly be called "heat."

Thermodynamics notes that certain attributes, such as temperature, pressure, total
mass, density, and internal energy, serve adequately to define the macroscopic proper-
ties of a macroscopic system (when the system is in thermal equilibrium). Beyond that,
thermodynamics notes that some of those attributes can be calculated from others (for
example, via the ideal gas law). Such attributes are called state functions because,
collectively, they define the macroscopic state and are defined by that state. "Heat,"
construed as a noun, is not a state function. The reason is this: the noun "heat" is
defined only during the process of energy transfer by conduction or radiation. As we
reasoned near the beginning of this section, one may not speak of the "amount of
heat" in a physical system. These are subtle, but vital, points if one chooses to use the
word "heat" as a noun. In this book, I will avoid the confusion that such usage
invariably engenders and will continue to emphasize the process explicitly; in short, I
will stick with the verb-like forms and will speak of "energy input by heating."

The language of thermodynamics is permeated with names constructed as though
"heat" were a substance or a state function. It is neither. Historical usage, however,
cannot be avoided, especially when you read other books or consult collections of
tabulated physical properties. Stay alert for misnomers.

While we are on the subject of meanings, you may wonder, what is "thermal
physics"? Broadly speaking, one can define thermal physics as encompassing every
part of physics in which the ideas of heating, temperature, or entropy play an essential
role. If there is any central organizing principle for thermal physics, then it is the
Second Law of Thermodynamics, which we develop in the next chapter.

1.7 Essentials

This section collects essential ideas and results from the entire chapter. It is neither a
summary of everything nor a substitute for careful study of the chapter. Its purpose is
to emphasize the absolutely essential items, so that—as it were—you can distinguish
the main characters from the supporting actors.
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1.7 Essentials 19

1. Think of heating as a process of energy transfer, a process accomplished by
conduction or radiation. (No change in external parameters is required.)

2. Whenever two objects can exchange energy by heating (or cooling), one says that
they are in thermal contact.

3. Any macroscopic environmental parameter that appears in the microscopic mech-
anical expression for the energy of an atom or electron is an external parameter. If you
are familiar with quantum mechanics, then a more precise definition of an external
parameter is this: any macroscopic environmental parameter that appears in the
Schrodinger equation for an atom, electron, or entire physical system is an external
parameter. Volume and external magnetic field are examples of external parameters.
Pressure, however, is not an exteijial parameter.

4. Energy transfer produced by a change in external parameters is called work.

5. We can order objects in a sequence that tells us which will gain energy (and which
will lose energy) by heating when we place them in thermal contact. Of two objects,
the object that loses energy is the "hotter" one; the object that gains energy is the
"colder" one. Temperature is hotness measured on some definite scale. That is, the
goal of the "temperature" notion is to order objects in a sequence according to their
"hotness" and to assign to each object a number—its temperature—that will facilitate
comparisons of "hotness." A thermometer is any instrument that measures the degree
of hotness in a calibrated way.

6. The phrase thermal equilibrium means that a system has settled down to the point
where its macroscopic properties are constant in time. Surely the microscopic motion
of individual atoms remains, and tiny fluctuations persist, but no macroscopic change
with time is discernible.

7. A classical non-relativistic analysis of a dilute gas implies

p_xN

8. The ideal gas law,

is an empirical gas law, valid for any dilute gas (of atoms or molecules). When the
conditions of temperature and number density are such that a gas satisfies the ideal gas
law, we will call the gas a classical ideal gas.

The shorter phrase, ideal gas, means merely that intermolecular forces are negli-
gible. The questions of whether classical physics suffices or whether quantum theory is
needed remain open.
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20 1 Background

9. Comparison of the items 7 and 8 implies

\m(v2) = \kT.

The average translational kinetic energy of a gas molecule is \kT, independent of the
kind of gas (provided that the motion is non-relativistic, that classical physics suffices,
and that the gas is dilute).

10. The First Law of Thermodynamics is basically conservation of energy:

q = AE + w.

11. If w, the small (or infinitesimal) amount of work done by the system, is performed
by a volume expansion AV while the gas exerts a pressure P on a moving boundary,
then the First Law becomes

q = AE + PAV.

12. A general definition of heat capacity is the following:

/ energy input by heating \
_ / heat capacity \ _ \ under conditions X J
~ \ under conditions X J ~ (ensuing change in temperature)'

where Xmay denote constant volume or constant pressure (or, for a magnetic system,
constant external magnetic field).

13. The heat capacity at constant volume may be expressed as

Cy = ( — ) —> - Nk for a monatomic classical ideal gas,\oTJv 2

where the arrow and the last expression refer to a monatomic classical ideal gas and
non-relativistic motion. (Thus the last expression is not general.)

14. Similarly, the heat capacity at constant pressure may be expressed as

AE + PA V
Cp = > Cy + Nk for a classical ideal gas.

15. A process in which no heating occurs is called adiabatic. For a classical ideal gas,
the relationship

PVy = constant

holds during an adiabatic process (provided the process is performed slowly, so that
the system remains close to thermal equilibrium). Here y = Cp/Cy is the ratio of heat
capacities, presumed to be independent of temperature. The relationship, PVy =
constant, holds in addition to the ideal gas law. Consequently, the latter may be used to
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eliminate pressure or volume from the former and hence to construct new versions of
the adiabatic relationship.

16. Attributes that, collectively, define the macroscopic state and which are defined by
that state are called state functions. Examples are internal energy E, temperature T,
volume V, and pressure P.

17. "Heat," construed as a noun, is not a state function. The reason is this: the noun
"heat" is defined only during the process of energy transfer by conduction or
radiation. One may not speak of the "amount of heat" in a physical system.

Further reading

A marvelous resource for the historical development of thermal physics is provided by
Martin Bailyn in his book, A Survey of Thermodynamics (AIP Press, Woodbury, New
York, 1994).

Max Planck introduced the symbols h and k in his seminal papers on blackbody
radiation: Ann. Phys. (Leipzig) 4, 553-63 and 564-6 (1901). Thomas S. Kuhn
presents surprising historical aspects of the early quantum theory in his book, Black-
body Theory and the Quantum Discontinuity, 1894-1912 (Oxford University Press,
New York, 1978).

"The use and misuse of the word 'heat' in physics teaching" is the title of a
provocative article by Mark W. Zemansky in The Physics Teacher 8, 295-300 (1970).

Problems

Note. Appendix A provides physical and mathematical data that you may find useful
when you do the problems.

1. A fixed number of oxygen molecules are in a cylinder of variable size. Someone
compresses the gas to one-third of its original volume. Simultaneously, energy is
added to the gas (by both compression and heating) so that the temperature increases
five fold: Tfmai = 57"initiai. The gas remains a dilute classical gas.

By what numerical factor does each of the following change:

(a) pressure,
(b) typical speed of a molecule,
(c) the number of impacts per second by molecules on 1 square centimeter of wall

area?

Be sure to show your line of reasoning for each of the three questions.

2. Radiation pressure. Adapt the kinetic theory analysis of section 1.2 to compute the
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22 1 Background

pressure exerted by a gas of photons. There are TV photons, each of energy hv, where h
is Planck's constant and v is a fixed frequency. The volume V has perfectly reflecting
walls. Recall that a photon's momentum is hv/c in magnitude. Express the pressure in
terms of N, V, and the product hv. [For a photon gas in thermal equilibrium at
temperature T, one would need to sum (or average) over a spectrum of frequencies.
Section 6.2 will do that but from a different point of view.]

3. Relativistic molecules. Suppose the molecules of section 1.2 move with speed
comparable to the speed of light c. (Suppose also that the molecules survive collision
with the wall!)

(a) Adapt the kinetic theory analysis to this context; express the pressure in terms of
the rest mass m and the relativistic energy £rei = me2 / ^/\ — v2/c2. Eliminate the
speed v entirely.

(b) After giving the general expression, examine the domain in which the strong
inequality (eTG\) ^> me2 holds. If you know the pressure exerted by a photon gas,
compare the limit here with the photon gas's pressure.

4. Adiabatic compression. A diesel engine requires no spark plug. Rather, the air in
the cylinder is compressed so highly that the fuel ignites spontaneously when sprayed
into the cylinder.

(a) If the air is initially at room temperature (taken as 20 °C) and is then compressed
adiabatically by a factor of 15, what final temperature is attained (before fuel
injection)? For air, the ratio of heat capacities is y — 1.4 in the relevant range of
temperatures.

(b) By what factor does the pressure increase?

5. Adiabatic versus isothermal expansion. In figure 1.5, the adiabatic curve drops
away from the common initial point in the P- Vplane faster than the isothermal curve.

(a) Do the two curves ever have the same slope (at some larger, common value of V)l
(b) Do the two curves ever cross again (at larger volume)?

6. Ruchardts experiment: equilibrium. Figure 1.7 shows a large vessel (of volume Vo)
to which is attached a tube of precision bore. The inside radius of the tube is r0, and
the tube's length is / o . You take a stainless steel sphere of radius ro and lower it—
slowly—down the tube until the increased air pressure supports the sphere. Assume
that no air leaks past the sphere (an assumption that is valid over a reasonable interval
of time) and that no energy passes through any walls.

Determine the distance below the tube's top at which the sphere is supported.
Provide both algebraic and numerical answers. You have determined an equilibrium
position for the sphere (while in the tube).

Numerical data: VQ = 10.15 liters; r0 = 0.8 cm; and / Q = 60 cm. Mass density of
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Figure 1.7 Apparatus for Ruchardt's experiment.

stainless steel = 7.8 times that of water. Take the ratio of heat capacities to lie in the
range 1.3 ^ y ^ 1.7.

7. Ruchardt's experiment: oscillation. This question carries on from "Ruchardt's
experiment: equilibrium." The physical context is the same, but now you release the
steel ball (from rest) at the top of the tube.

(a) Determine the subsequent motion of the ball. In your quantitative calculations,
ignore friction with the walls of the tightly fitting tube, but describe how the
predicted evolution would change if you were to include friction. Note that the
equilibrium location (for the "lowered" ball) is about half-way down the tube.
After you have worked things out algebraically, insert numerical values.

(b) Describe how one could use the apparatus and analysis to determine the ratio of
heat capacities for air under room conditions. Present an expression for y in terms
of the oscillation frequency together with known or readily measurable quantities.

8. A monatomic classical ideal gas of N atoms is initially at temperature 7b in a
volume Vo. The gas is allowed to expand slowly to a final volume 7Fo in one of three
different ways: (a) at constant temperature, (b) at constant pressure, and (c) adiabati-
cally. For each of these contexts, calculate the work done by the gas, the amount of
energy transferred to the gas by heating, and the final temperature. Express all answers
in terms of N9 7b, VQ9 and k.
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2 The Second Law of
Thermodynamics
2.1 Multiplicity
2.2 The Second Law of Thermodynamics
2.3 The power of the Second Law
2.4 Connecting multiplicity and energy transfer by heating
2.5 Some examples
2.6 Generalization
2.7 Entropy and disorder
2.8 Essentials

Chapter 2 examines the evolution in time of macroscopic physical systems. This study
leads to the Second Law of Thermodynamics, the deepest principle in thermal physics.
To describe the evolution quantitatively, the chapter introduces (and defines) the ideas
of multiplicity and entropy. Their connection with temperature and energy input by
heating provides the chapter's major practical equation.

2.1 Multiplicity

Simple things can pose subtle questions. A bouncing ball quickly and surely comes to
rest. Why doesn't a ball at rest start to bounce? There is nothing in Newton's laws of
motion that could prevent this; yet we have never seen it occur. Why? (If you are
skeptical, recall that a person can jump off the floor. Similarly, a ball could—in
principle—spontaneously rise from the ground, especially a ball that had just been
dropped and had come to rest.)

Or let us look at a simple experiment, something that seems more "scientific."
Figure 2.1 shows the context. When the clamp is opened, the bromine diffuses almost
instantly into the evacuated flask. The gas fills the two flasks about equally. The
molecules seem never to rush back and all congregate in the first flask.

You may say, "That's not surprising." True, in the sense that our everyday experi-
ence tells us that the observed behavior is reasonable. But let's consider this "not
surprising" phenomenon more deeply.

Could the molecules all go back? Certainly. There is nothing in Newton's laws, the
irregular molecular motion, and the frequent collisions to prevent the molecules from
all returning—and, indeed, from then staying in the original container. The collisions
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"Filled with
gaseous bromine

Clamp on
connecting hose Vacuum

Figure 2.1 The bromine experiment. Each flask has a volume of approximately one liter. The
bromine is visible as a rusty brown gas. (In practice, the "bromine-filled" flask contains air also,
but we focus exclusively on the bromine because it is visible.)

would have to be "just right," you say, for that to happen, but they could—in
principle—be just right. And yet, although the collisions could be just right, such a
situation is not probable.

If there were just three bromine molecules, we would expect a simultaneous return
to the original container to occur from time to time, perhaps in a matter of minutes.
But if we consider 6, then 60, next 600, and finally 1020 bromine molecules, the event
of simultaneous return shrinks dramatically in probability. Table 2.1 provides a graphic
analogy. We expect a more-or-less uniform spatial distribution of bromine molecules,
and that is what we actually find.

We can say that a more-or-less uniform distribution of the molecules is much more
probable than any other distribution. The simple phrase, "a more-or-less uniform
distribution," is an instance of a large-scale, macroscopic characterization, as distin-
guished from a microscopic characterization (which would focus on individual mol-
ecules). Boldly, we generalize from the bromine experiment to macroscopic physics in
general:

Macroscopic regularity. When a physical system is allowed to evolve in
isolation, some single macroscopic outcome is overwhelmingly more probable
than any other.

This property, of course, is what makes our macroscopic physical world reproducible
and predictable (to the large extent that it actually has those characteristics). The
inference is another way of saying that a liter of water or a roomful of air has
reproducible physical properties.

Multiplicity
Let us sharpen the inference. We distinguish between the "state of affairs" on the
microscopic and on the macroscopic level. Here are two definitions:

Microscopic state of affairs, abbreviated microstate: the state defined by specifying
in great detail the location and momentum of each molecule and atom.
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26 2 The Second Law of Thermodynamics

Table 2.1 An analogy of a tossed coin illustrates the probabilities of "all bromine
molecules in one of two containers " and "more-or-less uniform distribution of
bromine molecules."

Number of tosses Probability of all tosses being heads

~ I
2 (±)2=± = 0.25
3 (I)3 = 1 = 0.125

60 (i)60 = 10-18

600 (i)600 = lO"181

1020 (lyO^o = 1Q-3Xl0«

If you toss a penny 60 times, you expect about 30 heads and 30 tails. For all 60 tosses to yield
heads is possible but quite improbable. The situation with 1020 tosses would be extreme.

A related and even more relevant issue is this: if a penny is tossed many times, can we be
pretty sure that about half the tosses will come out heads and about half will come out tails? In
short, can we be pretty sure that we will find a more-or-less even distribution of heads and tails?
The table below shows some probabilities for a more-or-less even distribution.

Number of tosses N Probability that the number
of heads is within 1 percent
of the value N/2

10 0.246
100 0.080

1,000 0.248
104 0.683
105 0.998
106 1 - 1.5 X 10-23 =- 1
108 1 - 2.7 X 10-2174 =• 1

As soon as the number of tosses is 100,000 or so, the probability of a more-or-less even
distribution of heads and tails is nearly unity, meaning that such a distribution is a pretty sure
outcome. By a million tosses, the more-or-less even distribution is overwhelmingly more
probable than any and all significant deviations from that distribution, and the numbers quickly
become unimaginable. If we were to consider a number of tosses comparable to the number of
bromine atoms—1020 tosses—then the probability of a more-or-less even distribution would be
so close to a certainty as to make any deviation not worth accounting for.

[You may wonder, how were these probabilities computed? Once the total number of tosses N
has been specified, each conceivable sequence of heads and tails—such as HHTHT . . . —has a
probability of (\/2)N. To compute the probability that the number of heads will be within 1
percent of N/2, one just counts up the number of different sequences that meet the 1 percent
criterion and then multiplies by the probability of each sequence, (\/2)N. Fortunately, there are
some tricks for doing that arithmetic efficiently, but to go into them would take us too far afield.]
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2.1 Multiplicity 27

Macroscopic state of affairs, abbreviated macrostate: the state defined by specifying
a few gross, large-scale properties, such as pressure P, volume V, temperature T, or
total mass.

Here is an analogy. Given four balls labeled A, B, C, D and two bowls, what are the
different ways in which we can apportion the balls to the two bowls? Table 2.2 sets out
the possibilities.

Some macrostates have many microstates that correspond to them; others, just a
few. This is a vital quantitative point. It warrants a term:

the multiplicity \ _
of a macrostate / ~~

' the number of microstates \
that correspond I.

to the macrostate /
(2.1)

The even distribution of balls has the largest multiplicity, but, because the number of
items is merely four here, the multiplicity for the even distribution is not yet over-
whelmingly greater than the multiplicity for the quite uneven distributions.

Table 2.2 Microstates, macrostates, and multiplicity.

Apportionment

Balls in
left-hand bowl

ABCD

ABC
ABD
ACD
BCD

AB
AC
AD
BC
BD
CD

A
B
C
D

None

Any single such
is a microstate.

in detaila

Balls in
right-hand bowl

None

D
C
B
A

CD
BD
CB
AD
AC
AB

BCD
ACD
ABD
ABC

ABCD

apportionment

Specification merely
of the number of balls
in each bowl

Left Right

4 0

3 1

2 2

1 3

0 4

Any single such
gross specification
is a macrostate.

Number of detailed
arrangements
corresponding to each
gross specification

1

4

6

4

1

The multiplicity

aPosition within a bowl does not matter.
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28 2 The Second Law of Thermodynamics

2.2 The Second Law of Thermodynamics

The next step in our reasoning is easiest to follow if I draw the picture first and make
the connections with physics later. Imagine a vast desert with a few oases. A
"mindless" person starts at an oasis and wanders in irregular, thoughtless motion.
With overwhelming probability, the person wanders into the desert (because there is so
much of it around) and remains there (for the same reason). Figure 2.2 illustrates this
scene.

If we make some correspondences, the desert picture provides an analogy for the
behavior of a molecular system. Table 2.3 shows the correspondences.

With the aid of the analogy, we can understand the diffusion of bromine. Common
sense and the example with the four balls tell us that the macrostate with a more-or-
less uniform distribution of molecules has the largest multiplicity, indeed, over-
whelmingly so. When the clamp was opened, the bromine—in its diffusion—evolved
through many microstates and the corresponding macrostates. By molecular collisions,
the bromine was (almost) certain to get to some microstate corresponding to the
macrostate of largest multiplicity. Why? Simply because there are so many such

Table 2.3 Correspondences in the desert analogy.

A point on the map
The desert
An oasis
The "mindless" person
The person's path
The initial oasis

A specific microstate
The macrostate of largest multiplicity
A macrostate of small multiplicity
A system of many molecules
The sequence of microstates in the evolution of the system
The initial macrostate

Figure 2.2 The desert analogy.
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2.3 The power of the Second Law 29

microstates. Thereafter, changes of microstate will certainly occur, but further change
of macrostate is extremely unlikely. The continual changes of microstate will almost
certainly take the bromine from one to another of the many microstates that corre-
spond to the more-or-less uniform distribution.

The desert analogy suggests a refinement of our tentative inference about macro-
scopic regularity, a refinement presented here along with its formal name:

The Second Law of Thermodynamics. If a system with many molecules is
permitted to change, then—with overwhelming probability—the system will
evolve to the macrostate of largest multiplicity and will subsequently remain in
that macrostate. Stipulation: allow the system to evolve in isolation. (The stipu-
lation includes the injunction, do not transfer energy to or from the system.)

As for the stipulation, let us note that we left the bromine alone, permitting it to evolve
by itself once the clamp was opened, and so prudence suggests that we append the
stipulation, which contains implicitly the injunction about no energy transfer.

2.3 The power of the Second Law

Our statement of the Second Law may need a little more attention (to make it more
quantitative), but already we have a powerful law, and we can even use it to save
money for the government.

It costs a great deal of money to launch rockets for astronomical observations. We
have to pay for a lot of energy (in the form of combustible liquids and solids) in order
to put a satellite into orbit, and we have to pay even more to enable a satellite to escape
the Earth's gravitational pull.

An economy-minded astronomer has an idea: let's use some of the vast amount of
energy stored in the warmth of the sea. Figure 2.3 illustrates the proposal. The

Figure 2.3 The astronomer's proposal. The mechanism inside the building is not permitted to
use up anything, such as batteries. Rather, after each satellite-carrying projectile has been
launched, the mechanism must return fully to its original state. Only outside the building is net
change permitted. (Moreover, only change to the water and to the state of motion of the
projectiles is permitted.)

�((%��+++���"�&�����$&���$&��(�&"'���((%����,��$��$&����������������
��	��������
�$+#!$������&$"��((%��+++���"�&�����$&���$&����#�*�&'�(-�$����&+�� ��$#��������������(����
��	���')����(�($�(�����"�&������$&��(�&"'�$��)'����*��!��!���(

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.003
http:/www.cambridge.org/core


30 2 The Second Law of Thermodynamics

astronomer wants to pump in sea water (which is well above freezing), extract some
energy, and then throw the water back as ice. The extracted energy will be used to
launch the satellite-carrying projectiles, perhaps by compressing a gigantic spring.

Now I will admit that there are some engineering difficulties here, but people have
solved engineering problems before. Will the scheme work, even in principle? Should
we give the astronomer a grant? No. We can tell the engineers not to exert themselves:
no matter what fancy mechanism they put into the building, the proposal will not work.

By the First Law of Thermodynamics, the scheme is all right. Energy would be
conserved. The kinetic energy of the projectiles would be provided by the energy
extracted from the warm ocean water.

The Second Law, however, says no, the proposal will not work. Here is the logic: (1)
We ask, if the proposal did work, what would result? (2) The Second Law says that
such a result will not occur. (3) Therefore the proposal will not work. Now we go
through the logic in detail, as follows.

The "system" consists of the projectiles, the building, and the water, in both liquid
and solid form. An engineer can push one button to set in motion the launching often
projectiles; thus there is no need for continuous human intervention, and we can meet
the conditions under which the Second Law may be applied.

To bring the Second Law to bear on this issue, we need to compare multiplicities.
Figures 2.4 and 2.5 show us what we need to see. How many ways can one arrange
water molecules to get something that looks like sea water in liquid form? How many
ways for an ice crystal? The multiplicity for the liquid greatly exceeds that for the
crystal. The projectile multiplicities, however, are unchanged, for the following reason.
During the launch, each atom of each projectile acquires a velocity increment of 104

meters/second (say) in the vertical direction. To each old microstate of a projectile,
there corresponds one and only one new microstate, which differs from the old
microstate in only one respect: each atom has acquired an increment of velocity in the
vertical direction. The number of microstates does not change, and so the multiplicity
for each projectile remains the same.

If the proposal worked, the system would go from a macrostate with high multi-
plicity to a macrostate with low multiplicity. The Second Law, however, says that (with
overwhelming probability) a system will evolve to the macrostate of largest multi-
plicity (and then remain there). Therefore the proposal will not work.

We started with a bouncing ball and some bromine. By now we have a law, based on

A A
NASA

(a) (b)

Figure 2.4 This is the situation we start with, (a) Sea water: molecules in helter-skelter disarray,
(b) Projectiles all lined up.
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2.4 Connecting multiplicity and energy transfer by heating 31

A
A

(b)

Figure 2.5 If the proposal worked, we would end up with this, (a) Ice: water molecules all neatly
arranged in a crystalline pattern, (b) Projectiles possessing the transferred energy in the orderly
motion of their upward flight.

an amalgam of experience, microscopic description, and statistical outlook, that can
make powerful statements about macroscopic phenomena, the things we directly
perceive.

2.4 Connecting multiplicity and energy transfer by heating

Now we go on to establish the connection between the Second Law and energy transfer
by heating. We consider a confined classical ideal gas and study how the multiplicity
changes when we allow the gas to expand by a small amount. Figure 2.6 sets the scene.
To avoid a change in how the various molecular momenta (or velocities) contribute to
the multiplicity (a calculation that would be difficult to handle now), let us keep the
gas at constant temperature T while it expands. How can one do this? By heating the
gas judiciously (perhaps with a large warm brick). As we slowly put in energy by
heating, we let the gas (slowly) expand, do work, and thereby neither drop nor rise in
temperature. Thus we have the verbal equation

/ energy in \ =

y by heating J

energy out
as gas does work

on the external world
(2.2)

in this particular context. We will return to this equation, but first we need to learn how
it can help us to make a connection with multiplicity.

Succinctly, more space available to the gas implies more ways to arrange the
molecules, and that, in turn, implies a larger number of microstates and hence a larger
multiplicity. Moreover, we reason that the number of spatial locations for a single
molecule is proportional to the volume (V or V + AV) in which the molecule can be.
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32 2 The Second Law of Thermodynamics

Figure 2.6 The gas expands from volume Fto volume V + AV at a constant temperature as a
small amount of energy # is put into the gas by heating. (Because we arrange to keep the
temperature constant while the volume increases, the gas pressure will drop. Some device is
used to control the piston's motion, and that device must take into account the change in gas
pressure, but we need not concern ourselves with the device.)

For N molecules, the multiplicity will then be proportional to (volume)^. [Note. If
there were, say, 10 spatial locations for a single molecule, then there would be 10 X 10
different arrangements for two molecules, that is, 102. For three molecules, there
would be 10X 10X 10 different arrangements, yielding 103, and so on. The gas—as
an ideal gas with molecules of infinitesimal size—is so dilute that we need not worry
about molecules getting in each other's way or using up "spatial locations." Moreover,
all that we will need is a proportionality to (volume)^.]

Although we have reasoned that multiplicity is proportional to (volume)^, we do
not know the proportionality factor. If we form the ratio of multiplicities, however, the
unknown proportionality factor cancels out, and we have

final multiplicity (V -
initial multiplicity

(2.3)

(The proportionality factor included whatever contribution the momenta make to the
multiplicity. Because we kept the temperature constant, that contribution remained
constant and canceled out.) Equation (2.3) gives us the ratio of multiplicities in terms
of the original volume V and the volume change A V. That is a noteworthy result in
itself, but our ultimate goal in this section is to establish a connection between change
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2.4 Connecting multiplicity and energy transfer by heating 33

in multiplicity and energy transfer by heating. We can achieve that goal by relating
A V to the energy input by heating, as follows.

Section 1.3 showed that, for the small increment AV in volume, the work done by
the gas is P AV. Thus the energy balance equation, which was displayed as equation
(2.2), becomes

q = PAV, (2.4)

where q denotes the small energy input by heating. We need to eliminate the pressure
P, and the ideal gas law, P = (N/V)kT, enables us to do that. Substitution for P in
equation (2.4) first gives

then, after we divide on both sides by NkT, the equation becomes

q _AV
~Nkf~~V'

Now we use this result to substitute for A V/ V in equation (2.3):

(2.5)

final multiplicity = (l+_±\N
 (26)

initial multiplicity \ NkTj

The quotient q/NkT is small because AV/V is small—recall equation (2.5) here—but
the exponent N is enormous—perhaps 1020 or even larger—and so we need to be
circumspect in assessing numerical values.

Whenever one is confronted with a large exponent, taking logarithms may make the
expression easier to work with. So we take the natural logarithm of both sides of
equation (2.6):

N/ final multiplicity \ _ f q \N _ f
lnVinitial multiplicity; = ta^ + mf) = N ln{1

The step to the second line is permitted by an excellent approximation: ln(l + a) = a,
provided a is small (in magnitude) relative to 1. (If you are not familiar with this
approximation, you can find it derived in appendix A.) Because our analysis has in
mind an infinitesimal value for AV/V and hence for q/NkT, the approximation is
entirely justified.

If we multiply equation (2.7) through by k and write the logarithm of a ratio as a
difference of the individual logarithms, we get
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34 2 The Second Law of Thermodynamics

q
k ln(final multiplicity) — k ln(initial multiplicity) = —

/ energy input \
= V by heating ) ^

We see that q is connected with the logarithms of multiplicities. The logarithm, we
will find, is so useful that it merits its own symbol S,

S=k ln(multiplicity), (2.9)

and its own name: the entropy. We can write the consequence of our slow expansion at
constant temperature T as the equation

*Sfinal — înitial ~ f ' (2.10)

The German physicist Rudolf Clausius coined the word "entropy" in 1865. Looking
for a word similar to the word "energy," Clausius chose the Greek word "entropy,"
which means (in Greek) "the turning" or "the transformation." The coinage is indeed
apt: if we ask, "which transformation of a physical system will occur spontaneously?",
then the multiplicity of each of the various possible macrostates is crucial, for the
system will evolve to the macrostate of largest multiplicity. (This conclusion is the
essential content of our purely verbal statement of the Second Law, presented in
section 2.2.) The same is true, of course, if we describe the situation with the logarithm
of the multiplicity. If we permit an otherwise-isolated system to change, it will evolve
to the macrostate for which the logarithm of the multiplicity is largest, that is, to the
macrostate of largest entropy.

A pause to consolidate is in order. Our detailed calculations in this subsection
culminate in equation (2.8); that equation connects change in multiplicity with the
energy input by heating—in the specific context of a classical ideal gas that expands
slowly and at constant temperature. Equation (2.9) merely introduces a new symbol,
and equation (2.10) just expresses the content of equation (2.8) in the new language.
The notion of multiplicity remains primary, but the language of "entropy" will be
increasingly useful.

Some generalization
While we have the context of this gaseous system, let us consider what would result if
we increased the volume by AV suddenly (by removing a partition and letting the gas
rush into a vacuum) and if we did not put in any energy by heating. In the expansion
into a vacuum, the molecules would strike only stationary walls and hence no energy
would be lost from the gas.

Altogether, the energy of the gas would not change—just as before—and the final
situation, after the gas settled down, would be just what it was at the end of the slow
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2.5 Some examples 35

expansion. Continuing the comparison with the slow expansion, we can say that we
would start with the same înitial anc^ en(^ UP w ^ ^ ^ e s a m e Sfmai- Hence the change in
S would be the same as before and would be some positive quantity. The major
differences would be these: (1) the expansion would be rapid, not slow, and (2) no
energy would be transferred by heating. Succinctly, the sudden expansion would yield

Sfmai - initial = AS ^ 0, indeed, AS > 0,

but no energy transfer by heating: q = 0 here.
We set out to find a connection between change in multiplicity and energy input by

heating. So far we have two specific instances, both for a classical ideal gas:

when the expansion is slow, and
AS > 0 but q = 0

when the expansion is fast (and the gas departs—temporarily—from equilibrium). The
two instances can be combined into a single mathematical form:

with equality if the change occurs slowly (and hence the gas remains close to
equilibrium). Could this relationship be valid in general? It is neat enough and simple
enough for that to be plausible. Indeed, the generality of this relationship can be
established by reasoning from our verbal statement of the Second Law of Thermo-
dynamics; we will do that in section 2.6. Right now, however, it is better to interrupt
the sequence of derivations and to study some examples. So, provisionally, we take
equation (2.11) to be valid for any physical system—gas, liquid, solid, or mixture of
these—which at least starts from a state of thermal equilibrium. Moreover, the
temperature (of both system and environment) may change during the system's evolu-
tion. Such a broad domain, we will find, is the equation's scope of applicability.

2.5 Some examples

Working out some examples will help you to grasp the ideas, and so this section is
devoted to that project.

Example 1. Melting ice
The multiplicity of liquid water, in comparison with that of ice, was crucial in our
analysis of the astronomer's proposal. Suppose we slowly melt an ice cube at 0 °C. By
what factor does the multiplicity change?
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36 2 The Second Law of Thermodynamics

Recall that "entropy" is just the logarithm of a multiplicity. If we can calculate the
change in entropy, then we can readily determine the change in multiplicity. So, to start
with, let us look at the entropy change,

^liquid * îce>

that is, look at AS. Working from the definition of entropy, we rewrite the difference as
follows:

AS = k ln(multiplicityiiquid) — k ln(multiplicityice)

= H n/mult i p l ici ty l i q u i d \
\ multiplicity )

Thus, once we have calculated AS, we can determine the ratio of multiplicities.
Moreover, we can relate AS to the energy input by heating that occurs during the

melting; our basic equation, equation (2.11), enables us to write:

AS = — if we melt the ice slowly at T = 273 K.

[Because the melting is specified to occur slowly, an equality sign applies in the step to
Q/T, and because a finite amount of energy is transferred (all at the same temperature
71), the symbol Q appears, rather than q. Recall the convention adopted in section 1.3:
the lower case letter q denotes a small (or infinitesimal) amount of energy transferred
by heating; the capital letter Q denotes a large (or finite) amount of energy so
transferred.] The value of Q depends on the size of the ice cube. A cube from a typical
refrigerator has a volume of approximately 18 cm3. At a density of about 1 gram/cm3,
that means a mass of 18 grams or 18 X 10~3 kg. So we can go on:

g _ (3.34 X 105 J/kg to melt ice)(18 X 1(T3 kg)
~~T~ 273 K

= 22 J/K.

Combine this result with equation (2.12) and divide by k:

/multiplicityiiquid\ __\_Q
\ multiplicityice J k T

- 2 2 J / K . = 1.6X1O24. (2.13)
1.4 X 10-23 J/K

Next, to extract the ratio of multiplicities, recall the identity x = elnx. If we let x
stand for the ratio of multiplicities, then the identity implies

(ratio Of multiplicities) - ^^ratio of multiplicities)

Equation (2.13) gives us a numerical value for the natural logarithm of the ratio, and
so the identity implies
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2.5 Some examples 37

= L 6 x io 2 4

multiplicity^
You may find the number on the right-hand side easier to appreciate if we express it as
10 raised to some power. We start with

e = 10logl°" - 100'434

and go on to
^1.6X1O24 _ / J Q 0 . 4 3 4 > | 1 . 6 X 1 0 2 4 _ J Q 0 . 4 3 4 X 1 . 6 X 1 0 2 4 __ J Q 6 . 9 X 1 0 2 3

Thus

multiplicityijquid __ JQ6.9X102 3 _ JQ690,000,000,000,000,000,000,000

multiplicityice
This is a staggering increase in multiplicity. There are vastly many more ways in which
one can arrange the water molecules to look like a liquid than to look like an ice
crystal. (You may find it worthwhile to glance back at figures 2.4 and 2.5 for visual
confirmation.)

Before we leave this subsection, let us glance back over the logic of the calculation.
Given that we study a slow process, the essential relationships are these:

~~ initial = A*S = — . (2.14)
T

If we read this set of equations from right to left, we commence with the relationship
between a change in entropy and energy transfer by heating. The next equality just
spells out what AS symbolizes. The left-most equality comes from the definition of
entropy as S = k ln(multiplicity) and from a property of logarithms: the difference of
two logarithms is equal to the logarithm of the ratio of the arguments.

Example 2. Slowadiabatic expansion
Let us return to the classical ideal gas of section 2.4. Again we allow the gas to expand
slowly, but now we specify no heating by an external source of energy; rather, the gas
is thermally isolated. The expansion is both slow and adiabatic.

As the gas does work against the piston, the energy of the gas decreases and the
temperature of the gas drops. Does the entropy change? Section 2.6 will prove that
equation (2.11) is generally valid, even for processes in which the temperature
changes; so we can employ that equation to calculate the change in entropy, using the
equal sign because the process is slow and using q — 0 because there is no heating.
Thus, for every small increment in volume, the entropy change is zero. [That the
temperature decreases throughout the expansion is numerically irrelevant because the
numerator in equation (2.11) is always zero.] We deduce that the total entropy change
(for a finite change in volume) is zero.

Yet we know that an increase in volume implies an increase in the number of
possible spatial locations for molecules and hence an increase in the spatial part of the
multiplicity. How, then, can the entropy not change?
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38 2 The Second Law of Thermodynamics

We must remember the momentum part of the multiplicity, namely, the idea that the
molecules may have different directions and magnitudes for their momenta. During
the adiabatic expansion, the total kinetic energy of the molecules decreases. The less
energy, the fewer the ways to share it (as kinetic energy of individual molecules).
Therefore the momentum part of the multiplicity decreases. Figure 2.7 illustrates this.

The preceding two paragraphs provide qualitative reasons for why—in a slow,
adiabatic expansion—the spatial part of the multiplicity increases and the momentum
part decreases. The effects operate in opposing directions. Only our use of equation
(2.11), however, can tell us that the changes cancel each other exactly, leaving the
over-all multiplicity (and hence the entropy) at its original value.

Figure 2.8 summarizes the three different expansions that we have studied.

Initial Final

Figure 2.7 Change in the momentum part of the multiplicity. In the ususal graphics, one draws
the momentum vector of each molecule as emanating from the molecule's current spatial
location. For the present purposes, move the tail of each momentum vector to a single, fixed
location. Then, collectively, the momenta form a bristly object, like a sea urchin or a porcupine.
The slow, adiabatic expansion cools the gas and shrinks the bristly object, as illustrated here. In
a significant sense, the momentum vectors occupy a smaller spherical volume in a "momentum
space," and so the multiplicity associated with different arrangements of the momentum arrows
decreases.

�((%��+++���"�&�����$&���$&��(�&"'���((%����,��$��$&����������������
��	��������
�$+#!$������&$"��((%��+++���"�&�����$&���$&����#�*�&'�(-�$����&+�� ��$#��������������(����
��	���')����(�($�(�����"�&������$&��(�&"'�$��)'����*��!��!���(

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.003
http:/www.cambridge.org/core


2.6 Generalization 39

to
V+ AV

Figure 2.8 The three expansions.
Sequence 1. Slow isothermal expansion. Heating: q > 0. T = constant. £fmai > initial because

the spatial part of the multiplicity increases. Detailed derivation produced the equation

Sequence 2. Extremely fast adiabatic expansion (into a vacuum). No heating: q — 0.
Tfmai = initial- f̂mai > initial because the initial and final macrostates are the same as those in
Sequence 1, and that sequence shows an increase in entropy.

because AS > 0 but q — 0. Sequences 1 and 2 suggest the generalization

AS-

( energy input \
I by heating I

with equality when the process occurs slowly.
Sequence 3. Slow adiabatic expansion. No heating: q = 0. Temperature drops: rfmai <

Our generalization implies

and so *Sfinai = initial. Can this be consistent with what we know? Yes. Lower energy and
temperature imply smaller average molecular speed and hence a smaller value for the
momentum part of the multiplicity. That decrease compensates exactly for the increase in the
spatial part of the multiplicity.

2.6 Generalization

Our route to full generalization proceeds in two stages. First we learn how the entropy
of a classical ideal gas changes when its temperature changes. Then we go on to
entropy changes in much more general physical systems, not merely an ideal gas.

Variation with temperature
In equilibrium, the macrostate of a monatomic classical ideal gas is determined by the
volume V and the temperature T, provided we know independently the number TV of
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40 2 The Second Law of Thermodynamics

atoms. After all, we would then have the information necessary to compute the
pressure P (via the ideal gas law) and to evaluate the energy E (via E = \NkT). From
our analysis in section 2.4, we know that the multiplicity is proportional to VN. How
does the multiplicity depend on the temperature? We can reason as follows.

The average kinetic energy of a gas atom is

and so a specific component of linear momentum, such as px, satisfies the equation

2m

because each of the three Cartesian components of momentum must make the same
average contribution to the kinetic energy. Thus

(pi) = mkT.

The typical size of the momentum component px is thus (mkT)1/2 and hence is
proportional to T1'2.

In a loose but correct fashion, we may say that a momentum component px is pretty
sure to fall in the range

-few X (mkT)1'2 ^ px ^ few X (mkT)112, (2.15)

where "few" denotes a number like 3 or so. The important point is that the size of the
range grows with temperature as T1'2.

Now we reason by analogy with the spatial part of the multiplicity. For a cubical box
of edge length L, the volume V is L3, and the spatial part of the multiplicity is
proportional to (L3)N. Analogously, if a momentum component is pretty sure to fall in
a momentum range proportional to (mkT)1'2, then—taking that range to be analogous
to L—we reason that the momentum part of the multiplicity is proportional to
{[(mkT)l'2]3}N, that is, proportional to T3N'2. (The sea urchin or porcupine diagrams
with momentum arrows in figure 2.7 may help you to visualize both the "volume" in
momentum space and also the volume's dependence on temperature.)

Each arrangement of momenta in the momentum space may be paired with each
spatial arrangement of the atoms in the literal volume V Thus the spatial and
momentum parts of the multiplicity combine as a product of two factors to give the
full multiplicity. tJsing what we know about the spatial and momentum parts of the
multiplicity, we find that the entropy of a monatomic classical ideal gas takes the form

S = A: Inconstant X T3N/2 X VN). (2.16)

The "constant" is a constant of proportionality for the actual multiplicity. Its numeri-
cal value remains unknown to us, but we shall not need the value here; later, in section
5.6, the value will emerge from a complete calculation.

Next, suppose we heat the gas slowly and only a little bit but do so at constant
volume; thereby we change the temperature by an amount AT. How much does the
entropy change? In preparation, we expand the logarithm in (2.16) as
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2.6 Generalization 41

S = k Inconstant X VN) + k\N inT. (2.17)

The change in In T is

A YnT — AT — AT (2, 18^

Then equations (2.17) and (2.18) imply

3 1 1 3
AS = k-N-AT = -X -NkAT.

The combination \NkAT is precisely the change in the energy of the gas, and that
change arises from the energy input by heating, q. Thus we find

AS = - (2.19)

when a monatomic classical ideal gas is slowly heated at constant volume. A glance
back at equation (2.11) shows that our present result is consistent with that earlier,
tentative relationship and thus supports it. But our ultimate goal is to establish firmly
that equation (2.11) is valid in general. Equation (2.19) and its context, stated right
after the equation, provide the crucial ingredient that we need in the next stage of
generalization, to which we now turn.

Further generalization
Our statement of the Second Law was restricted by the stipulation, "allow the system
to evolve in isolation." We added the comment that "the stipulation includes the
injunction, do not transfer energy to or from the system." Equation (2.11), however,
explicitly describes a situation where the system may receive energy by heating or lose
it by cooling. To derive from our statement of the Second Law a consequence like that
in equation (2.11), we need to enlarge our view to include a source (or receiver) of
energy transfer by heating, for example, in the way shown in figure 2.9. Imagine
removing some barrier that initially prevents change—such as permitting a small
amount of the gases in the chemically reactive system to mix and to react. Simulta-
neously, permit energy exchange (by heating) between the chemical system and the
helium, a monatomic gas. (Note that there is no chemical reaction with the helium.)
Then wait until things settle down.

If there was real change in that finite time interval, our verbal form of the Second
Law implies that the entropy of the combined system—the chemical system plus the
helium—increases because the combined system evolves to a macrostate of larger
multiplicity. Symbolically,

Aochem system plus helium -^ U, (2.2\J)

and we may split this relationship as

ASchem system + AShelium > 0. (2.21)

Our strategy now is to evaluate ASheiium and thus learn about A£Chem system-
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42 2 The Second Law of Thermodynamics

Figure 2.9 The context for generalization. The chemically reactive system is in the small
container (which holds molecules of odd shapes), and it is the system of interest. It is
surrounded by a great deal of gaseous helium at, say, T = 293 K. The dashed outer wall (filled
with thermal insulation) prevents any transfer of energy to the external world or from it.

[Note. You may wonder about the step from equation (2.20) to (2.21). The multi-
plicity of the composite system is the product of the individual multiplicities,

multiplicitychem system plus helium = multiplicitychem system X multiplicityheiium,

because every microstate of the chemical system can be paired with every microstate
of the helium. The logarithm of a product equals the sum of the logarithms of the
factors. So, when one takes a logarithm to form the entropy, one finds

*^chem system plus helium = : ^chem system « ^helium*

Thus equation (2.21) follows directly from equation (2.20).
The property that the entropy of a composite system is the sum of the entropies of

macroscopic component subsystems is called the additivity of entropy.]
The large amount of helium can exchange some energy by heating without appreci-

able change in its temperature T. Moreover, the helium remains close to thermal
equilibrium. Thus we may say

_ (energy into helium by heating)
A*^helium — ~ , (Z.ll)

based on equation (2.19) and the "slow change" context.
How is that energy related to "energy into the chemical system by heating," which

we will denote by ql Energy conservation implies

( change in energy\ /
of the helium J \ <

change in energy \ = 0,
v of chemical system J

that is, one change is the negative of the other. Thus

(energy into helium) = —q. (2.23)

Because I chose to describe each change in energy with the words "energy into . . . " ,
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2.6 Generalization 43

one of the "energy into . . . " expressions is negative, meaning that energy actually
leaves. The minus sign is a nuisance to deal with, but thermodynamics is ultimately
easier to comprehend if one sticks with "energy into . . . " expressions, and so I have
chosen that modus operandi here.

We use equation (2.23) in (2.22) and then the latter in equation (2.21), rinding
q

Aochem system ~ ~ > 0,

which implies
q

A*Schem system > ^ • (2.24)

Whenever there is a real spontaneous change, we can count on a finite increase in
the total entropy, AStotai > 0, and that increase leads to the strict inequality in equation
(2.24). Slow change, however, when taken to the limit of a vanishing rate of change,
can yield AStotai = 0- The line of reasoning for this conclusion is the following.

If change occurs at an infinitesimal rate, allowing the total system always to be no
more than infinitesimally away from equilibrium, then the total system is not changing
to a macrostate of finitely larger multiplicity and so, in the limit, AStotai = 0. Here is
the evidence: under the prescribed conditions, one can—by an infinitesimal change in
the circumstances—reverse the changes in the system, but that would not be possible
if the system had gone to a macrostate of finitely larger multiplicity. (Note that finite
changes in a volume or in the number of molecules that have reacted chemically are
permitted even in the limit of vanishing rate of change. One just has to wait a long
time—in principle, infinitely long in the limit.)

The limit of slow change is, of course, an idealization, but it is extremely fruitful.
We incorporate the limit by generalizing equation (2.24) to

I
r

Aochem system ^ 7̂ > (2.25)

where the equality sign holds when the change occurs slowly and the inequality holds
otherwise.

Note that we used no special properties of the "chemical system;" it could be a
dilute gaseous system or a dense one or a liquid or have some solids present. The
change need not be a chemical reaction, but could be melting, say. Hence one may
generalize yet again, turning equation (2.25) into

/ energy into the \
Vsystem by heating;

system ^ ™ > {Z.ZO)

with equality if the process is slow and inequality otherwise. (Section 3.6 will
elaborate on the conditions required for the equality sign to hold.)

A few words should be said about the temperature T that appears in the denominator
on the right-hand side of equation (2.26). When the change is slow, the system of
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44 2 The Second Law of Thermodynamics

interest and the source (or receiver) of energy transfer by heating have the same
temperature (or virtually so), and hence T refers to their common temperature. When
the process is fast, however, the system of interest may be so far from equilibrium that
we cannot ascribe a temperature to it. Nonetheless, the heating (or cooling) source has
a well-defined temperature (a supposition implicit in the derivation), and the symbol T
refers to the source's temperature. Indeed, in the derivation in this section, the symbol
r appears first in equation (2.22), where it refers explicitly to the source's temperature.

2.7 Entropy and disorder

Our analysis led from the notion of multiplicity to a special role for the logarithm of a
multiplicity (more specifically, the logarithm times Boltzmann's constant). That log-
arithmic quantity we called "the entropy," and it has a perfectly clear meaning in
terms of the fundamental notion of "the multiplicity of a macrostate." You may,
however, sometimes hear entropy characterized as "a measure of disorder." Let us see
what the connection might be.

The words "order" and "disorder" are colloquial and qualitative; nonetheless, they
describe a distinction that we are likely to recognize in concrete situations, such as the
state of someone's room. The connection with multiplicity becomes clear if we use the
notion of "correlation" as a conceptual intermediary, as indicated in figure 2.10.

Imagine a bedroom with the usual complement of shoes, socks, and T-shirts.
Suppose, further, that the room is one that we intuitively characterize as "orderly."
Then, if we see one black dress shoe of a pair, we know—without looking—that the
other shoe is right next to it. If we see one clean T-shirt, then the others are in a stack
just below it. There are strong spatial correlations between the shoes in a pair or the T-
shirts on the dresser. Those correlations limit severely the ways in which shoes and T-
shirts can be distributed in the room, and so the objects exhibit a small multiplicity
and a low entropy.

Now take the other extreme, a bedroom that we immediately recognize as "dis-
orderly." If we see one jogger, we have no idea where the other jogger is. Under the

Order Disorder

Strong correlation Absence of correlation

t *
Small multiplicity Large multiplicity

Figure 2.10 "Correlations" enable us to establish a correspondence between the notions of
entropy and "disorder". The double-headed arrow signifies that each of the notions implies the
other.
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2.8 Essentials 45

dresser? Behind the bed? Lost in the pile of dirty T-shirts? And, for that matter, what a
about the T-shirts? If we see a clean one on the dresser, the next clean one may be on
the desk or in the easy chair. Correlations are absent, and the objects enjoy a large
multiplicity of ways in which they may find themselves distributed around the room. It
is indeed a situation of high entropy.

There is usually nothing wrong with referring to entropy as "a measure of disorder."
The phrase, however, doesn't take one very far. To gain precision and something
quantitative, one needs to connect "disorder" with "absence of correlations" and then
with multiplicity. It is multiplicity that has sufficient precision to be calculated and to
serve as the basis for a physical theory.

[To be sure, P. G. Wright issues strictures on the use of "disorder" to characterize
entropy in his paper, "Entropy and disorder," Contemporary Physics, 11, 581-8
(1970). Dr. Wright provides examples where an interpretation of entropy as disorder is
difficult at best; most notable among the examples is crystallization from a thermally
isolated solution when the crystallization is accompanied by a decrease in tempera-
ture. In a private communication, Dr. Wright cites a supersaturated solution of calcium
butanoate in water and also sodium sulfate (provided that the solid crystallizing out is
anhydrous sodium sulfate).]

But enough of order and disorder. When a process occurs rapidly, how does one
calculate a definite numerical value for the entropy change? Our central equation,
equation (2.26), would appear to provide only an inequality for such a process. Section
3.4 addresses the issue of rapid change. Indeed, chapter 3 fills in some gaps, provides
practice with entropy, and introduces several vital new ideas. We turn to those items
now.

2.8 Essentials

1. The primary concept is the multiplicity of a macrostate:

' the number of microstates \/ . , . T. . \ / me iiuiiiuci ui miLdubieties \/ the multiplicity \ I \
r j. ' ] = \ that correspondV of a macrostate I \ , /i

to the macrostate /

2. Entropy is basically the logarithm of the multiplicity:

S = Hn(multiplicity).

3. The major dynamical statement is the Second Law of Thermodynamics. It can be
formulated in terms of multiplicity or, equivalently, in terms of entropy. The latter
formulation is the following:

The Second Law of Thermodynamics. If a system with many molecules is
permitted to change, then—with overwhelming probability—the system will
evolve to the macrostate of largest entropy and will subsequently remain in that
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46 2 The Second Law of Thermodynamics

macrostate. Stipulation: allow the system to evolve in isolation. (The stipulation
includes the injunction, do not transfer energy to or from the system.)

For all practical purposes, the one-line version of the Second Law is this: An isolated
macroscopic system will evolve to the macrostate of largest entropy and will then
remain there.

4. The chapter's major equation connects a change in entropy with the energy input by
heating and with the temperature:

/ energy into the \
y system by heating J

Aoany system -"* ^ ?

with equality if the process is slow and inequality otherwise.

5. The temperature T on the right-hand side in item 4 refers to the temperature of the
source of energy input by heating. When the equality sign holds, the system and the
source have the same temperature (or virtually so), and hence one need not draw a
distinction about "whose temperature?".

6. Section 2.6 established the additivity of entropy: if two macroscopic systems are in
thermal equilibrium and in thermal contact, then the entropy of the composite system
equals the sum of the two individual entropies.

Further reading

The Second Law of Thermodynamics has prompted several equivalent formulations
and a vast amount of controversy. A comprehensive discussion of the formulations can
be found in Martin Bailyn, A Survey of Thermodynamics (AIP Press, Woodbury, New
York, 1994). A fine introduction to the debates in the late nineteenth century is
provided by Stephen G. Brush, Kinetic Theory, Vol. 2: Irreversible Processes (Perga-
mon Press, New York, 1966). There one will find papers by Boltzmann, Poincare, and
Zermelo, ably introduced and set into context by Brush.

Rudolf Clausius followed a route to entropy quite different from our "atomistic"
route based on the idea of multiplicity. That was, of course, almost an historical
necessity. In a clear fashion, William H. Cropper describes Clausius's analysis in
"Rudolf Clausius and the road to entropy," Am. J. Phys. 54, 1068-74 (1986). More
about the etymology of the word "entropy" can be found in the note, "How entropy
got its name," Ralph Baierlein, Am. J. Phys. 60, 1151 (1992).
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Problems 47

Problems

Note. Equation (2.7) was essential to the logical development in this chapter, but it is
rarely a good way to approach a homework problem. The reason is that the equation is
accurate only when q/NkT is extremely small (which that ratio was when we used the
equation). Just as the scaffolding around a marble sculpture is removed when its
function has been served, so it is best to put equation (2.7) aside and to use other
equations from the chapter, especially equation (2.26).

1. Computer simulation of macroscopic regularity. Imagine a volume V partitioned
into 10 bins of equal volume. Use a computer's random number generator to toss
molecules into the bins randomly. Plot a bar chart of the number of molecules in each
bin after the computer has tossed in N = 100 molecules. Next, increase to N — 1,000
and then to N = 104. Try N = 104 several times. Also, compare results with those
gotten by your classmates. Do you find macroscopic regularity emerging from these
simulations of an ideal gas?

2. Work out the analog of table 2.2 but with N = 6 labeled balls. Draw a bar graph of
multiplicity versus macrostate, the latter being specified by the number of balls in the
right-hand bowl (together with the total number of balls, N). Using symmetry will
expedite your work. Using the known total number of microstates (which you can
reason to be 26) provides either a check on your arithmetic or a way to skip one
multiplicity computation. Do you see the more-or-less even distribution growing in
numerical significance?

3. Figure 2.11 shows a long, hollow cylinder mentally divided into three regions of
equal length. Let each region correspond to "a spatial location," in the sense used in
section 2.4. (A region may contain more than one molecule.)

(a) If you put only one molecule (labeled A) into the cylinder, how many different
"spatial arrangements" are there and, consequently, how many different micro-
states are there? Show the different spatial arrangements with sketches.

(b) Repeat the analysis with two molecules (labeled A and B and hence regarded as
distinguishable).

(c) Repeat with three molecules (labeled A, B, and C). Now you may skip the
sketches—except as an aid to your thinking.

Figure 2.11 The volume, split up into three "spatial locations."
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48 2 The Second Law of Thermodynamics

(d) Generalize to N labeled molecules.
(e) If the cylinder were expanded lengthwise, so that there were now four regions

(each of the original size), how would your answers to parts (a) through (d)
change?

(f) We can reason that the number of regions is proportional to the cylinder's volume.
How, then, is the number of microstates for N molecules related to the volume—
on the basis of your analysis here?

4. A penny, made of crystalline copper, is heated at 1,083 °C and melts. The density
of copper is 8.5 grams per cubic centimeter. The energy needed to melt one gram of
copper is 200 joules. You will need to estimate the volume of a penny.

By what factor does the multiplicity of the copper change when the penny is melted?
Express your answer as 10^some P°wer).

5. In a volume V = 0.3 cubic meters is a number N — 1024 of helium atoms initially
at T = 400 K. While the volume is kept fixed, the gas is gently heated to 403 K.

(a) By what numerical factor does the multiplicity change?
(b) Starting from the initial situation, we could produce the same temperature increase

without transferring any energy by heating: just gently compress the gas adiabati-
cally. In this process, the entropy of the gas would not change. How can we
understand this—that is, the "no change in entropy"—in terms of the various
contributions to the total multiplicity?

6. On a cold winter day, a snowflake is placed in a large sealed jar in the sunshine (the
jar otherwise being full of dry air). The sunlight turns the snow directly to water vapor,
all this occurring at T = 260 K, well below freezing, so that no liquid water is ever
formed. (There is no need—here—to concern yourself with the temperature of the
sun's surface.)

It takes 3,000 joules per gram to vaporize snow in this fashion. The snowflake has a
mass of 10~3 grams.

(a) By what numerical factor does the multiplicity of the water change? (The physical
system here is the water, existing first as ice and then as vapor.) Express your
answer as io(someP°wer).

(b) Why, in simple microscopic terms, does the multiplicity change as you found it to
in part (a)? That is, give one or more qualitative reasons why a change in
multiplicity should occur.

7. Gaseous helium at T = 300 K and atmospheric pressure fills a volume V, as shown
in figure 2.12. Separated from the gas by a wall with a hole—initially closed—is a
region of total vacuum. Here are some additional facts:

V= 1.4 liters = 1.4 X 10- 3 m 3 ,

v̂acuum = volume of vacuum region = 0.2 F.
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-Vacuum

Cover over hole

Figure 2.12 The context.

(a) Compute the total number of helium atoms.
(b) The cover is now slid off the hole (which is about the size of a dime). When

everything has settled down again, by what factor has the multiplicity changed?
Briefly, why? Also, what is the change in entropy? (Take the walls to be thermally
insulating.)

(c) If we did not uncover the hole (and hence kept the gas volume at its initial value)
but wanted to produce an entropy change of the same numerical amount, what
should we do? Describe the process verbally and be quantitatively precise where-
ever you can be.

8. A cylindrical container of initial volume Vo contains N atoms of a classical ideal
gas at room temperature: T = 300 kelvin, to use a round figure. One end of the
container is movable, and so we can compress the gas slowly, reducing the volume by
2 percent while keeping the temperature the same (because the container's walls are in
contact with the air in the room). Specifically, Vo = 10~3 m3 and N — 3 X 1022 atoms.

(a) What is the change in entropy of the confined gas? (Provide first an algebraic
expression and then a complete numerical evaluation.)

(b) How much work do we do in compressing the gas?
(c) How much energy was absorbed by the environment (through heating)?
(d) What was the entropy change of the environment?

[Note. You do not have to do the four parts in the sequence in which the questions are
posed, but the sequence (a) through (d) is a convenient route. For each part, be sure to
provide a numerical answer.]

9. Section 2.4 described both a slow expansion and a rapid expansion of a classical
ideal gas. What happens for an intermediate process, specifically, for the following
process?

(a) Expand from the initial volume V to volume V + ^A V, slowly and at constant
temperature T.

(b) Then expand from V + \AV to volume V + AV, rapidly, indeed, by letting the gas
expand into an evacuated region (of additional volume ^A V) and while preventing
any energy transfer by heating.
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50 2 The Second Law of Thermodynamics

After the gaseous system has settled down, what is the size of A S relative to the
entropy change in the entirely slow expansion discussed in section 2.4? What is the
energy input by heating relative to that for the slow expansion? Do you find AS equal
to "the energy input by heating divided by T7"? Should you expect to? Or what is the
relationship?

10. In section 2.5, we calculated the change in multiplicity when an ice cube melts.
(That was for 18 grams of ice.)

(a) Now calculate the subsequent change in multiplicity when the water at 0 °C is
heated to 1 °C. It takes 4.2 joules of energy to raise the temperature of one gram of
water by one degree Celsius.

(b) Which change in multiplicity is larger, the change associated with melting or the
change associated with a temperature increase of one degree Celsius? Can you
think of a reason why?

(c) Calculate the entropy change when water is heated from 0 °C to 70 °C. How does
this change compare numerically with the entropy change in part (a)?

11. If 20 grams of water are heated slowly from 10 °C to 40 °C, what is the numerical
change in the water's entropy? Take the specific heat of water to have the constant
value 4.2 J/gramK. Provide a qualitative explanation for the change that you calcu-
late.
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3 Entropy and Efficiency
3.1 The most important thermodynamic cycle: the Carnot cycle
3.2 Maximum efficiency
3.3 A practical consequence
3.4 Rapid change
3.5 The simplified Otto cycle
3.6 More about reversibility
3.7 Essentials

The chapter begins with a classic topic: the efficiency of heat engines. The topic
remains relevant today—for environmental reasons, among others—and it also pro-
vides the foundation for William Thomson's definition of absolute temperature, an
item discussed later (in chapter 4). Next, the chapter develops a method for computing
the entropy change when a process occurs rapidly. An extended example—the Otto
cycle—and a discussion of "reversibility" conclude the chapter.

3.1 The most important thermodynamic cycle: the Carnot cycle

Engineers and environmentalists are interested in cyclic processes, because one can do
them again and again. Figure 3.1 shows the essence of the cycle for water and steam in
a typical power plant that generates electricity. A simpler cycle, however, is more
instructive theoretically, and so let us consider the cycle shown in figure 3.2, per-
formed slowly throughout. We may take the substance to be some real gas, such as
nitrogen (as distinguished from an ideal gas). There are four stages, characterized as
follows.

Stage 1 to 2: isothermal expansion. From state 1 to state 2, the gas is allowed to
expand while being maintained at constant, high temperature 7hot- The pressure drops
because the volume increases. [The ideal gas law, P = (N/V)kT, valid for a dilute
gas, suggests such a pressure drop—qualitatively—for a real, not-necessarily-dilute
gas, too.] The gas does work as it expands and would drop in temperature if energy
were not supplied by heating. We denote by ghot the total amount of energy that is
supplied by heating at temperature Thot-

Stage 2 to 3: adiabatic expansion. During the expansion from state 2 to state 3,
there is no transfer of energy by heating; thus q = 0 for each small step in volume and
pressure. The pressure drops faster now as the volume increases; this is so because the
temperature drops as the gas loses energy by doing work. (The gas is no longer heated
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52 3 Entropy and Efficiency

Reactor
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Figure 3.1 The cycle for water and steam in a typical nuclear power plant. Nuclear fission heats
water in the reactor vessel; that hot water, at temperature 7hOt, transfers energy to the liquid
water in the central loop and produces steam. The steam, at high pressure, turns the blades of
the turbine, doing work; that work is used to run the electrical generator and give electrical
potential energy to electrons. To ensure a difference of pressure across the turbine, the steam—
after passing through the turbine—must be cooled and condensed back into liquid water. The
partial loop labeled "Condenser Cooling Water," at the cold temperature rcoid, cools the steam,
and the ensuing liquid water is pumped back to the steam generator, ready to start the cycle
again. From a theoretical point of view, it is the water (in both liquid and vapor form) in the
central loop that goes through the essential cyclic process. (The condenser cooling water often
comes from a river or the ocean and then returns to that place of origin; sometimes the
condenser cooling water is run through separate cooling towers and dumps some or all of the
energy it acquired from the steam into the atmosphere by evaporation.)

to compensate for the work done.) Adiabatic expansion is carried out until the gas
temperature drops enough to equal the temperature of the cold reservoir (at state 3).

Stage 3 to 4: isothermal compression. We now compress the gas at constant
temperature rcoid. Energy now leaves the gas and goes into the cold reservoir; the
symbol gcoid denotes the total amount of energy that enters the cold reservoir.

Stage 4 to 1: adiabatic compression. The final, adiabatic compression takes the gas
back to its original values of pressure, volume, and temperature.

The cycle is called a Carnot cycle, after the nineteenth-century French engineer
Sadi Carnot, who made it the central piece in his study of heat engines, published in
1824. (The pronunciation is "Car-no," for the "t" is silent.) By the way, the phrases,
"a reservoir at temperature T" or "a heat reservoir," mean any object or system that
can transfer substantial amounts of energy by heating (or by cooling) and can do so
without significant change in its own temperature. A large lake provides a heat
reservoir for a nuclear power plant; a one-liter can of cold ethylene glycol (which is an
anti-freeze) provides a heat reservoir for a picnic lunch of tuna fish sandwiches and
soda pop in mid-summer. To be sure, the phrase, "a heat reservoir," is another
confusing vestige of an earlier era. The reservoir possesses internal energy, not "heat,"
but it is capable of transferring some of that internal energy by conduction or radiation,
and so the reservoir is capable of heating another object.
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3.1 The Carnot cycle 53

q = 0 for each
small step

T=TCcold

- • F

Figure 3.2 The Carnot cycle. During the expansion from state 1 to state 2, the gas is in thermal
contact with a large reservoir of hot water at temperature 7hot; the gas absorbs energy ghOt-
During the compression from state 3 to state 4, the gas is in contact with a large reservoir of
cold water at temperature rcoid and loses energy gcoid- The expansion from state 2 to state 3
occurs adiabatically, that is, under conditions of no energy transfer by heating. Similarly, the
compression from state 4 to state 1 occurs adiabatically. All processes are specified to occur
slowly. (For a real gas like diatomic nitrogen, the diagram is qualitatively faithful, but the
steepness of the adiabatic portions has been exaggerated for the sake of clarity.)

But back to the Carnot cycle itself. The gas does work on the external world when it
expands. To compress the gas, the external world must do work on the gas. What is the
net effect? The expansion is at higher pressure (for each value of the volume) than is
the compression, and so the net work done by the gas is a positive quantity. We denote
the net work by J^and write our statement symbolically as

net work done by gas = W > 0.

What about the net change in entropy of the gas? The gas returns to its initial
macrostate (state 1) and hence returns to whatever multiplicity it had originally.
Because entropy is k ln(multiplicity), the entropy of the gas returns to its original
value.

What about the over-all entropy change, gas plus hot reservoir and cold reservoir?
Table 3.1 helps us to reason out the answer. During stage 1 to 2, which is the
isothermal expansion, the gas acquires energy ghot by heating at temperature T^oX\ so,
by equation (2.26), the entropy of the gas increases by 2hot/^hot- Simultaneously, the
hot reservoir loses an equal amount of energy (by cooling), and so its entropy drops by
— Shot/^hot- During stage 2 to 3, the gas is thermally isolated and expands slowly (per
specification); hence, by equation (2.26), its entropy does not change. During stage 3
to 4, energy Qco\& enters the cold reservoir, and so the reservoir's entropy increases by
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54 3 Entropy and Efficiency

Table 3.1 A tabulation of entropy changes. Because the gas returns to its initial
macrostate and the corresponding multiplicity, the sum of the entropy changes for the
gas must equal zero. The two reservoir columns, when combined, describe an entropy
change that is precisely the negative of the sum for the gas column; because the gas
column yields zero, so must the combined reservoir columns.

Stage

I t o 2

2 to 3

^ tn A

4 t o l
Net value

ASgas

ghot
Thot
zero

2cold

Tcold
zero
zero

^ ^ h o t reservoir

ghot
Thot

Reservoir columns

A^cold reservoir

2cold
TCold

together sum to zero

Scold/ ̂ coid- Simultaneously, the gas loses an equal amount of energy (by cooling), and
so its entropy drops by — gcoid/̂ coid- Stage 4 to 1 is a slow process with no energy
transfer by heating, and so no entropy changes occur (just as was true for stage 2 to 3).

To tot up the column of A£gas entries is easy. Two paragraphs back we reasoned that
the net entropy change of the gas is zero because the gas returns to its initial
macrostate and the corresponding multiplicity. Each reservoir experiences a lasting
change in entropy. The sum of those changes, however, is zero. Why? Because the sum
for the two reservoirs (taken together) is equal in magnitude to the sum of the ASgas

entries, and the latter sum we showed to be zero.
Indeed, it is worthwhile to display here what is implied by the second column of

table 3.1. The net value of zero for the sum of the A5gas entries implies

Scold _ Shot ,~ -v

J- cold J- hot

We will use this relationship when we work out the efficiency of a Carnot cycle, to
which we now turn.

The efficiency
By the efficiency of a Carnot cycle, one means the ratio of net work output to energy
input at the hot reservoir by heating. Thus

net work output
efficiency = :energy in at Thot

W
( 3 2 )

With a little algebraic effort, we can express the efficiency in terms of the two
temperatures, T^ot and rcoid, and that is worth doing.
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3.2 Maximum efficiency 55

First, we use energy conservation to express the net work W in terms of 2hot a n d
gcoid- Because the total energy output must equal the total energy input in a cyclic
process, we may write

^+eco id = aot , (3.3)

whence W = 2hot — 2coid- We use this relation to substitute for W in equation (3.2)
and then use equation (3.1) to get to the second line:

efficiency Of \ _ Qhot ~ Scold _ . Scold
Carnot cycle ~ ~"

. -'cold ^hot -'cold ,~ A^

The efficiency of a Carnot cycle is equal to the difference in reservoir temperatures
divided by the hotter temperature.

A pause to reflect is in order. The crucial elements in a Carnot cycle are these: (a)
two stages at constant temperature, separated by adiabatic stages; (b) all stages are
performed slowly, so that both the system of interest (for us, the gas) and the reservoirs
remain close to equilibrium; (c) a return, of course, by the system of interest to its
initial macrostate. The material that is taken through the cycle (for us, a real gas such
as nitrogen) is called the working substance. The crucial elements, (a) through (c),
require only the existence of the working substance (called there the "system of
interest"), not any specific properties. In short, the nature of the working substance
plays no role. Therefore equation (3.4) for the efficiency holds for every working
substance in a Carnot cycle: pure diatomic nitrogen, air, water vapor, liquid water plus
water vapor, helium, photons, fluorocarbons, etc. (It isn't even necessary that the
working substance be a gas and that work be done by expansion and compression. One
can design Carnot cycles in which electric and magnetic forces replace gas pressure—
but that would take us too far afield.)

3.2 Maximum efficiency

The logic of the next steps is worth laying out here. The objective is to answer the
question, "Given heat reservoirs at the temperatures 7hOt and rcoid, what is the
maximum efficiency—among all possible cycles—that thermodynamics allows?" [As
before, efficiency is defined as in equation (3.2).] We make our way to the objective in
three steps, described succinctly as follows.

1. Illustrate the idea of a reversible heat engine.
2. Show that a reversible heat engine has the maximum efficiency.
3. Gain our obj ective.

But first, what is a "heat engine"? A Carnot cycle provides the prime example of a
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56 3 Entropy and Efficiency

heat engine, and from that cycle we can extract the basic definition. A heat engine is
any device that operates in a cyclic fashion, that absorbs energy by heating during one
portion of the cycle, that loses energy by cooling in another portion of the cycle, and
that performs a positive net amount of mechanical work, for instance, lifts a weight or
turns the shaft of an electrical generator.

Reversibility
What happens if we try to run the Carnot cycle of figure 3.2 in reverse? That is, the gas
is to go through the states in the sequence 1, 4, 3, 2, 1.

We do not receive any useful work; indeed, we have to supply net work, precisely as
much as we got when the cycle was performed in the "forward" direction. The cold
reservoir gives up the energy it got, and the hot reservoir recovers the energy that it
gave. We restore the world to its original configuration. We can achieve this restoration
because, when the cycle is run in the forward direction, the net change in entropy of
the gas is zero and also so is the net change in entropy of the two reservoirs, taken
together. (Table 3.1 provides a reminder of these facts.) Thus the "global" change in
entropy—the change for gas, hot reservoir, and cold reservoir—is zero for the forward
cycle, not some positive quantity. The backward cycle can undo all the changes and
leave behind no residual effect because the global change in entropy for the forward
cycle is only zero. Recall here our statement of the Second Law of Thermodynamics,
namely, that evolution proceeds in the direction of increasing entropy (provided "the
system" is so encompassing that it is effectively isolated). The forward cycle can be
undone by a backward cycle because we are never asked to orchestrate a global
decrease in entropy, which would be a practical impossibility.

A cycle for which this "return of the world" to its original state is possible is called
a reversible cycle.

If we were to acknowledge friction between a piston and a cylinder wall, say, the
cycle would not be reversible. The work needed for the backward cycle would be more
than what we got from the forward cycle. We may, however, focus on an ideal,
frictionless system and see what consequences we can draw from it.

Note that the adjective "reversible," as used here, does not mean that the total
system returns to its original state spontaneously. "Reversible" means merely that we
can arrange such a return, at least as an idealization, and that no residual change is
required in parts of the universe outside the system.

A Carnot cycle is reversible, but reversibility is not typical of cycles. Figure 3.3
illustrates a cycle—a simplified Otto cycle, having only two heat reservoirs and using
the same gas again and again—that is not reversible. Section 3.5 analyzes the Otto
cycle in detail, but here we continue the quest for maximum efficiency.

A reversible engine has maximum efficiency
Now we will show that a reversible heat engine provides the maximum possible
efficiency for given values of 7h0t and rcoid. As sketched in figure 3.4, we hitch up a
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3.2 Maximum efficiency 57

cold

Figure 3.3 The simplified Otto cycle. A gas is taken through a cycle. The four stages are the
following: from state 1 to 2, slow adiabatic expansion; 2 to 3, cooling at constant volume; 3 to 4,
slow adiabatic compression; 4 to 1, heating at constant volume. To preserve as much of a
parallel with the Carnot cycle as possible, specify that the heating occurs by putting the gas in
thermal contact with a single large reservoir of hot water at temperature 7hOt; the cooling, with a
similar single reservoir of cold water at rcoid. Then the heating during stage 4 to 1 occurs over a
range of gas temperatures, from well below 7hOt up to 7hOt, and will not be a slow process.
During stage 2 to 3, the cooling will occur over a range of gas temperatures, from well above
Tcoid down to rcoid, and will not be a slow process. The rapid processes make this simplified
Otto cycle irreversible.

'hot

^cold

>'Ghot

Reversible
engine

1 Scold

w

f (Shot)other

Other
engine

Extra
work?

' Scold

Figure 3.4 A reversible heat engine (running "backward") and some "other" heat engine
(running "forward") are connected to reservoirs at temperatures 7h0t and rcoid. The "extra
work," if there is any, could be used to launch satellite-carrying projectiles.

reversible heat engine and any "other" heat engine; we run the other engine forward,
but run the reversible engine backward. Indeed, we run the other engine so that it
dumps precisely energy gcoid into the cold reservoir in the time that the reversible
engine extracts energy gcoid- Moreover, the other engine supplies the work W needed

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	������������
�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
��'��
�	
�	���&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.004
http:/www.cambridge.org/core


58 3 Entropy and Efficiency

to run the reversible engine backward; there may be some "extra work" left over, to be
used for some other purpose. The reversible engine dumps energy Q^oi into the hot
reservoir while the other engine absorbs an amount (Shot)other from that reservoir. (In
this context, the symbols W9 Shot? and Qco\d are numerically equal to the values of
work, energy input by heating, and energy given off through cooling that the reversible
engine would have if running forward.) These specifications set the scene.

Just to be sure that we understand the context and the symbols, let us suppose that
the other engine is precisely as efficient as the reversible engine. Then there would be
no extra work, and (Shot)other would equal ghot-

Next, we suppose the contrary of what we intend to prove and show that the contrary
situation is impossible. That is, we suppose that the other engine is more efficient than
the reversible engine. Then, for the same value gcoid of energy dumped into the cold
reservoir, the other engine would produce a total work output greater than W [and its
energy input (ghot)other would be greater than Shot]- The numerical values must all be
consistent with conservation of energy; nonetheless, there would be some extra work
available. Such a process, however, would convert irregular motion (of molecules in
the hot reservoir) to regular motion (of launched satellite-carrying projectiles, for
example) with no other change. It would achieve the astronomer's dream of section
2.3, which we showed to be impossible. The process would lead to a global decrease
in entropy, but that cannot happen (as a practical matter). Thus the other engine cannot
be more efficient than the reversible engine.

[If the other engine is precisely as efficient as the reversible engine, then there is no
extra work, and also (Shot)other = Shot- Consequently, the other engine is perfectly
equivalent to the reversible engine (when the latter is run forward), and so the other
engine is reversible, also.]

Putting it all together
A Carnot cycle provides a reversible heat engine, and so—by the analysis of the last
subsection—its efficiency is equal to the maximum efficiency. Recalling the efficiency
of a Carnot cycle from equation (3.4), we may write

/ maximum efficiency \ _ T^t — ĉoid n <~
\ of heat engine ) ~ Thot

We have gained our objective, but a verbal summary may be welcome. When
operating between reservoirs at temperatures T^t and rcoid, no heat engine can have an
efficiency greater than the efficiency of a reversible heat engine. Therefore, for given
Thot and rcoid, all reversible heat engines have the same efficiency. Moreover, because
a Carnot cycle is a reversible cycle, the maximum efficiency is given by the Carnot
efficiency, displayed in equation (3.5).

Conventional heat engines operate with temperatures that satisfy the inequalities

Thot > T'cold > 0-

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	������������
�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
��'��
�	
�	���&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.004
http:/www.cambridge.org/core


3.3 A practical consequence 59

Thus the maximum efficiency is necessarily less than 1 (or, equivalently, less than 100
percent). This rigorous limit holds even in the optimum situation in which the
environment's over-all change in entropy is zero. In that case, the hot reservoir
experiences a decrease in entropy (as energy is removed by cooling), but the cold
reservoir compensates by its increase in entropy (as it absorbs energy by heating), as
displayed in table 3.1.

If the environment's total change in entropy is nonzero, then the Second Law
requires the total change to be positive. Compare individual changes with the reversi-
ble cycle of the preceding paragraph. For the same entropy decrease of the hot
reservoir, the cold reservoir must now experience a greater increase in entropy. That
means more energy must be dumped into the cold reservoir, and so the engine's
efficiency will be less. This analysis provides a more algebraic reason why any "other"
engine will be less efficient than a reversible engine.

The next section looks further into the practical limits of efficiency.

3.3 A practical consequence

Connecticut Yankee was a nuclear power plant 10 miles down the Connecticut River
from Middletown, Connecticut. It began commercial operation in 1968 and was
decommissioned in 1997. In its early years, Connecticut Yankee had an enviable
record for reliability of operation; twice it held the world's record among commercial
nuclear plants for the longest continuous period of operation. Yet the efficiency with
which Connecticut Yankee converted the energy in a uranium nucleus into electrical
energy flowing out of the plant was only 33 percent. Should we fault the engineers and
the management for egregiously inefficient use of energy?

Rather than jump to a conclusion, we should ask, how efficient could Connecticut
Yankee have been—according to the Second Law of Thermodynamics?

The kinetic energy arising from nuclear fission was used to heat water and to form
steam. The temperature of the "hot reservoir" was approximately 500 degrees Fahren-
heit or, better, approximately 533 K. The power plant used water from the Connecticut
River to condense the steam after it had passed through the turbine. The temperature
of the river water varied with the seasons, colder in winter than in summer. A good
average figure was 55 degrees Fahrenheit or, better, 286 K. Thus, from our analysis of
the Carnot cycle, the maximum efficiency that Connecticut Yankee could have had is
this:

533 — 286— °-46'
that is, a mere 46 percent. Given unintended thermal conduction here and there and
especially given the need to operate more rapidly than "slowly," a realized efficiency
of 33 percent was a quite reasonable achievement for the engineers and the staff.

Here is a bit more detail about realistic goals for efficiency. Energy must flow from
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60 3 Entropy and Efficiency

the hot reservoir to the working substance (which is water here) through a strong metal
partition. To produce that flow by conduction and at an industrially significant rate, the
working substance must have a temperature lower than T^oU the temperature of the hot
reservoir. In the other isothermal stage, energy must flow through another metal
partition to the cold reservoir, and so the working substance must have a temperature
higher than Tco\^ (the temperature of the cold reservoir) during that portion of the
cycle. From the point of view of the working substance, its effective "Tco\d/Thot" ratio
is higher than that of the actual reservoirs. Efficiency falls as the temperature ratio
approaches 1 (for at the value 1, no work is done), and so the actual industrial
efficiency will be less than the Carnot efficiency.

The oil-fired power plant on the river within sight of Middletown had an efficiency
similar to that of the nuclear plant, perhaps a few percent higher. In general, fossil fuel
power plants have an actual efficiency in the range 35-40 percent. As a safety
precaution, nuclear plants run at lower temperatures (and pressures) for their hot
reservoirs and hence have slightly smaller efficiencies. Overall, if we consider any
power plant that generates electrical energy either by burning fossil fuel to heat water
or by using nuclear fission to make the steam, then the plant has an efficiency
of roughly 1/3—and hence must dump 2/3 of the energy into the environment, be it
a river, the ocean, or the atmosphere. This is a sobering consequence of the Second
Law.

Indeed, for nuclear power plants, the consequence is ironic as well. The kinetic
energy of the fission fragments and extra neutrons comes from electrical potential
energy originally stored within the uranium nucleus. The objective of the power plant
is to give electrical potential energy to the electrons in the wires that emanate from
the plant. The process of converting the "nuclear electrical potential energy" into the
electrons' electrical potential energy tosses away 2/3 of the energy. According to the
Second Law, most of that dissipation is inevitable (if steam is an intermediary), but
there is irony nonetheless.

3.4 Rapid change

This section addresses the general question, how can we compute the entropy change,
Sfmai — înitial? if the actual evolution of the physical system is not slow? The word
"slow" implies that the system and its surroundings remain close to equilibrium
throughout the process. Thus, in the present section, the system is allowed to depart
substantially from thermal equilibrium. We do require, however, that the initial and
final states be ones of thermal equilibrium.

Equation (2.26) is not directly useful here because the equality sign applies only if
the process is slow. To learn how to proceed, we return to the very definition of entropy
as the logarithm of a multiplicity. The multiplicity is characteristic of the macrostate
itself and does not depend on the route by which the physical system evolved to the
macrostate. The same, then, is true for the entropy. This insight enables us to answer
the question, as follows.
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3.4 Rapid change 61

Procedure for coping with rapid change
To calculate *Sflnai — initial for a rapid process, find (or invent) a slow process that starts
at the specified initial situation and ends at the desired final situation; then use the
equation

AS = | (3.6)

in step-wise fashion to compute the change Sfma\ — Smitiai for the slow process. The
change in the system's entropy is the same for the rapid process as for the slow process
because multiplicity (and hence entropy) is characteristic of each macrostate itself and
does not depend on the route by which the physical system evolved to the macrostate.
Thus we cope with rapid change by using the equality

/ "final ~ "initial A _
y for a rapid process J ~

/ <Sfinal — ^initial ^
for any slow process whose
initial and final macrostates

are the same as those for
\ the rapid process /

(3.7)

Example
Suppose N atoms of helium are in a container of fixed volume V and cold initial
temperature Tx. Now heat the gas by placing the container in contact with a huge hot
brick of temperature r^ck, where Ibnck ^> T\. There will be rapid transfer of energy
(by heating) until the gas settles down to a new equilibrium at a final temperature 7f,
which is equal to 7briCk.

To invent a slow process that connects the specified initial and final situations, we
imagine a sequence of many bricks, each brick a little hotter than the preceding one
and ranging in temperature from Tx to 7f. We imagine placing the container in contact
with the bricks sequentially, so that the temperature difference between container and
current brick is always small (infinitesimal, in principle) and the process of heating is a
slow one.

If the difference in temperature between one brick and the next is AT, we can
readily calculate how much energy is transferred by heating at each step. The total
energy of the gas is E = ^NkT. Raising the temperature by A r increases the energy by
|M:Ar , and so that much energy must be provided by the hotter brick:

<1 =

Now we can turn to equation (2.26), use the equality sign, and compute the total
change in entropy as follows:
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62 3 Entropy and Efficiency

— initial = sum of — for each brick

= sum of —̂  for each brick
1 current value

~ l n ^ ( 3 - 8 )

In the limit as the number of intermediary bricks goes to infinity, the sum becomes an
integral. Equation (3.8) gives the total change in entropy as calculated for the slow
process. Equation (3.7) asserts that we may use the algebraic result here for the total
entropy change in the rapid process, too.

For a system more complicated than a monatomic classical ideal gas, one would use
the system's heat capacity C. To increase the system's temperature by dT, one must
supply energy C dT by heating. The ensuing entropy change is (C dT)/T. Thus the
total change in entropy is

The heat capacity may vary with temperature, and so it is written as C(T). Equation
(3.9) is useful for computing the entropy as a function of temperature whenever the
heat capacity is known (and also the entropy is known at some specific temperature,
such as at absolute zero).

Before we go on, let me address a question that may have occurred to you. The
procedure codified in equation (3.7) says that, as far as the entropy change of the
system is concerned, there is no difference between the actual rapid process and the
imagined slow one. If that is so, then where is there a difference? The answer is this:
the difference occurs in the environment. If one literally replaced the rapid process
with a slow process, the effect of the process on the environment would be different,
and the change in the environment's entropy would be different. The example in the
next section may make this distinction clearer, and so we turn to it.

3.5 The simplified Otto cycle

Figure 3.3 displayed the simplified Otto cycle, and the legend asserted that rapid
processes make the cycle irreversible. Accordingly, the entropy change of gas plus
environment should be positive when the cycle is run through once. Also, the
efficiency should be less than that of a Carnot cycle operating between the same two
temperatures. This section offers detailed calculations that confirm those assertions.

The given data consist of the temperature and volume at state 1, T^ot and V\, and the
temperature and volume at state 3, rcoid and V2. The gas is specified to behave like a
classical ideal gas and to have a constant heat capacity Cy.
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3.5 The simplified Otto cycle 63

The temperature Ti at state 2 follows from the adiabatic relation (1.24) for the
expansion from state 1 to state 2:

whence

(3.10)

Similar reasoning applied to the adiabatic compression from state 3 to state 4 yields

y~l
(3.11)

We will need two energies, as follows:

r\ _ ( energy input to gas by \ _ f hot „ ,„,
^ o t ~~ \̂  heating, state 4 to state 1 J ~ J T^ v

= Cv(Thot-T4); (3.12)

n _ ( energy input to cold reservoir by
k'coid ~~ y cooling of gas, state 2 to state 3

= CV(T2 - 7-coid). (3.13)

For a classical ideal gas, the change in internal energy is simply the heat capacity Cy
times the temperature change. The definition of Qco\d here is analogous to the
definition used with the Carnot cycle and ensures that gcoid is a positive quantity. That
completes the preliminaries.

Total entropy change
To assess the total change in entropy, we split the cycle into its four natural stages and
examine them separately.

Stage 4 to 1: rapid heating of the gas. Precisely because the gas is heated rapidly,
we must use the indirect procedure of section 3.4 to calculate A£gas?4_*i. We imagine
slow heating by placing the gas in thermal contact with a succession of warm
reservoirs whose temperatures range from T4 to T^ot. While the gas is in contact with a
reservoir at temperature T, the energy transferred by heating is the infinitesimal
amount Cy dT, and the entropy change is (Cy dT)/T. Adding up all those contribu-
tions by integration gives

=
J7

-^—-=Cvln(Thot/T4). (3.14)
1
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64 3 Entropy and Efficiency

Although the literal heating of the gas between states 4 and 1 is a rapid process for
the gas, the huge reservoir placidly supplies energy without any change in its tempera-
ture. Thus we may evaluate the entropy change for the hot reservoir as

A c -Qhot r (?hot - T4)A*bhot reservoir = - = = ~ C y - . (3.15)
•I hot -* hot

How do these two entropy changes compare? If the denominator of the integrand in
(3.14) were constant, the integral of the numerator would give CV (Thot — T4), which is
ghOt. But the denominator T varies and is generally smaller than Zhot, which is the
denominator in (3.15). Therefore ASgaSt4^\ exceeds the magnitude of A5hot reservoir*
and we may write

ASgaS,4->l + AShot reservoir > 0. (3.16)

Stage 1 to 2: slow adiabatic expansion. Provided the adiabatic expansion is slow,
which has been specified, the gas experiences no change in entropy.

Stage 2 to 3: rapid cooling of the gas. The cold reservoir acquires energy Qco\<x by
heating, but it maintains its temperature rcoid. Thus the reservoir's entropy change is

AC Scold r (T2 ~ rcoid)
A^cold reservoir = ~=, = C V ^ • W •A / j

•*• cold ^ cold

For the gas, the rapid cooling requires that we imagine a process of slow cooling.
Thinking of a sequence of cool reservoirs, we follow the pattern set by equations (3.7)
and (3.14):

A5gas,2-3 = J Cr dT

= Cv ln(rcoid/r2) = -Cr HTI/TCM). (3.18)

The ratio TIJTQOX^ is greater than 1, and so the entropy change is negative. Because the
gas cools, a negative change was to be expected.

To compare the magnitudes of the entropy changes here, we proceed as before. The
denominator rcoid in (3.17) is smaller than every value of the integrand's denominator
in (3.18), except at the rcoid end of the integration range. Thus AScoid reservoir is greater
than the magnitude of ASgas,2->3> and so

&Sgps2-*3 + AScold reservoir > 0. (3-19)

Stage 3 to 4: slow adiabatic compression. As in the other adiabatic stage, there are
no entropy changes.

The sum of the left-hand sides of inequalities (3.16) and (3.19) gives us the total
change in entropy. Because both of those left-hand sides are greater than zero, we may
add them and may conclude that
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3.5 The simplified Otto cycle 65

as + AShot reservoir + AScoid reservoir > 0. (3.20)

The positive result is what we expected.
A check on the computation is readily made, and a check is always worthwhile.

When the gas makes a full cycle, it returns to its initial macrostate and hence to its
initial entropy. So our calculation should imply ASgas = 0. The contributions to the net
entropy change for the gas come from equations (3.14) and (3.18). To see whether
those two contributions cancel each other, we need to compare two temperature ratios.
Eliminating the volume ratio between equations (3.10) and (3.11) implies

(3.21)
'cold

and so the two contributions do cancel, yielding zero for the net entropy change of the
gas.

Efficiency
To compute the efficiency, we proceed as we did with the Carnot cycle. Energy
conservation enables us to express the net work output as Shot — Scold- Then the
efficiency follows as

efficiency of \ _ net work output
simplified Otto cycle J ~ energy input by heating

_ Shot — Scold
Shot

^ (3.22)

To obtain the last line, first use equations (3.12) and (3.13) and then equation (3.21).
The expression for efficiency here differs from the Carnot efficiency by the factor
T2lTC0\&. Because that factor is greater than unity and multiplies a negative term, the
Otto cycle's efficiency is less than the Carnot cycle's.

The connection with automobiles
The simplified Otto cycle is a useful approximation to the cycle in a typical automobile
engine. Figure 3.5 displays the latter cycle, which consists of the following stages.

(a) During the intake stroke, the piston is pulled down by the crankshaft and connect-
ing rod. A mixture of gasoline and fresh air rushes into the cylinder through the
intake valve.

(b) In the compression stroke, both intake and exhaust values are closed. The piston is
pushed up and compresses the mixture.
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Gasoline-
and-air
mixture

Intake
valve
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Intake
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Both valves
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Both valves
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Piston

Connecting
rod

Sparkplug

Exhaust valve
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To exhaust
pipe

(a) Intake stroke (b) Compression stroke (c) Power stroke (d) Exhaust stroke

Figure 3.5 The internal combustion engine of a typical automobile. Alphonse Beau de Rochas
proposed the four-stroke cycle in 1862 but never built an engine. In 1876, the German engineer
Nikolaus Otto developed the idea into a commercial model; since then, hundreds of millions of
such engines have been manufactured. After its developer, this four-stroke cycle is called the
Otto cycle.

(c) Near the top of the compression stroke, the spark plug fires. The spark ignites the
mixture, which burns quickly and then expands, pushing the piston vigorously
downward in the power stroke.

(d) To get rid of the combustion products, the crankshaft again pushes the piston
upward, this time while the exhaust valve is open. The exhaust stroke cleans out
the cylinder and prepares it for the next cycle.

To see the connection between this cycle, which is the literal Otto cycle, and the
simplified Otto cycle, we return to figure 3.3 and start at state 3. The adiabatic
compression to state 4 is the analog of the compression stroke. The rapid heating that
takes the gas from state 4 to state 1 corresponds to the burning of the gasoline-and-air
mixture. The burning occurs so swiftly that the piston hardly moves during that period,
which can be approximated as heating at constant volume. The adiabatic expansion
from state 1 to state 2 is a fine analog of the power stroke. The simplified cycle has
cooling at constant volume as the means to get from state 2 to state 3. This process is
intended to approximate the net effect of the exhaust and intake strokes. The new
mixture of gasoline and air is indeed cooler than the combustion products were. The
exhaust stroke starts at maximum volume, and the intake stroke ends at maximum
volume; so maximum volume is appropriate for representing the net effect of those
two strokes. Of course, in the actual automobile cycle, the old air is replaced by fresh
air, and new gasoline is introduced, whereas in the simplified version the same
molecules remain in the cylinder, cycle after cycle. Nonetheless, when tested against
measured engine efficiencies, the simplified cycle provides a surprisingly good ap-
proximation to actual performance.

If you are an automobile buff, you may know that the ratio F2/F1, the ratio of
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maximum volume to minimum volume, is called the compression ratio and that it is a
critical determinant of efficiency. We are only a step away from seeing that conclusion
emerge from our derivation of the efficiency. Return to equation (3.22), cancel the two
factors of rcoid, and use (3.10) to eliminate ^/Zhot in favor of the compression ratio:

( e f f i c i e n c y o f \ = l _ \ l } v~l
 ( 3 2 3 )

\ simplified Otto cycle J [(compression ratio)]

Recall that y, the ratio of heat capacities, is greater than 1, and so the exponent y — 1
is positive. Thus, the larger the compression ratio, the higher the efficiency.

Typical passenger cars have a compression ratio in the range of 8 to 10. Sports cars
run up to 11 or 12.

3.6 More about reversibility

Section 3.2 defined a reversible cycle: a cycle that can be entirely reversed, returning
both system and environment to their original states. The entire "world" is returned to
its original state. A sufficient condition for such a return is that the total change in
entropy of system and environment be zero when the cycle is run forward.

The notion of reversibility can be extended to a process that stops short of being a
cycle. For example, the slow isothermal expansion in the Carnot cycle can be totally
reversed. The work that was done during the expansion is used to compress the gas
isothermally from state 2 to state 1. Energy flows out of the gas and into the hot
reservoir, decreasing the gas's entropy and increasing the reservoir's to their original
values. Again, the property that ASgas + ASenvironment = 0 f°r the forward process is
what enables one to reverse the process entirely.

The general situation can be expressed as follows.

(a) Definition: a process is called reversible if the system and environment can
be restored to their original state, leaving no residual changes anywhere.

(3.24)
(b) A sufficient condition for reversibility is that AiSsystem + ^environment = 0 for

the forward process. (3.25)

Given the definition in (3.24), a reversible cycle becomes a special case: it is a
reversible process in which the system itself returns to its original state, whence the
equation A£system = 0 holds automatically. Thus a sufficient condition for reversibility
of a cycle is merely ASerivironment = 0.

In the preceding statements, the conditions for reversibility are couched in terms of
entropy changes. Can one be more direct and specify experimental conditions? Yes. A
process will be reversible if the following two conditions are met.

(a) The process is carried out slowly, so that the system is always close to
equilibrium. (3.26a)
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68 3 Entropy and Efficiency

(b) No dissipative processes, such as frictional rubbing or viscous damping of
fluid motion, accompany the process. (3.26b)

The limit of an infinitely slow process is usually required, and so a reversible process
is an idealization.

Of the two conditions here, "slowness" is the more important, for slowness itself
sometimes eliminates the irreversible effect of a dissipative process. For example,
suppose one needs to transfer 5.7 coulombs of charge across an electrical resistance R.
The dissipative process is resistive heating, produced at the rate I2R joules per second,
where / is the electric current. Transfer the charge slowly, letting the current be
/ = 5.7/^iong, where t\ong is the long time during which a tiny current will flow and
will transfer the desired amount of charge. That is,

T^long

(charge transferred) = Idt = 5.7,
Jo

independent of the duration tiong. The total dissipation of electrical energy will be
given by another integral:

r̂ iong (5.7)2R
(total dissipation) = I2Rdt = -— > 0 ;

J 0 l̂ong

the total dissipation, being quadratic in the current /, goes to zero as the transfer time
goes to infinity.

The processes that I characterized as "slow" in sections 2.4 and 2.6 are more
properly specified to be "slow and free of dissipation," conditions that ensure
reversibility. Slow and free of dissipation are the conditions that entitle one to use the
equality sign in the central equation,

/ energy into that \
V system by heating )

^^any system ^ ^ • W - z ')

For most purposes, slowness is sufficient, and I took that simpler view when we
started.

Moreover, now we can say also that reversibility is sufficient for the equal sign in
equation (3.27). Here is the logic. In section 2.6, we reasoned that a slow (and
dissipation-free) process implies reversibility and that that property, in turn, implies
AStotai = 0* In t n e context of section 2.6, no change in total entropy means
ASchem system + ASheiium = 0- That equation leads to the equal sign in equation (2.25),
which then carries over to equations (2.26) and (3.27).

Summary
For the topics studied in this book, the three statements, (1) the process is performed
slowly and without dissipation, (2) the process is reversible, and (3)
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3.7 Essentials 69

= 0> are equivalent. Any one of them implies the other two. Moreover,
any one of the statements implies that the equal sign holds in equation (3.27).

In subsequent chapters, I will often use the phrases "reversible" and "occurs
slowly" interchangeably. The phrase "reversible" is the formal technical term, but
"occurs slowly" has a wonderful immediacy and reminds us that we are talking about
experimental conditions.

3.7 Essentials

1. The Carnot cycle consists of two isothermal stages (at temperatures 7hot and Tco\&)
separated by two adiabatic stages. All stages are executed slowly.

The adiabatic intervals ease the system's temperature to that of the next isothermal
stage. Such adiabatic intervals are necessary in order to avoid fast, irreversible
processes that would occur if the system and reservoir had finitely different tempera-
tures.

2. A cycle is called reversible if, when the cycle is run in reverse, the environment can
be restored to its original configuration. (The "working substance" of the cycle is
restored to its original configuration when the cycle is run in either the forward or the
reverse direction. One needs to focus on the environment.)

3. The efficiency of the Carnot cycle is

efficiency of
Carnot cycle ) Thot

4. When operating between reservoirs at temperatures 7hOt and rcoid, no heat engine
can have an efficiency greater than the efficiency of a reversible heat engine. There-
fore, for given 7hOt and rcoid, all reversible heat engines have the same efficiency.
Moreover, because a Carnot cycle is a reversible cycle, the maximum efficiency is
given by the Carnot efficiency.

5. To compute the entropy change for a rapid process, use the equation

' & final ^initial \
\ for any slow process whose

r. . - = initial and final macrostatesfor a rapid process I7 are the same as those for
\ the rapid process J

6. When one knows the heat capacity as a function of temperature, one can calculate
an entropy change as
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70 3 Entropy and Efficiency

b final ^initial —

If one knows the entropy at the initial temperature Tx (for example, at absolute zero),
then the equation serves to determine the entropy itself at the final temperature Tf.

7. The simplified Otto cycle consists of two constant-volume stages separated by two
adiabatic stages. Energy transfer by heating (or cooling) occurs rapidly during the
constant-volume stages [where the reservoirs are at temperatures 7hOt and rcoid, but the
working substance is not at either of those temperatures (except at the end points of
the stages)]. The cycle is not reversible, and its efficiency is less than that of a Carnot
cycle operating between the same temperatures.

8. A process is called reversible if the system and environment can be restored to
their original state, leaving no residual changes anywhere. A sufficient condition for
reversibility is that A£system + ASeiwironment — 0 for the forward process.

In terms of experimental conditions, a process will be reversible if (a) the process is
carried out slowly, so that the system is always close to equilibrium, and (b) no
dissipative processes, such as frictional rubbing or viscous damping of fluid motion,
accompany the process. Often, "slowness" is sufficient.

For the topics studied in this book, the three statements, (1) the process is performed
slowly and without dissipation, (2) the process is reversible, and (3) A£system +
^environment = 0, are equivalent. Any one of them implies the other two. Moreover,
any one of the statements implies that the equal sign holds in the equation connecting
AS and q:

AS = q/T.

For brevity's sake, I will use the phrases "reversible" and "occurs slowly"
interchange ably.

Further reading

D. S. L. Cardwell, From Watt to Clausius: The Rise of Thermodynamics in the Early
Industrial Age (Cornell University Press, Ithaca, New York, 1971). Cardwell tells an
engrossing tale of success and error as thermodynamics grew out of a uniquely
productive mix: practical engineering and laboratory science.

Carnot's paper is reprinted in Reflections on the Motive Power of Fire, by Sadi
Carnot, and other Papers on the Second Law of Thermodynamics by E. Clapeyron and
R. Clausius, edited by E. Mendoza (Peter Smith, Gloucester, Massachusetts, 1977).
Carnot used little mathematics and wrote engagingly; his magnum opus—actually only
59 pages in this translation—is a pleasure to read.

Industrial cycles must produce substantial amounts of work in finite time intervals.
Hence the cycles cannot proceed slowly, cannot be reversible, and cannot have
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maximum efficiency. What efficiency can they attain? "Efficiency of a Carnot engine
at maximum power output" is the title of a specific study by F. L. Curzon and B.
Ahlborn, Am. I Phys. 43, 22-4 (1975).

Problems

1. A Carnot engine operates between two heat reservoirs of temperature 550 °C and
30 °C, respectively.

(a) What is the efficiency of this engine?
(b) If the engine generates 1,500 joules of work, how much energy does it absorb from

the hot reservoir? And how much does it reject into the cold reservoir?

2. The context is the Carnot engine of the preceding question. As an engineer, you are
able to change the temperature of one (but only one reservoir) by 5 °C. To get the
greatest increase in efficiency, which temperature should you change and in which
sense (that is, hotter or colder)? Explain your reasoning.

3. In each cycle, an engine removes 150 joules from a reservoir at 100 °C and rejects
125 joules to a reservoir at 20 °C.

(a) What is the efficiency of this engine?
(b) Does the engine achieve the maximum efficiency possible (given the two tempera-

tures)? If not, by what percentage does the engine fall short of ideal behavior?

4. A system (which you may think of as a gas or liquid) absorbs 200 J of energy from
a reservoir at 400 K and also 300 J from a reservoir at 300 K. It interacts with a third
reservoir whose temperature is T^. When the system returns to its original state, it has
done net work in the amount of 100 J.

(a) What is the entropy change of the system (i.e., the gas or liquid) for the complete
cycle?

Now specify that the cycle is reversible.

(b) Sketch a possible path for the cycle in the pressure-volume plane. Label each
qualitatively distinct portion of the cycle.

(c) What is the numerical value of the temperature T3?

5. During a portion of the Carnot cycle, a dilute gas of diatomic nitrogen is
compressed slowly at constant temperature. Here are some data:

initial = 0.3 m3, Kfmai = 0.1 m3,
N = number of molecules = 3 X 1024, T = 280 K.
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72 3 Entropy and Efficiency

(a) What is the change in multiplicity of the gas? Express the factor by which the
multiplicity changes as 10(some P°wer).

(b) What is the change in entropy of the gas?
(c) How much energy was transferred to the environment through heating or cooling?

Be sure to specify whether the energy of the environment decreased or increased.
(d) How much work was done on the gas while the gas was being compressed?

[Note. You do not have to do the four parts in sequence, but (a) through (d) is a
convenient route. For each part, be sure to provide a numerical answer.]

6. Total work from finite heat reservoirs. Specify that the finite reservoirs of a Carnot
cycle start at initial temperatures T\ioXi initial and rcoid, initial- Acknowledge the conse-
quences of finiteness: the hot reservoir will drop in temperature, and the cold reservoir
will grow in temperature. The two temperatures will converge to a final common
temperature, rcommon? and then the engine will cease to function.

Take the heat capacities of the two reservoirs to be equal and constant; each has the
value Creservoir- Assume negligible change in each reservoir's temperature during any
one cycle of the engine.

(a) Determine Tcommon.
(b) Determine the total work done by the engine.

7. In figure 3.2, focus on two stages in the Carnot cycle: the isothermal expansion and
the adiabatic expansion. The system (the "working substance" in the engine) consists
ofN= 1025 atoms of helium (which you may regard as a classical ideal gas). As the
gas "moves" slowly from state 1 to state 3, it absorbs 105 joules of energy from a heat
reservoir at temperature 800 K. The Carnot engine lifts a small load of bricks. Provide
numerical answers to all of the following questions.

(a) For the helium, what are the numerical values of the following ratios?

multiplicity at state 2 , multiplicity at state 3
— and — - .
multiplicity at state 1 multiplicity at state 1

(b) How much work did the gas do as it moved from state 1 to state 2? (Note: state 2,
not state 3.)

(c) When the gas moves from state 1 all the way to state 3, what is the net entropy
change of the environment (which consists of the hot reservoir, the cold reservoir,
and the load of bricks)? Explain your reasoning.

8. Refrigerator. When run backward, a Carnot cycle provides an ideal refrigerator: the
cycle extracts energy from the cold reservoir and dumps it into the hot reservoir. The
left-hand side of figure 3.4 illustrates this cyclic process. Work from an external source
is required to run the refrigerator, and the energy associated with that work is also
dumped into the hot reservoir. A room air conditioner is fundamentally a refrigerator,
and the questions below examine it.
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(a) The temperature inside the room is T^ide = 25 °C, and the temperature outside the
house is routside = 32 °C. The temperature difference causes energy to flow into
the room (by conduction through the walls and window glass) at the rate 3,000 J/s.
To return this energy to the outside by running an ideal refrigerator, how much
electrical energy must be supplied to the refrigerator (to perform the external
work)?

(b) If the outside temperature grows to 39 °C, so that AT = routSide — inside doubles,
by what factor must the supply of electrical energy increase? Take the inflow of
energy to be proportional to AT. Does this calculation help you to appreciate the
problems facing an electrical power company on a hot summer afternoon?

9. Overall change in entropy. A copper penny, initially at temperature T{, is placed in
contact with a large block of ice that serves as a heat reservoir and has a constant
temperature rres (well below freezing). Take the penny's heat capacity to have the
constant value C, and specify Tx ^ rres (by a finite amount). The following questions
pertain after the joint system has come to thermal equilibrium.

(a) What are the entropy changes of the penny and of the ice block?
(b) What sign does the total change in entropy have [according to your calculations in

part (a)]?
(c) Is the sign independent of whether the penny was hotter or colder than the ice

block?

10. A large, thermally isolated container is initially partitioned into two volumes, Vo
and 2Fo, as shown in figure 3.6. Gaseous helium and neon (which you may consider to
be classical ideal gases) have pressures Po and 3Po, respectively, in the two regions.
The temperature is uniform throughout the entire volume and has the initial value To.
The thin aluminum partition is now allowed to slide to one side or the other, and
complete equilibrium is ultimately established. Answer the following questions in
terms of Fo, Po, and To.

(a) What is the final temperature?
(b) What is the final pressure?
(c) What is the change in the total entropy?

Helium

Vo

Po

To

Neon

2V0

3P0

To

Figure 3.6 The context.
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74 3 Entropy and Efficiency

11. An inventor claims to have developed a heat engine that produces 2 joules of work
for every joule of energy that is discarded. The engine is designed to use reservoirs at
temperatures of 400 °C and 0 °C. Would you recommend investing in the stock of this
high-tech company? Why?

12. A heat engine is run with a large block of hot metal as the hot reservoir and with
the ocean as the cold reservoir. The metal has initial temperature Tx and a heat capacity
C that is independent of temperature. The ocean remains at temperature 7o.

Calculate the maximum amount of work that can be done by the engine.

(a) Express your answer in terms of Tu 7o, and C (and no other parameters or physical
constants).

(b) Check for reasonableness (for example, for correct sign!) by inserting the
numerical values T{ = 1,200 K, To = 280 K, and C = 7 X 106 J/K.

13. Substituting a slow process. In part (a) of figure 1.6, a gas undergoes a rapid
process but comes ultimately to thermal equilibrium. To determine the entropy change,
substitute the slow process displayed in part (b). Take the gas to be a classical ideal gas
with constant heat capacity Cy. What are the changes in entropy, energy, and tempera-
ture for the two stages of the slow process? Does the over-all entropy change agree
with previous results? For the over-all entropy change, express your answer in terms of
the initial volume Fj, the final volume Vf, and the number of gas molecules N.

14. Efficiency and entropy. Specify a heat engine that operates between two reservoirs
at temperatures 7hot and rcoid, but do not assume reversibility.

(a) For a forward cycle, express the entropy change of the environment, A5env, in
terms of ghot, 2coid> and the two reservoir temperatures.

(b) Express the engine's efficiency in terms of ASenv, ghOt, and the two temperatures.
(c) What conclusions can you draw about maximum efficiency?
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4 Entropy in Quantum Theory
4.1 The density of states
4.2 The quantum version of multiplicity
4.3 A general definition of temperature
4.4 Essentials

This chapter has two goals. The first is to develop the quantum version of multiplicity.
That will show us how entropy is expressed in quantum theory. The second goal is to
develop a general quantitative definition of temperature. Entropy plays a key role in
that definition.

4.1 The density of states

When a physical system has reached thermal equilibrium, its macroscopic properties
do not change with time. In quantum theory, the energy eigenstates of an isolated
system provide predictions and estimates that are constant in time; therefore such
states are appropriate for a quantum description of thermal equilibrium.

To be sure, the information at hand will not enable us to select a single state as
uniquely the correct state to use. We will be driven to consider many states and to form
sums over them. This section develops a mathematical technique for working with
such sums.

When the system is both isolated and of finite size (as we shall specify here), the
energy eigenstates form a discrete set, whose members we can arrange and label in
order of increasing energy. (If any two distinct states happen to have the same energy,
we just assign them consecutive labels.) Typically, the states will be densely spaced in
energy, and so a sum over a range of states can often be approximated adequately by
an integral with respect to energy, provided that we have constructed an appropriate
density of states: a function that specifies the number of energy eigenstates per unit
energy interval. To make these abstract words more meaningful, we construct such a
density of states in detail.

The density of states for a single spinless particle
A single spinless particle is confined to a cubical box; the edge length of the box is L.
In terms of the linear momentum p, the particle's energy e is

75
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76 4 Entropy in Quantum Theory

where m denotes the rest mass. We take the wave function that describes the particle to
be a standing wave. Provisionally, imagine a standing wave with variation purely along
the x-axis and with wavelength Xx. To ensure zero values of the wave at both ends of
the length L, an integral number of half wavelengths must fit along the length L.
Figure 4.1 illustrates this constraint. Thus

(4-2)
(4/2) "*'

where nx is a positive integer. The associated momentum component is then

_
Px — V (4.3)

where h is Planck's constant. To get px, we solve (4.2) for l/Xx and substitute in (4.3):

h
Px = nx 2L'

(4.4)

In a general standing wave pattern in three dimensions, similar results hold for py and
pz, but each expression is entitled to a distinct integer: ny or nz. Each single-particle
state has its own set of three positive integers: {nx, ny, nz}.

Substitute for {px, py, pz} into (4.1) and note that the cubical volume Fequals L3,
so that L2 = F2/3. One finds

h2 1
8m

{n\ (4.5)

q> "

Figure 4.1 An integral number of half wavelengths must fit along the length L. The zero values
of the wave function at the ends (x — 0 and x = L) enable the wave function to match smoothly
to zero values in the region outside the box (where the probability of finding the particle is
always zero).
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4.1 The density of states 77

the subscripts a indicate that the results pertain to the single-particle state <pa labeled
by the subscript a. For example, the state (ps has nx = 1, ny = 2, nz = 1, and £3 =
6h2/(SmV2/3). Further detail is shown in table 4.1.

Each of the numbers nx, ny, and nz may range separately over the positive integers.
Specifying a set of three such integers specifies the single-particle state cpa and its
associated energy ea. We may also think of the three integers as specifying a single
point in a three-dimensional space with axes labeled nx, ny, and nz. This is illustrated
in figure 4.2. Because of the restriction to positive integers, only one octant of the
space is relevant. Except at the edges of the octant, there is one quantum state per unit
volume in this purely mathematical space.

If we need to sum a function A{ea) over all single-particle states, we may often
convert the sum to an integral as follows:

Table 4.1 A few single-particle states.

Wave function nx Comments

(pi
<p2

(P3
(PA

1
2
1
1
2

1
1
2
1
2

1
1
1
2
1

Single-particle ground state
These three states have the same energy
but different spatial behavior, and so they are
distinct, different states.

ny

6

5

4

3

2

1

0

•

• •

• •

• / •

- / •

/ : :

n

•

• •

• \«

• • \

• • \

•

• •

• •

• • •

• • •

J ' •
1

Figure 4.2 A slice in the plane nz =(some positive integer) of the three-dimensional mathema-
tical space with axes labeled nx, ny, and nz. Each point indicates a triplet of values {nx, ny, nz}
and thus gives a distinct single-particle state. The symbol n denotes the "radial distance" in the
space.
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78 4 Entropy in Quantum Theory

A(ea)=
states (pa positive triplets {nx,ny,nz}

n2dn. (4.6)

The factor 4jtn2 dn gives integration over spherical shells in the mathematical space of
all triplets of integers; the factor 1/8 cuts down the integral to the size appropriate for
integration over the octant with positive integers. [If a concrete example for the
function A would help you, take

A(ea) = Qxp(-ea/kT) and A(e) = exp(-e/kT).

This form for A will later play a prominent role.]
The next step is to convert to energy e as the integration variable. In terms of the

radial distance n, equation (4.5) tells us that the energy is

whence

l/2

^ l 1 1 1 1 ^ ) £V 2 . (4-8)

Thus

dn — — d e — I -z— ) le~1'2 de. (4.9)
de \ hl J

After using both (4.8) and (4.9) in equation (4.6), we emerge with

(4.10)
states <pa

From the integrand, we can read off the density of states D(e) as

number of single-particle states ^ _ n / f A _ 2ji(2m)3/2 ^ 2

per unit energy interval near energy e J h3

This density holds for a single spinless particle, and its shape is sketched in figure 4.3.
Often we will replace a sum over single-particle states by an integration with D(e), as
follows:

ST A(Ea)=[A(£)D(£)de. (4.12)
states q>a *
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4.1 The density of states 79

D(e)'

Figure 4.3 The density of states D(s) for a single spinless particle (when the only energy is
kinetic energy).

By the way, the explicit expression (4.11) for the density of states is somewhat more
general than the derivation might suggest. It holds for a macroscopic container of any
reasonable shape and volume V, not just the cubical box used here. As soon as the de
Broglie wavelength is substantially shorter than any "diameter" of the container, the
number of states in any given small energy range is independent of the shape of the
boundary, at least to good approximation.

Generalization to the entire system
An entire macroscopic system, consisting of many particles, will be described by one
or another energy eigenstate Wy having energy Ej, where j is an index. (Thus we use
<pa, ea, and e to denote states and energies for a single particle, but Wj, Ej, and E to
denote the corresponding quantities for the entire system.) The notation is summarized
in table 4.2. If we need to sum a function B(Ej) over the states of the system, we may
often convert the sum to an integral over the total energy E with the notation

]T B(Ej)=lB(E)D(E)dE. (4.13)
states Wj •*

The use of a capital E here distinguishes the density of states D(E) for the entire

Table 4.2 Some notation for states and energies.

Quantity Single particle Entire system

Energy eigenstate (or wave function) <pa Wj
Energy of that state ea Ej
Energy in general s E
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80 4 Entropy in Quantum Theory

system from D(e), the single-particle density of states. Just as D(e) depends on the
volume, so may D(E); moreover, the latter will certainly depend on the number N of
particles in the system, but the notation will not show that explicitly unless the context
fails to suffice.

Rarely will any details about D(E) be needed, and so we can go on immediately.

4.2 The quantum version of multiplicity

To express the entropy S in quantum theoretical terms, we need the quantum version
of multiplicity: the number of microstates that correspond to the particular macrostate.
An entirely general expression is not needed, for we will study in detail only systems
that are in thermal equilibrium or that depart only infinitesimally from such equili-
brium. Because we know the macrostate, we may presume that we know the system's
energy is, though only to some imprecision dE naturally associated with a macro-
scopic measurement. Each of the energy eigenstates in a range dE around the energy
E is a microstate that we could associate with the given macrostate. The density of
states D{E) enables us to express this idea succinctly:

' the number of microstates \
that correspond to I = D(E)dE. (4.14)

the particular macrostate /

The system's entropy is then

S= kln[D(E)6E]. (4.15)

Lest you worry unnecessarily, let me say that we will assign a precise value to the
energy range dE later, in chapter 5. For now, just regard dE as a typical experimental
uncertainty range.

The discussion following equation (4.13) noted that D{E) will typically depend on
the volume Fand will certainly depend on the number Â  of particles in the system. At
the moment, we do not know the details of any of these dependences; yet it is
worthwhile to note their existence and to write symbolically

S = S(E, V,N), (4.16)

a relationship that will be valuable in the next section and again in chapter 10.

4.3 A general definition of temperature

Suppose you run some cold water from the kitchen faucet into an insulated container,
as sketched in figure 4.4. Next, you take a handful of ice cubes from the freezer, put
them in a plastic bag, tie up the bag snugly, and drop the ice into the water. Finally,
you cover the container with a lid and wait.
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4.3 A general definition of temperature 81

Figure 4.4 Coming to thermal equilibrium. Ice (in a plastic bag) and the surrounding liquid
water are the center of our attention. (The air and water vapor above them are inconsequential,
except in so far as they provide a pressure of 1 atmosphere.) The thick lid and double-glass-
walled container provide isolation from the environment.

Initially, the ice and the liquid water are at different temperatures. As time goes on,
the liquid will transfer energy to the ice (by conduction across the plastic bag). The ice
warms up, and some of it melts; the water outside the bag cools. Ultimately, an
equilibrium is reached in which the ice and melt water in the bag and the water outside
the bag have come to the same temperature.

Let us now analyze this process from the perspective of entropy and the Second Law
of Thermodynamics. The isolated, composite system will evolve to the macrostate of
largest entropy. What does that imply—as a mathematical relationship between the
two subsystems?

We will stay on familiar ground if we think of the bag as rigid (but ample in volume)
so that the heating occurs at constant volume for the system inside the bag. The total
entropy Stotai *s a s u m °f ^ e entropy of the ice and melt water inside the bag plus the
entropy of the liquid water outside the bag:

* t̂otal — ^inside(.^inside) ~r ^outside(^outside)- (4.17)

(Section 2.6 established the additivity of entropy for macroscopic systems.) Each
entropy is a function of the corresponding energy, as we infer from the dependence on
E that is displayed in equations (4.15) and (4.16). According to the Second Law,
energy will be transferred across the plastic until the total system has reached the
macrostate of largest entropy. To find the maximum of £totai subject to conservation of
energy, we must incorporate the condition

^total = ^inside + ^outside = Constant. (4.18)

Therefore we first write iWside in terms of j£totai and inside-

^total ~~ ^insidev^inside) > ^outside v ^ total ^inside/*

Then we set the derivative with respect to inside equal to zero:

<9*Stotal SiSinside . $*$outside ^(^total ~ ^inside)
dE;inside ^inside dE. = 0.

outside ^inside
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82 4 Entropy in Quantum Theory

(Partial derivatives appear because the entropy depends on variables other than the
energy, such as the number of water molecules, although those variables are not
explicitly displayed here. The chain rule enables one to differentiate Outside with
respect to its entire energy argument and then differentiate that argument with respect
to inside-) The last derivative equals — 1. Thus the maximum entropy is reached when
the total energy has been distributed such that

C^inside _ C^outside .

OE1 inside Ob* outside

In short, this equation states the condition for thermal equilibrium, and it must imply
equality of temperatures inside and outside the bag.

Indeed, if we look back to a key result from chapter 2, namely

/ energy input \
= I by heating ) = X_^f energy input \

T T \ by heating J9 v '

provided the process occurs slowly, we see that \/T gives the rate at which entropy
changes as energy is transferred by heating. We achieve both consistency and general-
ity if we say that the absolute temperature 7 is always given by the equation

The partial derivative is to be taken while external parameters (such as volume or
magnetic field) are held fixed and while the number of particles is kept constant. To
avoid a clumsy notation, we will sometimes abbreviate the statement as

as

displaying only the subscript Ffor "fixed volume." The relationship (4.21) is to hold
for any physical system that is in thermal equilibrium. The benefits of this general-
ization are many, as we will see.

First, however, note the following: if we use the relation (4.21) in equation (4.19),
then the latter becomes

1 1
J- inside •* outside

Maximum entropy for the composite system implies that the temperatures of the
macroscopic component subsystems have become equal.

Defining temperature: the sequence of steps
Let me recapitulate the critical steps that led us to the generalized definition of
temperature. Section 1.1 characterized temperature as "hotness measured on some
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4.3 A general definition of temperature 83

definite scale. That is, the goal of the 'temperature' notion is to order objects in a
sequence according to their 'hotness' and to assign to each object a number—its
temperature—that will facilitate comparisons of 'hotness.'" In section 1.2, the abso-
lute temperature was defined provisionally as "what one gets by adding 273.15 to the
reading on a mercury thermometer that is calibrated in degrees Celsius." That
definition suffices for only a modest range of temperatures, but it is enough to give
operational meaning to all the factors in the ideal gas law, P = (N/V)kT9 over that
range. The ideal gas law played a central role in chapter 2, where we connected change
in entropy (and change in multiplicity) with energy input by heating, as displayed in
(4.20). Whenever the provisional definition of the absolute temperature is experimen-
tally realistic, the partial derivative, (dS/dE)v, will yield 1 over that temperature.
Hence the derivative definition connects seamlessly with the provisional definition and
with the original "measure of hotness" concept. The route that we took builds from
the familiar to the abstract, and therein lies its merit.

In the next development, William Thomson plays a major role, and so an interlude
about him is in order. In 1846, at age 22, William Thomson became Professor of
Natural Philosophy at Glasgow College, the undergraduate college of the University of
Glasgow, Scotland. He served in that capacity for 53 years, many times refusing offers
from institutions as prestigious as the University of Cambridge. Thomson's work
focused primarily on thermodynamics and electromagnetism, but his research papers,
numbering more than 300, bore on virtually every topic that physicists studied in the
latter half of the nineteenth century. Thomson so greatly improved the submarine cable
and the signaling apparatus that transoceanic telegraphy became a practical commer-
cial operation. This brought him public fame, wealth, and a knighthood. In 1892, he
was raised to the peerage as Baron Kelvin of Largs, the first British scientist to enter
the House of Lords (on merit alone), and so we know him today primarily as "Lord
Kelvin." In those days, Largs was merely a village on the Firth of Clyde, some 40
kilometers from Glasgow; Thomson had his country home there. The River Kelvin ran
through Glasgow and past the university. Thomson chose a title that would reflect his
long and heartfelt association with the city of Glasgow and its university. A modest
and kindly man all his long life, he was an encouraging mentor to his many students.

Now we go on and consider other ways to implement the basic "measure of
hotness" notion. In section 3.1, we found that, given two heat reservoirs at different
temperatures, the efficiency of a Carnot cycle run between those reservoirs is
independent of the working substance, be it diatomic nitrogen, air, fluorocarbons, and
so on. In 1848, William Thomson suggested that one could use the Carnot cycle as a
thermometer, at least in principle. In the modern version of his proposal, one reservoir
would be a mixture of ice, liquid water, and pure water vapor when all three coexist in
thermal equilibrium. This state is called the triple point of water, experiments with a
mercury thermometer indicate that the three constituents coexist at only one tempera-
ture. The temperature of the triple point would be chosen freely, and the value adopted
is 273.16 K, purely a matter of definition. To define and determine the temperature of
a hotter reservoir, one would first measure the efficiency of a Carnot cycle run between
the two reservoirs. Then one would use the relationship
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84 4 Entropy in Quantum Theory

/efficiency of \ _ t̂riplepoint (A

I Carnot cycle i ~l Thot ' l

which is extracted from (3.4), to determine the numerical value of 7h0t- The beauty of
Thomson's idea lies in this: the definition will yield the same value for 7hOt regardless
of what the working substance in the Carnot engine is. In this sense, the scale is
"absolute:" it is independent of substance or system.

Let me illuminate the last point: the independence. After graduating from the
University of Cambridge, Thomson worked in Victor Regnault's lab in Paris. There he
came to appreciate accurate thermometry, and he also confronted the practical problem
of constructing fine thermometers and calibrating them. To illustrate the conceptual
problem, consider two familiar thermometers: mercury in glass and alcohol in glass.
Suppose you calibrate each in the old Celsius fashion: set zero at the melting point of
ice and set 100 at the boiling point of water (both calibrations being at atmospheric
pressure); then mark off the intervening length into 100 intervals of equal length. If the
mercury thermometer reads 40 in some warm water, will the alcohol thermometer also
read 40? For most practical purposes, yes, but to all decimals, no. Why? Because no
two liquids expand with temperature in precisely the same way, not even after
allowance for a proportionality constant. Then, in principle, which thermometer—if
either—should one believe? Kelvin's use of the Carnot cycle adroitly circumvents the
question.

You may wonder, of course, how useful is a definition such as Thomson's? Remark-
ably useful—not directly, to be sure, but indirectly. Whenever the behavior of a
physical system depends on temperature—for example, the vapor pressure of liquid
helium—one can construct a chain of reasoning that links the behavior to temperature
as defined by equation (4.23). Some links in the chain are experimental; others are
theoretical. Many examples appear throughout this text; a preview of one will suffice
here.

The hot metals in both a kitchen oven and a smelting furnace emit electromagnetic
waves with a continuous spectrum of frequencies. The intensity (as a function of
frequency) has a maximum at the frequency vmax = 2.S2kT/h, a result derived in
section 6.2. If the experimental maximum is found to occur at the frequency vmax

= 1.82 X 1014 Hz, say, then the temperature T is T = hvmax/(2.S2k) = 3,100 K. Was
a Carnot engine employed? Not directly. Rather, the theoretical expression for vmax is
calculated from a probability distribution (derived in section 5.2) that incorporates
temperature via equation (4.21): \/T = (dS/dE)y. In turn, that definition of tempera-
ture is entirely consistent with temperature as defined by the Carnot efficiency,
equation (4.23).

The equations (4.21) and (4.23) give a broad, device-independent definition of the
quantitative aspect of temperature. They provide the framework that ensures consis-
tency among a myriad ways of measuring actual temperatures in the lab, in astro-
physics, and in geophysics.
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4.3 A general definition of temperature 85

Incidentally, you may wonder why the number 273.16 appears in the modern version
of Thomson's proposal, but 273.15 appeared in our provisional definition of absolute
temperature. The difference is not just sloppiness or a typographical error. On the
Celsius scale of the nineteenth century, the temperature of ice and liquid water, when
coexisting at atmospheric pressure, was assigned the value zero. The triple point of
water, however, is the state in which ice, liquid water, and pure water vapor coexist at
whatever pressure pure water vapor produces at mutual coexistence (which happens to
be a mere 0.006 atmosphere). On the old Celsius scale, the triple point of water was
found to be approximately 0.01 °C. Thus, to adequate approximation for our previous
purposes, adding 273.15 to the value 0.01 °C read from a mercury thermometer yields
the 273.16 K that is, by definition, the absolute temperature of water's triple point.

There is yet another facet to these numbers. The Celsius scale of the nineteenth
century assigned zero to the melting point of ice and 100 to the boiling point of water
(when the system is at atmospheric pressure). In 1989, the International Committee on
Weights and Measures adopted the "International Temperature Scale of 1990" and
redefined the Celsius scale to be

temperature on Celsius scale = temperature on Kelvin scale — 273.15. (4.24)

The definition makes temperature on the Celsius scale independent of the material or
system that is used as a thermometer. On the new Celsius scale, however, the melting
point of ice and the boiling point of water (at atmospheric pressure) differ from zero
and 100 in distant decimal places; they are approximately 0.0002 °C and 99.91A °C.

Individual versus relational
Our original definition of temperature (in section 1.1) focused on comparison among
objects. To repeat yet again, "the goal of the 'temperature' notion is to order objects in
a sequence according to their 'hotness' and to assign to each object a number—its
temperature—that will facilitate comparisons of 'hotness.'" The focus is on a rela-
tional aspect of nature.

It would be nice to have, also, a conception of temperature that focuses on the
physical system itself. For this, the key is the rate at which the system's entropy
changes when its energy is changed: (dS/dE)y. A rate of change can be an extremely
fundamental notion. Witness Newtonian mechanics: the rate of change of velocity,
dy/dt, is central. Once we give d\/dt its own name and symbol—the acceleration,
a—it seems to take on a life of its own. So it is with temperature. In the equation
\/T = (dS/dE)v, the left-hand side is familiar; the right-hand side, relatively foreign.
Yet one should develop a sense that the rate of change on the right-hand side is the
truly fundamental notion; via a reciprocal, the left-hand side gives the rate its own
symbol and name.

The rate (dS/dE)y serves also a comparative function. Recall that the Second Law
of Thermodynamics implies increasing multiplicity and hence increasing entropy (in
the context of evolution in isolation). Thus, when two systems are placed in thermal
contact (but are otherwise isolated), the system with the greater rate (dS/dE)y will
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86 4 Entropy in Quantum Theory

gain energy (by heating) from the other (so that the total entropy will increase). The
system with the greater value of (dS/dE)y will be the colder system, and so
(dS/dE)v provides a way to order systems according to their hotness. Of course, this
paragraph largely recapitulates the ice-and-water scene that introduced this section,
but temperature is a surprisingly subtle notion, and so a little repetition is a good thing.

Hierarchy
You may wonder, do we have three different quantitative definitions of temperature?
No. Where their ranges of applicability overlap, the definitions are equivalent and
mutually consistent. The provisional definition of section 1.2, namely, "For now . . . we
may regard 7 as simply what one gets by adding 273.15 to the reading on a mercury
thermometer that is calibrated in degrees Celsius," is the least general. When mercury
freezes or boils, the mercury thermometer is worthless, and one would not want to use
it even close to either extreme. The Kelvin definition, displayed in equation (4.23), is
applicable to all positive absolute temperatures and sufficed for all the physics of the
nineteenth century. The entropy derivative definition, presented in equation (4.21), is
the most general. It agrees with the Kelvin definition at all positive temperatures,
and—in chapter 14—it will give meaning to even a negative absolute temperature.

4.4 Essentials

1. A sum over single-particle states may (often) be replaced by an integral:

] T A(ea)= \A(e)D(e)de9
states cpa

where the density-of single-particle states D(e) is given by

/ number of single-particle states \ _ ( . _ 2ji(2mf'2 Xj2

\ per unit energy interval near energy e ) ~ h3

for a spinless particle in non-relativistic motion.

2. The system's entropy may be expressed in terms of D(E), the density of states for
the entire system:

S= k\n[D(E)6E].

3. The general quantitative definition of (absolute) temperature is

/ flxeci external parameters
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4. William Thomson's definition of absolute temperature uses the efficiency of a
Carnot cycle and the assigned temperature of the triple point of water. For example,
the relationship

( efficiency of "\ _ _ rtripie point
V Carnot cycle J Thot

determines the temperature 7hOt of the hot reservoir when the cold reservoir is water at
its triple point. The merit of Thomson's prescription is this: because the efficiency is
independent of the working substance, the "thermometer" gives a reading that is
independent of its material constituents.

Problems

1. Consider a helium atom in a volume of one liter: V — 10~3 m3.

(a) How many single-particle energy eigenstates are there in the energy range
0 ^ s ^ 1/40 electron volt? (You may need to convert the energy to SI units.)

(b) How many such states are in the range 0.025 ^ e ^ 0.026 electron volt?

2. A Carnot cycle operates with one reservoir at the triple point of water and the other
reservoir at the boiling point of liquid oxygen (under atmospheric pressure). If the
measured efficiency is 0.67, at what temperature does liquid oxygen boil?

3. Thermal paradox. Consider a Carnot cycle (or engine) in which the hot and cold
reservoirs consist of large volumes of the same material (water or iron, say). The hot
reservoir has a higher ratio of entropy to mass than does the cold reservoir. Conse-
quently, one might think that the energy in the hot reservoir is less available for
conversion to work than the energy in the cold reservoir. Nonetheless, energy in the
hot reservoir can be turned into work (at least partially) although (in the present
context) the energy in the cold reservoir cannot. How can one resolve this paradox?

4. Estimating D(E).

(a) Equation (2.16) gave the entropy of a monatomic classical ideal gas—that is, the
dependence on T and V Eliminate the temperature in terms of the system's total
energy E and then infer the dependence of the density of states D(E) on E and V
It would be reasonable to assume that the energy range dE is proportional to E.

The "constant" in equation (2.16) may depend on the number TV of atoms, and
so this route does not enable you to infer the entire dependence of D(E) on N.

(b) With sketches, compare the behavior of D(E) as a function of E for two cases:
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88 4 Entropy in Quantum Theory

5. Provide a succinct and accurate definition of each of the following terms. Where
equivalent definitions exist, give all of them (up to a maximum of three).

(a) Entropy
(b) Second Law of Thermodynamics (verbal form)
(c) Energy input by heating
(d) External parameters
(e) Temperature
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5 The Canonical Probability
Distribution
5.1 Probabilities
5.2 Probabilities when the temperature is fixed
5.3 An example: spin \h paramagnetism
5.4 The partition function technique
5.5 The energy range 6E
5.6 The ideal gas, treated semi-classically
5.7 Theoretical threads
5.8 Essentials

If we know the temperature of a system and the values of its external parameters, how
can we estimate its physical properties, such as energy, pressure, magnetic moment,
and distribution of molecular velocities? The question is answered in this chapter: we
derive the canonical probability distribution, learn some techniques for applying it
efficiently, and work out two major examples.

5.1 Probabilities

Probabilities enter into thermal physics because the available data are insufficient to
determine the individual properties of 1020 molecules. Moreover, even if such finely
detailed data were available, no person or computer could cope with it. Out of
necessity, one turns to a statistical analysis. A handful of data and some plausible
reasoning lead to predictions whose success is nothing short of astonishing.

Before we look at what a "probability" means, we should note that probabilities
always arise in a context. For example, the probability of a 4 appearing, given that I
roll a die once, is 1/6. The probability of a four appearing, if I were to count the
number of letters that come in my daily mail, would be quite different. Sometimes the
context is made explicit; at other times, it is left implicit; but always there is a context.

In a broad view of the subject, there are two distinct schools of thought on the
question, what should the word "probability" mean?

1. Frequency meaning. According to the frequency school, a probability is a
relative frequency in the long run, that is,

89
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90 5 The Canonical Probability Distribution

1 . ... number of successes
probability = —: . (5.1)

number of tries
If one were rolling dice and looking for the appearance of 4s, one could use the ratio—
after many rolls—to assess the probability. Similarly, a probability could be the
relative frequency in a large collection of objects, that is,

number of objects with property X
probability = J— r , • (5.2)

total number of objects

The objects might be 1020 sodium atoms in a hot vapor, and property X might be the
property of being in the first excited state. If 1016 atoms are indeed in that state, then
the probability would be

1016

probability = ^ = 10~4.

But a quite different meaning can be attached to the word "probability," as follows.
2. Degree of belief meaning. According to the degree of belief school, a probability

is the rational degree of belief in the correctness of proposition A, given the context B.
To construct an example, let us take proposition A to be the statement, "The first
sodium atom I examine will be in the first excited state." Let the context B be the data
in the preceding paragraph: 1020 sodium atoms in a hot vapor, of which 1016 atoms are
in the first excited state. Then the rational degree of belief in proposition A, given
context B, would be assigned the value 10~4.

Rational degrees of belief can be assigned numerical values. The scale for degree of
belief goes from 0 (for zero degree of belief) to 1 (for complete conviction). As a
general rule, whenever a situation permits one to construe a probability as a relative
frequency, the degree of belief school will assign the same numerical value to what it
calls the probability.

Among the advocates of a degree of belief interpretation have been the economist
John Maynard Keynes, the geologist Sir Harold Jeffreys, and the physicists Erwin
Schrodinger, Richard T. Cox, and Edwin T. Jaynes. One can find other physicists who
adopt the view at least occasionally and at least implicitly. For example, Hans Bethe,
who was head of the Theoretical Division at Los Alamos during the Second World
War, wrote the following in a letter to the New York Times, published on 28 February
1971:

By February 1945 it appeared to me and to other fully informed scientists
that there was a better than 90 percent probability that the atomic bomb
would in fact explode, that it would be an extremely effective weapon, and
that there would be enough material to build several bombs in the course of
a few months.

In Bethe's statement we can see an advantage of the degree of belief view, for surely
there was only one first attempt to explode an atomic bomb, not 1020 attempts nor a
long run of attempts. In thermal physics, one often wants to estimate the behavior of a
specific system in the lab, for example, the lithium fluoride crystal that was grown last
week and resides now in the core of the lab's only superconducting magnet. The degree
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5.2 Probabilities when temperature is fixed 91

of belief interpretation permits such "one of a kind" applications of probability theory.
The frequency interpretation would require that one imagine a large number of replicas
of last week's crystal and consider a relative frequency in that collection. Or it would
require that one consider doing the experiment on the same crystal again and again.
Some physicists find such constructions to be artificial. Nevertheless, the frequency
view has been espoused for thermal physics by many eminent practitioners. Perhaps
the most prominent of them was the American physicist J. Willard Gibbs, one of the
founders of the entire subject, although it must be noted that the degree of belief
school hardly existed as an alternative when Gibbs did his work (in the last decades of
the nineteenth century).

Fortunately for us, almost all calculations in thermal physics come out the same,
regardless of which interpretation of "probability" one adopts. Certainly the computa-
tions in this book all come out the same. Readers may make their own choices. Some
annotated references to the two schools of thought appear at the chapter's end.
Moreover, appendix C develops a framework for probability theory, primarily to
provide some familiarity with a powerful system of inductive reasoning. Here it
suffices to note that the rules for working symbolically or numerically with probabil-
ities are independent of which meaning one has in mind. In short, there is only one set
of rules.

5.2 Probabilities when the temperature is fixed

The goal in this section is simply stated: to describe, in probabilistic terms, a system
whose temperature is fixed. An example from low temperature physics is illustrated in
figure 5.1. The sample, perhaps a bit of cerium magnesium nitrate, is in good thermal
contact with a relatively large copper disk, which we will call the "reservoir." The
copper disk establishes and maintains the temperature of the sample. We regard the
sample and reservoir as isolated from the environment and as sharing a total energy

Copper
disk

System of interest

Figure 5.1 A side view of the sample, which is the system of interest, and the reservoir: a copper
disk. The copper was cooled by liquid helium, which was pumped on (for additional evaporative
cooling) until all the helium had evaporated. Both sample and disk are isolated from the
environment (to adequate accuracy) in a cryostat: a double-walled stainless steel vessel (which
is not shown).

�((%��+++���"�&�����$&���$&��(�&"'���((%����,��$��$&����������������
��	��������
�$+#!$������&$"��((%��+++���"�&�����$&���$&����#�*�&'�(-�$����&+�� ��$#��������������(�����������')����(�($�(�����"�&������$&��(�&"'�$��)'����*��!��!���(

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.006
http:/www.cambridge.org/core


92 5 The Canonical Probability Distribution

The energy eigenstates of the sample (regarded as isolated from even the reservoir)
are denoted by *Py and have energy Ej. Although there is thermal contact with the
reservoir and hence interaction, those states remain the best states that we can use to
describe the thermal equilibrium of the sample. Let POP;) denote the probability that
Wj is the right state to use to describe the sample. We reason that P(*P7) is
proportional to the multiplicity of the reservoir when it has energy Etot — Ey.

P(Wj) = const X ^"I t ip l ic i ty of reservoir when \ ( 5 3 )
v JJ \ it has energy Etot - Ej J y J

The more ways to realize the state W7 and some microstate of the reservoir, the larger
the probability P (^ 7 ) should be. In more detail, every joint state of sample and
reservoir (that is allowed by energy conservation) must be assigned the same probabil-
ity because there is no justification for any preferential treatment. For any chosen
sample state *P7 and its energy Ej, the number of states of the reservoir is given by the
reservoir's multiplicity, evaluated at energy Etot — Ej. Thus the probability P(lP7) must
be proportional to that multiplicity.

Note that, on the right-hand side of (5.3), the only dependence on Wj or Ej is
through the Ej that appears in istot — Ej. In particular, the factor "const" is indepen-
dent of the index j .

The reservoir's entropy Sres is Boltzmann's constant k times the logarithm of its
multiplicity, and we can productively express the multiplicity in terms of that entropy:

POP,-) = const X exp [± Sres(£tot - £/)] . (5.4)

Because the reservoir is large relative to the sample, the argument .Etot — Ej will
remain close to Etot for the sample states of primary interest. We can afford to make a
Taylor series expansion about the value EtoU retaining only the first two terms:

- £/) = iSres(^tot. X (-
' 7 &E

— *3res(^tot) ~ -=, &J- [p-J)

Section 4.3 showed that the derivative dSrQS/dE is l/T. (If you worry about our
truncating the Taylor series so abruptly, problem 6 will help you to work out the
justification.) When we insert the relationship (5.5) into equation (5.4), we can
combine all factors that are independent of Ej into a new proportionality constant,
"new constant," and write

P(W7) = (new constant) X exp(-Ej/kT). (5.6)

Calculating with the reservoir's entropy has the great benefit that it introduces the
temperature Tin a simple, direct fashion. Moreover, the entropy, which is proportional
to the logarithm of the multiplicity, varies much more slowly with energy than does

�((%��+++���"�&�����$&���$&��(�&"'���((%����,��$��$&����������������
��	��������
�$+#!$������&$"��((%��+++���"�&�����$&���$&����#�*�&'�(-�$����&+�� ��$#��������������(�����������')����(�($�(�����"�&������$&��(�&"'�$��)'����*��!��!���(

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.006
http:/www.cambridge.org/core


5.2 Probabilities when temperature is fixed 93

the multiplicity itself. A truncated Taylor series for the entropy is justifiable, but such
a step would not be acceptable for the multiplicity itself.

To determine the value of "new constant," we note that the probabilities, when
summed over all energy eigenstates, must yield the value 1:

(5.7)

(Note. The technical meaning of "all" energy eigenstates is that one should sum over
a complete orthonormal set of energy eigenstates.) Now think of summing both sides
of equation (5.6) over all states. The sum on the left-hand side should yield the value
1. Thus, on the right-hand side, "new constant" must be the reciprocal of a sum over
all the exponentials. The upshot is the final form,

. ( 5 . 8 )

(The index / in the denominator is distinct from the index j in the numerator and runs
over all states.) This probability distribution, perhaps the most famous in all of thermal
physics, is called the canonical probability distribution, a name introduced by J.
Willard Gibbs in 1901. (The adjective "canonical" is used in the sense of "standard."
In his Elementary Principles in Statistical Mechanics, Gibbs wrote, "This distribution,
on account of its unique importance in the theory of statistical equilibrium, I have
ventured to call canonical'') The numerator itself, Qxp(—Ej/kT), is called the Boltz-
mann factor. The denominator occurs often, is surprisingly useful, and has its own
name and symbol. Max Planck called it the Zustandsumme, which means "sum over
states", and the German name provides the symbolic abbreviation:

The common English name is the partition function, and that is what we will call the
sum. Indeed, for future reference, the canonical probability distribution now takes the
concise form

Qualitatively stated, the probability of high-energy states is exponentially smaller
than the probability of low-energy states. (The statement presumes that the tempera-
ture Tis positive, which is usually the case, but chapter 14 will provide exceptions.)

Our derivation stipulated a context where the sample's temperature is fixed by a
reservoir. What about a situation where a system of interest is isolated, but one knows
its temperature? An example might be a can of lemonade, just removed from the
refrigerator, which was set for 4 °C (equivalent to 277 K). In almost every way, nothing
physical would change if the system were put in thermal contact with a reservoir
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94 5 The Canonical Probability Distribution

whose temperature was the same as the sample's. To continue the analogy, one could
put the lemonade can back in the fridge. Because the canonical probability distribution
would be applicable if contact with a reservoir existed, it must be applicable even
when the system is isolated, provided we know the system's temperature.

5.3 An example: spin \h paramagnetism

An example is in order. For simplicity's sake, we consider a single atom whose spin is
\h (where ft = h/2jt) and whose location is absolutely fixed in some crystal lattice;
motion relative to a lattice site is the subject of a later chapter. [The compound cesium
titanium alum, CsTi(SO4)2 • I2H2O, provides a good example. The effective magnetic
moment comes from the single titanium ion, which has a net angular momentum of
jfi.] The atom's magnetic moment mB arises from the net angular momentum of \fi.
(Figure 5.2 reviews the idea of a magnetic moment.) The magnitude of me is

mB=~ = 9.274 X 10~24 joules per tesla, (5.11)

where e is the magnitude of the electronic charge and me denotes the electron's rest
mass. The quantity mB is called the Bohr magneton. The atom is in an external

Magnetic
moment

Figure 5.2 A classical orbital magnetic moment. A positive charge q moves in uniform circular
motion with speed v around a circle of radius r. The number of round trips per second is v/2jtr.
An observer stationed on the circle would note an (average) electric current of q X {vjlnr). By
definition, the associated magnetic moment has the following magnitude:

qv ?(magnetic moment) = (current)(area enclosed) = nr
2jtr

= —(mvr) — —(angular momentum).2m 2m
The vectorial magnetic moment is (q/2m) times the orbital angular momentum, where now q
may be positive or negative.
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5.3 An example: spin \h paramagnetism 95

magnetic field B. Our intention is to estimate the component of magnetic moment
along B when the atom is part of a crystal in thermal equilibrium at temperature T.

Because we focus strictly on the atom's spin, the "system" has only two energy
eigenstates. Table 5.1 displays the orientation of the magnetic moment, the component
of magnetic moment along B, and the energy for each of the states. The associated
probabilities are the following, where || denotes "parallel orientation:"

+ mBB/kT

-mBB/kT

The state of lower energy is favored.
We estimate the magnetic moment by first weighting each possibility by the

probability of occurrence, PQVj), and then summing. Working from the table, we find

/ magnetic moment \ _\^f value of mB • B ] p{XU ,
\ along B / 2^ \ in state

emBB/kT e-mBB/kT
(5.13)

= mBtanh(mBB/kT).

The step to the last line follows because the partition function is simply

z = emBB/kT + e-mBB/kT = 2 cosh(mB B / kT). (5.14)

Whenever we estimate a quantity by weighting each possible value by the probability
of occurrence and then summing, angular brackets will denote the process and the
outcome. The outcome is called an expectation value or an expectation value estimate,
and the underlying idea is discussed further in appendix C. For now, it suffices to note
that the present use of angular brackets is analogous to forming an average, a use that
was introduced in section 1.2. Context will suffice to distinguish the two meanings.

Figure 5.3 displays the estimate both as a function of temperature at fixed field and
also as a function of field at fixed temperature.

Table 5.1 For the energy of a magnetic moment mB in afield B, the classical vectorial
expression is —\nB • B. The vector B is a unit vector in the direction q/'B.

Orientation of moment Component of moment System energy Ej
State index j relative to B along B: me • B

1 Parallel m&
2 Anti-parallel — mB
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96 5 The Canonical Probability Distribution

(a)

(mB-B)

0.8

0.6

0.4

0.2

0 10
kT/mBB

Figure 5.3 The estimated magnetic moment: (a) as a function of temperature at fixed field; (b) as
a function of field at fixed temperature. When the ratio m^B/kT is large, parallel alignment is
strongly favored.

Later we will learn that the same curves would emerge if we studied simultaneously
all N paramagnets in a macroscopic sample. The curves would display the total
magnetic moment along B relative to Nm&. Moreover, the estimates would be worthy
of great confidence on our part, for the statistical fluctuations would be small. Problem
5 offers routes to substantiating these claims.

The positive values in equation (5.13) and in figure 5.3 show that the magnetic
moment tends to be aligned along B. This is, indeed, the origin of the adjective
"paramagnetic:" working in the laboratory with a macroscopic sample, one finds that
the total magnetic moment is aligned parallel to the external magnetic field.

5.4 The partition function technique

We have seen one example of how to use the canonical probability distribution to
estimate a physical quantity. For many quantities of interest, such as energy or
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5.4 The partition function technique 97

pressure, the partition function provides an especially efficient way to make the
estimate. The present section develops the technique.

Energy
To estimate the energy, we start by writing

(E) = J2 EJPQVJ) = ̂ Y,EJ ^Vi-Ej/kT). (5.15)
j J

We can express the summand in terms of the derivative of the exponential with respect
to T. Using the chain rule, we find

dexp(-Ej/kT) 1

Multiply the equation by kT2 and then sum all over all j to find the intermediate result

Using this relation to simplify equation (5.

1 2dZ
Z dT

2<91nZ
8T '

15) yields

(5 16)

Thus, to estimate the energy, all that one needs is the temperature dependence of In Z.

Pressure

Section 4.1 showed that the energy eigenvalue for a single particle depends upon the
volume V of the container. Some dependence on volume will always occur for a
confined system, and that dependence enables us to compute the pressure, as follows.

Focus attention on a specific state Wj and slowly expand the volume by an
infinitesimal amount AV; do that adiabatically. The system exerts a pressure on the
walls and does work during the expansion; simultaneously, the system's energy
decreases. Energy conservation requires that the amount of work done and the change
in the system's energy sum to zero:

p r e s s u r e V ^ p
in state Wj J dV

and so the pressure in state Wj is given by —dEj/dV. Then the canonical probability
distribution estimates the pressure P as

dEjexpj-Ej/kT)
( 5 1 8 )
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98 5 The Canonical Probability Distribution

[The letters p and P necessarily get heavy use in physics. In this book, the symbol P
for pressure carries no argument (except in a few homework problems). In contrast,
the symbol PQ^j) for a probability always has an argument or a subscript accompany-
ing the letter. This convention, together with context, should keep the meanings clear.]

Again the partition function provides a succinct re-expression. Start with the
relation

dexp(-Ej/kT) 1 d
ar—--kra

multiply by AT and sum over j ; insert into equation (5.18), thereby deriving the result

Now all that one needs is the volume dependence of In Z.
A few more words in justification of this approach to calculating the pressure are in

order. Early in our education, we learn to think of gas pressure as being caused by
molecular impacts with the container walls. This is an excellent—and true—picture;
without it, much of the real physics in the lab would remain a mystery. It was this
image of "little spheres in irregular motion" that we used successfully in the kinetic
theory calculation in section 1.2. The desirability of a different point of view—a
work-energy analysis of pressure—arises for two reasons. (1) Quantum theory does
not lend itself to visualizing trajectories of molecules. (2) One may want to include
mutual interactions among the molecules, but intermolecular forces are difficult to
handle in a framework based on the kinetic theory's view of a gas. The average effects
of intermolecular forces, as they modify a macroscopic quantity like pressure, can be
taken into account more accurately and more consistently if one adopts the present
work-energy approach. Energy arguments tend to hide the details of a process, but
sometimes that is a great help.

Other external parameters
If you return to section 5.3 and evaluate the expression kTdlnZ/dB, you will find that
it gives the system's magnetic moment (along the direction of the external magnetic
field B):

/magnetic moment \ _ yT7
\ along B / - U dB ' {5'M)

The relationship between moment and In Z is true for any magnetic system, no matter
how large the individual spins may be, how many spins there are, or what mutual
interactions they may undergo. (References to a derivation are provided at the end of
the chapter.) A reason for such a relationship can be found, as follows.
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5.5 The energy range 6E 99

In deriving the expression for pressure, we studied the response of an energy
eigenvalue to the volume, which is an external parameter. An energy eigenvalue may
depend on other external parameters, such as magnetic or electric fields. In general, if
one investigates the response of an energy eigenvalue to a infinitesimal change in an
external parameter, something identifiable and useful emerges. This result is physically
reasonable, for an external parameter provides the experimentalist with an opportunity
to "prod" the system in a gentle and controllable fashion. The response is bound to
reflect the characteristic properties of the system. For a further example, using an
external electric field in place of the magnetic field will generate an estimate of the
system's electric dipole moment.

5.5 The energy range dE

In section 4.2,1 promised to specify more precisely the energy range dE that appears
in the quantum multiplicity:

S = kln[D(E)dE], (5.21)

Now that we have some familiarity with the partition function, a definite specification
is possible (at least for a macroscopic system). When expressed in terms of the density
of states, the partition function is

Z =

= L-E/kTD(E)dE. (5.22)

For a macroscopic system, the density of states D(E) is typically a rapidly rising
function of the energy. The Boltzmann factor is certainly a rapidly decreasing function
of E. Figure 5.4 displays these properties and show that the product—the integrand—
will be sharply peaked.

Where along the energy axis does the peak lie? To answer that question, we examine
the energy estimate (E) when it is expressed in terms of D(E) and Z:

lEe~E/kTD(E)dE
(E) = ] T EjPQVj) = *

= £atpeak. (5.23)

Because the product e~E/kTD(E) is sharply peaked, we may evaluate the first factor in
the integrand at the peak; the remaining integral cancels with the denominator. Thus
the peak must occur at or near (E), and vice versa. This concludes the preliminaries.

The procedure for defining dE rests on two qualitative observations:
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100 5 The Canonical Probability Distribution

^a t peak &

Figure 5.4 Sketches of the Boltzmann factor Qxp(—E/kT), the density of states D(E), and their
product for a typical macroscopic system. The curves are qualitatively faithful but are plotted on
different vertical scales. As the total energy E grows, there are many more distinct ways to
distribute energy among the particles, and so the number of distinct quantum states grows
rapidly. [For this reason, the behavior of D(E) differs greatly from the gentle rise of D(e), the
single-particle density of states.]

1. the significant range of energies is set by the width of the sharp peak in figure 5.4;
2. the area under the peak is equal to its height times its width.

The term "width" is used qualitatively here.
Now we define the energy range dE as the width of the peak in figure 5.4 in a

certain precise sense. Returning to equation (5.22), we write

e-E'kTD{E)dE = D(E)] \E^

(5.24)

The integral on the left-hand side gives the area under the curve. On the right-hand
side is the product of height and width. Because Eat peak and (E) are virtually the same
numerically, it matters little whether we evaluate the integrand at its literal peak or at
E — (E). The latter has some advantages. Equation (5.24) is not an approximation.
Rather, the equation defines the value of dE and says that, in essence, dE is the width
of the peak in figure 5.4.

To fix dE by the requirement (5.24) is plausible and even natural. But is it the
uniquely correct choice? The answer is yes, but only in chapter 14 will we have the
framework to show that.

Computing entropy efficiently
A convenient expression for the entropy follows readily from (5.24). First take the
logarithm of both sides:
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5.6 The ideal gasf treated semi-classically 101

Multiply by k and rearrange to find

S = kln[D((E))6E] = - ^ + itln Z.

In section 4.2 and in equation (5.21), the density of states was evaluated at "the
system's energy ET The sharply peaked curve in figure 5.4 is a probability distribution
for the system's energy E (aside from a normalizing factor). The sharpness of the peak
means that, for all practical purposes, we may use the estimate (E) and "the system's
energy E" interchangeably. Such an interchange was used in equation (5.25) and will
be used again, from time to time.

Why is the expression for entropy in terms of (E)/T and lnZ "convenient"?
Because computations often start with a calculation of the partition function. Then (E)
can be gotten from In Z by differentiation, and the entire expression for S can be
evaluated readily. The next section illustrates this procedure.

5.6 The ideal gas, treated semi-classically

By now we have built a lot of theoretical machinery. This section applies it to an
equally substantial problem: a monatomic ideal gas of N identical atoms, where N is
realistically large, say, 1020. Recall that the adjective "ideal" means "no mutual forces
among the atoms." Nonetheless, coping with all N atoms at once makes the problem
challenging—but also rewarding. The phrase "treated semi-classically" means that the
calculation falls somewhere between a fully quantum mechanical treatment and a
purely classical analysis. We start out with a rigorous quantum framework and then
make approximations that are valid when the gas departs only slightly from classical
behavior. (A more precise definition of "semi-classical" is provided at the end of
section 9.6.)

The partition function

The partition function Z,

(5.26)

is a sum of Boltzmann factors, one factor for each state of the TV-particle system. Each
energy Ej is a sum of single-particle energies:

£y(3) + - . - . (5.27)

A subscript like a specifies the single-particle state, for example, the triplet of integers
{nx, ny, nz}. The argument, such as (1), identifies the specific atom, here atom # 1 .
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102 5 The Canonical Probability Distribution

The factorization property of an exponential, ea+b = ea X eb, means that when we
insert the structure (5.27) into equation (5.26), the result may be written as

Z = 2 ^ g - w v * ' x e~Wkl X . . . . (5.28)
states W/

(By the way, if you find the steps difficult to follow, try working out an example: take
N = 2 and suppose that there are only two or three single-particle states. Then you can
compute everything explicitly.)

Now, to perform the sum, hold all Greek subscripts except a fixed and sum over all
possible values of a. Then do the same with /?, and so on. That process generates the
intermediate result

It is a product of TV numerically equal factors, each of which is the partition function
for a single atom. The latter will be denoted by Z\:

I placed a question mark over the equal sign because the summing procedure needs
to be checked. If all the atoms were distinguishable from one another and if there were
no such rule as the Pauli exclusion principle, then the intermediate result would be
physically correct. But now imagine multiplying out the factors in (5.29) and recom-
bining the exponentials, so that each exponent is a sum of N energies. Consider a
combination of energies such that all the associated single-particle states are different,
for example,

in contrast to

which is also included in the expanded form of (5.29). The "all different" combina-
tions of single-particle states are acceptable because the associated states W7- are
quantum mechanically acceptable. Nonetheless, there is a difficulty: the indistinguish-
ability of identical particles means that, in (5.29), energies like

and

are associated with the same quantum state Wj. (In each case, one atom is in state <p3,
and another is in state cp2.) So we have over-counted actual quantum states by the
number of permutations among TV different state subscripts, which is AH in value.
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5.6 The ideal gas, treated semi-classically 103

If only all-different combinations of single-particle states occurred in the expanded
form of (5.29), then we could correct exactly by dividing by N\. Other combinations,
however, do arise. Either they do not belong in a quantum treatment (because, for
example, they violate the Pauli principle), or they are acceptable but are not over-
counted by as much as N\. The spirit of a semi-classical treatment is to ignore such
errors and distinctions. As we will see later, a semi-classical picture can be valid only if
the temperature is not too low (in a sense to be specified). When the temperature is
adequately high, the exponentials in equation (5.28) do not cut off the sum until
enormously many single-particle states have been included. Consequently, both Z\ and
Z are extremely large numbers. Moreover, for our purposes, it suffices to know the
logarithm of the partition function. A logarithm is remarkably insensitive to substantial
changes in its argument. For example, log(10 X 10100) = log(10100), to within 1 percent.
Because the partition function is so large and because we need only its logarithm, we
may ignore corrections and proceed as though only all-different combinations occurred.
Thus we awake from this combinatorial nightmare with the approximation

Later, in chapter 8, the same result will emerge—but more transparently—as the semi-
classical limit of another quantum calculation. A citation to a detailed yet intuitive
justification of the semi-classical approximation is provided in the further reading list
at the end of the chapter.

To compute Z\, we may call upon the density of states that we derived in section
4.1. The calculation there was for a spinless particle, and that restriction holds
henceforth in this section. Thus

7~£a/kT = le-e/kTD(e)de

= P e-Blkl ~"v~7 Ve1'2 de (5.32)
Jo h3

_ (ijimkTfl2

The substitution e = x2 and then reference to an integral tabulated in appendix A takes
one from the penultimate line to the final expression. Perhaps surprisingly, the factors
in the last expression lend themselves to a nice physical interpretation, as follows.

In classical theory, the average kinetic energy of a free atom is \kT, and so the
typical momentum is of order (3mkT)1/2. Thus the factor (ijimkT)1/2 is approximately
the classical momentum. The de Broglie wavelength is h divided by the momentum.
So it is natural to define a thermal de Broglie wavelength Ath by
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104 5 The Canonical Probability Distribution

Then the single-particle partition function may be expressed as

a dimensionless ratio. The semi-classical approximation for Z becomes

Energy, pressure, and entropy
The total energy, the pressure, and the entropy now follow easily. To display the
dependence of In Z on temperature and volume, write the logarithm of equation (5.35)
as

In Z = N In V + \N In T + const. (5.36)

Appeal to equation (5.16) gives

(E) = k T 2 ^ = lNkT, (5.37)

a comforting check on our calculations.
Next, for the pressure P9 equation (5.19) yields the estimate

p k T k T

Checks again.
Lastly, for the entropy, equation (5.25) implies

(5.39)

The dependence on N is easier to understand if we first use Stirling's approximation
for In N\ as follows:

In TV! ^ N\nN - N = N\n(N/e). (5.40)

(For a derivation of this approximation, see appendix A.) Then the entropy can be
written compactly as

S- kNln \(V/N) J (5.41)

The dependence on N is worth noting. In the argument of the logarithm, V/N gives
the volume per particle in the system; its reciprocal is the number density, N/ V. If one
doubles the system by doubling V and N simultaneously, then the particle density
remains constant, and so does the entire logarithm. The factor of N that precedes the
logarithm will double, and so the entropy will double if one doubles the system at
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5.6 The ideal gas, treated semi-classically 105

constant number density and temperature. This linear scaling is a general property of
entropy for macroscopic systems.

Scaling
Further interpretation of the expression for entropy comes after the next subsection.
Scaling, however, merits a few more sentences here. Imagine two identical macro-
scopic systems, each in thermal equilibrium. Two identical blocks of ice provide an
example. Put the two systems together and in contact. Some quantities, such as
temperature T and number density N/V, remain the same. Quantities that remain the
same when the system is scaled up in this fashion are called intensive. Some other
quantities, such as internal energy (E) and volume V, double (provided that surface
effects are negligible). Quantities that double when the system is doubled are called
extensive. In the previous paragraph, the analysis for entropy indicates that entropy S
is an extensive variable. In later chapters, knowing how various quantities behave
under scaling will be helpful and occasionally will be essential.

Range of validity
Under what physical circumstances are the semi-classical results valid? Let us assume,
provisionally, that the results are indeed valid and see what physical conditions
consistency requires. A typical atom has a momentum of magnitude p = h/k^. In a
semi-classical picture, the atom's momentum must be reasonably well-defined, not
greatly uncertain. If we demand that the uncertainty Ap in momentum be at least an
order of magnitude less than p9 we get the inequality

A £- (5-42)
(Note that Ap is the quantum mechanical uncertainty, not the variation from atom to
atom that arises from even a classical distribution of velocities in thermal equilibrium.)
The momentum uncertainty is constrained also by the Heisenberg uncertainty prin-
ciple:

AxAp^^-, (5.43)

where Ax is the size of the wave packet (half a diameter, say). The Heisenberg
constraint implies

±^ (5.44)

( 5 - 4 5 )

The inequalities (5.42) and (5.44) squeeze Ap between two bounds:
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106 5 The Canonical Probability Distribution

Most useful for us is that the two extremes provide a lower bound for Ax:

Ax ^ - J ^ <* V (5.46)

In short, the minimum size of the wave packet is of order Ath> and we may take Ath as
the typical size.

Semi-classical reasoning can be valid only if the wave packets for the atoms do not
overlap—at least most of the time—because "overlap" corresponds to collision of two
atoms and also leads to quantum correlations that are not included in classical
reasoning. So, the next query is this: what is the typical separation between the atoms?
The volume of space, free from neighbors, around a typical atom is one-Mh of the
total volume: V/N. Thus the typical separation between atoms is (V/N)1/3. Figure 5.5
displays the situation. The semi-classical analysis can be valid only if Ath is much
smaller than the typical inter-particle separation:

Unorthodox though it may be, I think of scattered, puffy white clouds drifting in an
otherwise blue sky. That's fine for classical physics. When the clouds spread out and
overlap much of the time, then we are in for trouble—classically—and must retreat to
the shelter of quantum theory.

The condition (5.47) is not restricted to atoms. It can be applied to any gaseous
system in which mutual interactions are negligible; just put in the appropriate value for
the mass m that is hidden in the thermal de Broglie wavelength. Table 5.2 gives some
examples.

The table indicates that

• for gases at the temperature and density encountered in a typical room, a classical
treatment should be satisfactory;

• for liquids, the situation varies considerably, but is definitely against a classical
treatment for liquid helium; and

• for conduction electrons in a solid, a quantum treatment is mandatory.

Figure 5.5 The geometry for assessing whether the semi-classical analysis is valid.
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5.6 The ideal gasf treated semi-classically 107

Table 5.2 Data for determining whether a semi-classical analysis may be valid.
Copper provides one conduction electron per atom. The particle number densities in
liquid nitrogen and liquid helium are like those in water, in order of magnitude, and so
also is the number density of conduction electrons in a metal. The mass of an "air
molecule " is the average of diatomic nitrogen and oxygen, when weighted by the
relative number densities.

Mass T Ath (/f
System (kg) (K) (meter) (meter) (F/iV)1/3 //Lth

Air at room conditions 4.8 X 1(T26 300 1.9 X lO"11 3.4 X 10~9 180
Liquid nitrogen 4.7 X KT26 77 3.8 X 10"11 3.9 X 10"10 10
Liquid helium (4He) 6.6 X 1(T27 4 4.4 X KT10 3.7 X KT10 0.86
Conduction electrons in 9.1 X KT31 300 4.3 X 1(T9 2.3 X 1(T10 0.053

coppercopper

More about entropy
For a further interpretation of the entropy expression, we return to equation (5.39) and
write it as

S = k\n (5.48)
N\

The factor At
3
h, the cube of the thermal de Broglie wavelength, is the volume over

which a typical wave packet extends (in order of magnitude, at least). The ratio of the
container volume Fto that wave-packet volume is an estimate of the (large) number of
such wave-packet volumes in the entire container. (In the spirit of this interpretation,
the factor e~3/2 is so close to unity that we may ignore it.) In different words, the ratio
F/Ath is an estimate of the number of ways in which a single atom can be put into the
container when we keep in mind the "spread-out" nature of a quantum mechanical
description. For distinguishable atoms, the number of distinct arrangements for the
entire gas is the product of the number of arrangements for each atom. Thus we have
an interpretation of why the ratio V/Xth appears raised to the Nth power. Moreover,
the numerator of the logarithm's argument has precisely the dependence on volume V9

temperature 7, and number N that we reasoned out in chapter 2, when we first
developed the idea of multiplicity.

What about the AH in the denominator? Atoms of a single species are not dis-
tinguishable entities; rather, they are all the same and hence are indistinguishable, one
from another. Placing atom # 1 in the upper right corner of the container and atom # 2
in the lower left corner is no different from placing atom # 2 in the upper right and # 1
in the lower left. And so on for other permutations of the atoms among the Appositions
that they occupy. The estimate in the numerator must be corrected by division with N\,
the number of such permutations.
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108 5 The Canonical Probability Distribution

Partition functions
In this chapter we have met two specific instances of the partition function. In section
5.3, we noted (in passing) the partition function for a single, spatially fixed paramagnet
whose spin is \ti. In the present section, we constructed an entirely different partition
function—because we were dealing with N atoms of a semi-classical ideal gas. The
general procedure is always the same (at least in principle): sum the Boltzmann factors
for all the energy states of the entire system. How one does that and what the final
form looks like vary from one physical system to another. Expect great variation in
what the final partition function looks like. Table 5.3 provides a finding chart for most
of the partition functions that appear in this book.

The classical analog
The quantum canonical probability distribution has an analog in classical physics.
Chapter 13 develops the classical version, and you are now prepared for it. Of all the
other chapters, only chapters 14 and 15 make essential use of chapter 13; so you can
pick up chapter 13 anytime prior to those two chapters.

The chapters that immediately follow this one apply the quantum canonical prob-
ability distribution to a host of physical systems and also develop other valuable
concepts, notably the chemical potential and the free energies.

Table 5.3 The protean partition function. The partition function takes on different
explicit forms when the general definition is evaluated in different contexts. What
follows is a listing of most forms that appear in Thermal Physics. The first phrase is
always to be understood as (< The particles are ...".

Free to move in two or three dimensions; semi-classical approximation; no mutual interactions.
Location: section 5.6 (for three dimensions) and section 7.4 (for two dimensions).

Spatially localized; one but only one particle at each site; multiple single-particle states per site;
no mutual interactions. Location: chapter 5, problem 5.

Spatially localized; more sites than particles; one single-particle state per site; no mutual
interactions. Location: chapter 7, problem 4.

Merely a single harmonic oscillator. Location: section 6.1.

Photons. Location: chapter 10, problem 6.

Diatomic molecules. Location: section 11.3.

In a liquid; semi-classical approximation; very simple model. Location: section 12.3.

Free to move in three dimensions; semi-classical approximation; mutual interactions included
(via the van der Waals approximation). Location: section 12.9.

In a solid. Location: chapter 12, problems 2 and 3.
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5.8 Essentials 109

5.7 Theoretical threads

But before we turn to those chapters, let us pause for a glance at the big picture. This
is an appropriate point for distinguishing among three theoretical threads in the fabric
of thermal physics.

1. Thermodynamics is a strictly macroscopic and strictly deterministic theory. It
uses the ideas of energy, temperature, and entropy, but it makes no assumptions about
the microscopic—or atomic—structure of matter and radiation. Entropy itself is
conceived macroscopically: it is the state function that is constructed by integrating
equation (2.26) when the equal sign holds and by using the procedure codified in
section 3.4. No microscopic interpretation of entropy need be given, and probabilities
play no role.

2. Statistical mechanics is typified by chapter 5: probabilities are explicit and
essential, and a detailed, microscopic mechanical theory (either quantum or classical)
is used. The canonical probability distribution is the quintessential expression of the
statistical mechanical approach.

For a macroscopic property of a macroscopic system, statistical mechanics will offer
an estimate: usually the expectation value estimate or the most probable value. For the
same property, thermodynamics will offer either a definite, unquestioned value or
merely a relationship to other properties. Where both theories offer specific values, the
best estimate from statistical mechanics is to be matched up with the single value
asserted by thermodynamics. (In chapter 7, we will see in detail an example of this
matching procedure.)

3. Finally, kinetic theory is typified by the analysis in section 1.2: a "billiard ball"
view of atomic processes. Probabilities and averages are essential, and so kinetic
theory may be taken as a subdivision of statistical mechanics.

In this book, the three threads are woven together, which is the way most physicists
actually use them. Applications to real physical systems—in the lab, the atmosphere,
or the galaxy—are difficult, and a skilled practitioner adopts whichever theoretical
approach offers the easiest calculation or the most insight.

5.8 Essentials

1. For a system in thermal equilibrium, the probability that its energy eigenstate W7 is
the appropriate state to use in assessing properties is given by the canonical probability
distribution:

where the numerator is called the Boltzmann factor and where Z is the partition
function:
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110 5 The Canonical Probability Distribution

2. The logarithm of the partition function readily provides estimates of total energy
and pressure:

,<91nZ(E) = kT2

P^ kT

dT '
dlnZ
dv '

3. The system's entropy takes the form

4. For a semi-classical ideal gas, the following relations hold:

{Zxf
-^semi-classical — N\ '

a ^ th

where Ath denotes the thermal de Broglie wavelength:
h

^ t h = •

The first equality is valid provided the thermal de Broglie wavelength is small relative
to the average inter-particle separation:

F \ 1 / 3

N) '

(The second equality is valid under weaker conditions as well.)

5. Under the conditions of item 4, the entropy takes the form

S= kNln ; 3 -
A th

6. Scaling. Quantities that remain the same when one scales up the system are called
intensive. (Examples are temperature T and number density N/ V.) Quantities that
double when one doubles the system are called extensive. (Examples are energy (E)9

volume V, and entropy S.)

7. Although the general definition of the partition function is always that given in item
1, the explicit functional form depends on the physical system and will vary widely.
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Further reading 111

Further reading

For an exposition of the degree of belief school of probability, here are some notable
authors. John Maynard Keynes laid out his view of "probability" in his Treatise on
Probability (Macmillan, London, 1921). Sir Harold Jeffreys wrote about probability in
Scientific Inference, 2nd edition (Cambridge University Press, New York, 1957) and in
Theory of Probability, 3rd edition (Oxford University Press, New York, 1967). Erwin
Schrodinger presented his views in two papers: Proc. R. Irish Acad. 51, section A,
51-66 and 141-6 (1947). Richard T. Cox's seminal paper appeared in Am. J. Phys. 14,
1-13 (1946) and was expanded into The Algebra of Probable Inference (The Johns
Hopkins Press, Baltimore, 1961).

Edwin T. Jaynes's writings on probability theory span at least four decades. A
perspective is provided by his article, "A backward look to the future," in Physics and
Probability: Essays in Honor of Edwin T Jaynes, edited by W. T. Grandy, Jr., and P. W.
Milonni (Cambridge University Press, New York, 1993). The volume contains also a
bibliography of Jaynes's papers and reviews. From among them, I would recommend
especially the article "Probability theory as logic" in Maximum Entropy and Bayesian
Methods, edited by P. F. Fougere (Kluwer, Dordrecht, 1990). A baker's dozen of
Jaynes's most notable papers were collected by R. D. Rosenkrantz, editor, in E. T
Jaynes: Papers on Probability, Statistics, and Statistical Physics (Reidel, Dordrecht,
1983).

One should remember also Pierre Simon, Marquis de Laplace, and his Philosophi-
cal Essay on Probabilities (Dover, New York, 1951).

The statistician I. J. Good ably discusses "Kinds of probability" in his article by that
name: Science 129, 443-7 (20 February 1959). He concludes that "although there are
at least five kinds of probability, we can get along with just one kind."

J. Willard Gibbs introduced the "ensemble" into thermal physics in his Elementary
Principles in Statistical Mechanics (reprinted by Dover, New York, 1960), pp. vii, 5,
16, 17, and 163. A classic of the frequency school is Richard von Mises's Mathema-
tical Theory of Probability and Statistics (Academic Press, New York, 1964).

No bibliography on probability should fail to include Russell Maloney's short story,
"Inflexible logic," which can be found in A Subtreasury of American Humor, edited
by E. B. White and Katharine S. White (Random House, New York, 1941).

A detailed derivation of the general connection between magnetic moment and In Z
is provided in Ralph Baierlein, Atoms and Information Theory (W. H. Freeman, New
York, 1971), pp. 200 and 468-72.

The accuracy of the semi-classical approximation for Z is discussed in Ralph
Baierlein, "The fraction of 'all different' combinations: justifying the semi-classical
partition function," Am. J. Phys. 65, 314-16 (1997).
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112 5 The Canonical Probability Distribution

Problems

1. Two-state system. Section 5.3 provided an example of a two-state system. To
simplify the analysis even further, specify that the system's two energy eigenstates
have energies 0 and £o, where £o denotes a small positive energy. Calculate and sketch
(as functions of temperature) the following quantities:

(a) partition function, (b) energy estimate (s)9 (c) heat capacity, and (d) entropy.

2. Three-state system. The nucleus of the nitrogen isotope 14N acts, in some ways, like
a spinning, oblate sphere of positive charge. The nucleus has a spin of lft and an
equatorial bulge; the latter produces an electric quadrupole moment. Consider such a
nucleus to be spatially fixed but free to take on various orientations relative to an
external inhomogenous electric field (whose direction at the nucleus we take to be
the z-axis). The nucleus has three energy eigenstates, each with a definite value for the
projection sz of the spin along the field direction. The spin orientations and the
associated energies are the following: spin up (sz = lft), energy = £o; spin "sideways"
(sz = 0), energy = 0; spin down (sz = —lft), energy = £o (again). Here £o denotes a
small positive energy.

(a) In thermal equilibrium at temperature T7, what is the probability of finding the
nucleus with spin up? In what limit would this be 1/3?

(b) Calculate the energy estimate (e) in terms of £o, T9 et cetera. Sketch (e) as a
function of T9 and do the same for the associated heat capacity.

(c) What value does the estimate (sz) have? Give a qualitative reason for your
numerical result.

3. Excited hydrogen. The energy levels of atomic hydrogen are given by the expres-
sion en = — 13.6/n2 electron volts, where n denotes the principal quantum number.
Consider the atomic hydrogen in a stellar atmosphere, and specify that the ambient
temperature is 7,000 K. For atomic hydrogen, what numerical values do the following
probability ratios have?

probability that electron has n = 2 and no orbital angular momentum
probability that electron has n = 1

probabi
fwifhrmt Qnprifir

(b)

probability that electron has n = 2
(without specification of orbital angular momentum)

probability that electron has n = 1

4. Magnetic susceptibility. The magnetic moment per unit volume is called the
magnetization and, as a vector, is denoted by M. For paramagnets in an external
magnetic field B, the vector M is usually parallel to B, and we use M to denote the
component of M along B. The magnetic susceptibility is the rate of change of M with
B: dM/dB.
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Problems 113

The following questions pertain to the ideal, spin \h paramagnets of section 5.3.

(a) What is the magnetization as a function of B and Tl Sketch M as a function of
mBB/kT.

(b) What is the magnetic susceptibility? (Form the partial derivative at constant
temperature.)

(c) What is the limiting expression for the susceptibility when m^B <̂C kTl (That
dependence on temperature is called Curie s law, after the French physicist Pierre
Curie, who undertook a comprehensive experimental comparison of paramagnet-
ism, ferromagnetism, and diamagnetism.)

5. Spatially localized particles. If particles are spatially localized, one to each site,
and if the particles do not interact with one another, then the partition function Z for N
particles is

Z = (Zif, (1)

where Z\ denotes the partition function of a single particle at a single site. To derive
this result, one can reason as in section 5.6 and note that, because there is always one
but only one particle per site, neither over-counting nor improper combinations arise.

Henceforth, consider paramagnetic particles with spin \h, as in section 5.3.

(a) Confirm equation (1) when N = 2 by constructing the four states of the two-
particle system and by forming the partition function directly as a sum over all
energy eigenstates.

(b) Return to general TV and estimate the total energy (E). Afterwards, you can use the
relation

(E) = —(total moment along B)B

to extract (total moment along B).
(c) To assess the reliability of the estimate for (E)9 first confirm that the relation

^ (2)

holds for the canonical probability distribution in general. Then examine the ratio
AE/\(E)\ for the present system. Concentrate on how the ratio depends on N, the
number of particles.

(d) What can you infer about the reliability of the estimate "(total moment along B)"?
(e) What can you infer in general about the sign of the heat capacity, when computed

under conditions of fixed external parameters?

6. Truncating the series. In section 5.2, I truncated a Taylor series abruptly; the
questions below help you to justify that step.

To simplify the analysis, specify that the reservoir is a monatomic classical ideal gas
of N spinless atoms.

To specify an energy eigenstate, we will need to specify N triplets {nx, ny, nz} in
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114 5 The Canonical Probability Distribution

the spirit of section 4.1 There will be one quantum state per unit volume in an enlarged
mathematical space of 3 TV dimensions. (That statement would be literally correct if the
N particles were distinguishable. The actual indistinguishability has no qualitative
effect on the subsequent reasoning, and so we ignore it.) The energy E will continue to
be proportional to n1, where n is the "radius" vector in that space. The integral in the
analog of equation (4.6), however, will contain the factor n3N~l dn, for a "volume" in
a space of 3 TV dimensions must go as n3N. The density of states must have the form

D(E) = constant X Ef{N\

(a) Determine the exponent f(N); do not bother to evaluate the constant.
(b) Check your value for the exponent f(N) by computing (E) from the partition

function.
(c) To study the reservoir's entropy, write the entropy as follows:

/ £. \
Sres(£tot - Ej) = kf(N) In 1 J- + part independent of Ej. (1)

E/
Be sure to confirm this form, starting with the definition in equation (4.15). Because
the reservoir is much larger than the sample, Etot = N X ( |£r), and this approximation
gets better as N gets larger. Write out the first three nonzero terms in the Taylor series
of the logarithm (about the value 1 for the argument). Then study the limit of equation
(1) as N goes to infinity. Do you find that the only surviving dependence on Ej is the
single term that we calculated in section 5.2?

7. The energy range dE. Equation (5.24) gave a precise definition of the energy range
dE that appears in the expressions for multiplicity and entropy. The present exercise
investigates the size of dE relative to the energy estimate (E).

Specify that the density of states for the entire system has the form

D(E) = g(N9 V)E(3N/2)~l

for the N atoms of a monatomic ideal gas, treated semi-classically. The prefactor
g(N, V) is a function of TV and the volume Fonly.

(a) Evaluate the partition function Z exactly in terms of g(N, V), N, and kT. For
simplicity, take TV to be an even integer.

(b) Work out the explicit expression for the energy range dE as it is defined by
equation (5.24). To get a useful final result, you will need Stirling's approximation
for the factorial of a large integer.

(c) Calculate the energy estimate (E). What implication can you draw from the size of
dE relative to (E)l

8. More on approximating a sum by an integral. In section 5.6, we used a density of
single-particle states to replace a sum over single-particle states with an integral,
namely, the sum for Z\. That procedure is, of course, an approximation.
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Problems 115

(a) What inequality among the quantities kT, V, and h2/2m must be satisfied if the
approximation is to be a good one? (For starters, you might reason that quantiza-
tion cannot affect details if the thermal wave packets are small relative to the linear
size of the container. Beyond that, you can require that the Boltzmann factor
change relatively little from one state to the next, at least until the factor itself
becomes insignificantly small.)

(b) How does your inequality compare with the inequality that must be satisfied if a
semi-classical analysis is to be adequate for the entire TV-particle gas? Which
inequality imposes the more stringent requirement?

Later in this text, we will replace other sums by integrals. The replacements will be
good approximations under realistic physical conditions. Nonetheless, you should be
aware that an approximation is being made and that, in principle, a check should
be made each time.
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6 Photons and Phonons
6.1 The big picture
6.2 Electromagnetic waves and photons
6.3 Radiative flux
6.4 Entropy and evolution (optional)
6.5 Sound waves and phonons
6.6 Essentials

The oscillations of electromagnetic fields and of crystal lattices have much in com-
mon. Waves form a basis for analyzing both—provided one incorporates quantum
theory judiciously. This chapter addresses electromagnetic waves and sound waves—
when in thermal equilibrium—in a unified fashion. The canonical probability
distribution plays a vital role, for it links the thermal and quantum aspects of the
waves.

6.1 The big picture

When describing waves in thermal equilibrium, either electromagnetic waves or sound
waves, there are three essential elements.

1. Normal modes. Electromagnetic waves in a metallic cavity and sound waves in
a crystal can possess standing wave patterns, sometimes called normal modes. The
standing waves have a discrete set of frequencies.

2. Quantized energy. Quantum theory restricts the energy in any given standing
wave mode to be of the form

/ energy e in mode \ 7 , ^ x /r 1.
r%J = nhv + constant, (6.1)y of frequency v )

where n is zero or a positive integer: n — 0, 1, 2, 3, . . . . If we can estimate the value
of that integer, then we can calculate the energy and also several other quantities of
physical interest. We denote the expectation value estimate by H(y). [The estimate
could be denoted by (n(v)), but that would be a clumsy notation.] The literal number n
specifies, for electromagnetism, the number of photons in the mode and, for sound
waves, the number of phonons.

In general, any wave that satisfies a linear wave equation (with time derivatives of
second order) is mathematically analogous to a simple harmonic oscillator. The energy

116
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6.1 The big picture 117

form in equation (6.1) is what quantum theory predicts for the energy of a simple
harmonic oscillator of frequency v.

3. Density of modes. A sum over the set of distinct standing wave modes may often
be approximated by an integral with a density of modes, the number of modes per unit
frequency interval.

Computing n(v)
The easiest way to compute ~n(v) is indirect, as follows. Choose the zero of energy so
that the constant in (6.1) is zero, and then form an expectation value with the canonical
probability distribution:

(e) = n(y)hv. (6.2)

Equation (5.16) enables us to calculate (e) as

ZdT ( 6 3 )

where Z is the partition function for the mode. The required sum is
OO OO -i

n=0 n=0 l e

The second equality shows that the sum is a geometric series, which can be summed in
closed form.

Insert the explicit form for Z into (6.3) and find

Comparison with (6.2) implies

estimated number of photons or \ _ _ n _ 1 ,, ,v
phonons in mode with frequency v ) ~ ehvjvr _\'

The higher the frequency at fixed temperature T, the smaller n(v) is.
Let's check the expression for ~n(v) against a reasonable expectation. If one increases

the temperature of a solid, one expects the atoms to jiggle more vigorously (around
their equilibrium sites in a lattice). Speaking classically, one would say that a sound
wave mode of fixed frequency will have larger amplitude. That statement should
translate into a larger number of phonons in the mode. In short, the function ~n(v)
should increase when T increases. To test that proposition, note that the exponent in
(6.6) will decrease when T increases; the exponential will decrease; the denominator
as a whole will decrease; and so the function ~n(v) will increase. It checks.

That completes the general preparation. Now we turn to specific applications.
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118 6 Photons and Phonons

6.2 Electromagnetic waves and photons

The first application is to electromagnetic waves in thermal equilibrium.

Density of modes
In section 4.1 we computed a density of states for a single spinless particle, and much
of that analysis can be carried over to photons. To determine the density of electro-
magnetic modes, consider a cubical cavity with perfectly reflecting metal walls. First
we determine the discrete frequencies of the standing waves. The argument that an
integral number of half wavelengths must fit along a length L remains valid. [Whatever
boundary conditions need to be met at one wall will also need to be met at the opposite
wall, a distance L away. Only if the wave makes an integral number of half cycles in
distance L will that requirement be satisfied. Thus L/(Xx/2) — nx and similarly for the
other directions.] The momentum components {px, py, pz} of a photon must have
magnitudes given by the triplet (h/2L) X {nx, ny, nz}. The momentum magnitude is

P = ^(n2
x + n2

y + n ^ \ (6.7)

Moreover, a photon's momentum magnitude p is connected to its energy by the
relation

energy = Av_
c c

Comparison of equations (6.7) and (6.8) implies that the frequency of a wave mode is
given by

v = ^(n2
x + n2

y + n2
z)V2. (6.9)

Planck's constant h has canceled out, suggesting that this is a purely classical result.
Indeed it is, but the excursion via quantum theory provides an easy route.

Any triplet of integers in the positive octant of figure 4.2 specifies a mode and its
frequency—almost. Electromagnetic waves are transverse waves, and so for each
triplet {nx, ny, nz], two orthogonal polarizations (specified by the direction of the
electric field) are possible. Thus, if A(v) is any smooth function of the frequency, the
analog of equation (4.6) becomes

A(v) = 2 X Y^ A(v) = I U(V)4TTW2 dn= IE
EM modes triplets { nx, ny, nz }

= 1\A(V)47C(—J v2dv. (6.10)

J V c J
The factor of 2 in the first line incorporates the two polarizations, and the sum goes
over the positive triplets only. In the step to an integral, the variable n is the radius in
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6.2 Electromagnetic waves and photons 119

the mathematical space of triplets {nx, ny, nz}. (Note. The n here is entirely distinct
from the n of section 6.1. Unfortunately, the letter n gets heavy use in physics.)
Equation (6.9) indicates that v = (c/2L)n; that relation was used to arrive at the last
line. From equation (6.10) we extract the density of electromagnetic modes

DEM(V) = ^ Vv\ (6.11)
c5

Lest there be ambiguity, let me express things this way:

/ number of EM modes in the
\ frequency range v to v -f av

(6.12)

A density of modes, such as DEM(V), is quite analogous to a density of single-
particle energy eigenstates D{e). Each counts the number of discrete entities (modes or
energy eigenstates) per unit range of some continuous argument (frequency v or
single-particle energy e). Using a capital letter D provides a good mnemonic for
"density." Then the argument and, at times, a subscript distinguish one kind of density
from the others.

Note, however, that a wave mode of frequency v may have energy equal to 0/zv,
1 hv, 2hv, etc. To know how much energy the mode has, one needs to know how many
photons are associated with the mode (either precisely or in an average sense). We turn
to this issue in the next subsection.

Energy
An estimate of the total electromagnetic energy follows readily. Equation (6.6) gives
us an expression for ~n(v), the estimated number of photons in a mode of frequency v.
Since each photon has energy hv, the estimated energy in a mode is hvn{y). Replacing
a sum over all modes with an integral, we find that the total energy is

In the integrand, the factor in parentheses has a useful interpretation. Note that it is
multiplied by the volume V and by a frequency interval dv. Thus the function in
parentheses is the estimated energy per unit volume and per unit frequency range:

/ spatial energy density \ _ %Jth v3

yper unit frequency interval J c3 ehvlkT — 1'

This is Max Planck's great result: the Planck distribution. Figure 6.1 displays the
distribution as a function of frequency for two values of the temperature.
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Energy
density

1.75'

1.5

1.25

1

0.75

0.5

0.25

• /

: /

• /

, r=6 ,000K

7=3,000K

0 2 4 6 8 10
Frequency

Figure 6.1 The Planck distribution. The estimated energy per unit volume and per unit frequency
interval, in units of 10"15 J/(m3 • Hz), is plotted against frequency, in units of 1014 Hz.
Changing the temperature by a mere factor of 2 makes a tremendous difference.

When hv is small relative to kT, the denominator is approximately hv/kT and
cancels one factor of v in the numerator and the factor of h\ so the Planck distribution
rises as kTv2 for small v and does not depend on h. That portion of the distribution
had been derived by classical methods before Planck's discovery in 1900. At high
frequency, such that hv ^> kT, the distribution falls as M>3exp(—hv/kT), an effect
that is thoroughly quantum mechanical.

Now we return to equation (6.13). The temperature dependence of (E) can be made
more evident by a change of integration variable to the dimensionless variable
x = hv/kT. The change produces the form

dx.

The remaining integral is tabulated in appendix A; its value is 7t*/15. Thus

The total electromagnetic energy is proportional to the fourth power of the tempera-
ture, a strong dependence.

A simple argument provides insight into the T4 dependence. As displayed in
equation (6.6), the estimated number of photons per mode, 7z(v), drops exponentially
to insignificance as soon as hv exceeds 3kT or so. Thus the numerically significant
sum (or integral) over modes extends only to photon momenta of order 3kT/c. In the
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6.2 Electromagnetic waves and photons 121

mathematical space of the triplets {%, ny, nz}, that implies an octant "volume"
proportional to (kT/c)3. In that octant, the photons that contribute significantly to the
energy have individual energies of order kT, and ~n(y) is of order unity for those
modes. So we can estimate the total energy by the product

hv X n(v) X ( . n T b e / ° f , ) oc kT X 1 Xy significant modes J

The right-hand side shows that the product is proportional to (kT)4/c3, and that
proportionality reproduces the dependence of (E) on k, T, and c. The dependence on
temperature—namely, T4—is the crucial property to understand and to remember.

Radiation pressure
Electromagnetic radiation can exert a pressure, an effect calculated already by James
Clerk Maxwell. In section 5.4, we found that the pressure exerted by a system in
quantum state W7- could be computed as —dEj/dV. According to equation (6.9), the
frequency of an electromagnetic mode scales with volume as F~1//3, and so the energy
hv scales that way, too. The energy Ej of any state W7 of the entire radiation system
must have the form

= /constant dependent^ x 1/3
1 \ on index j J

whence

Then, for the pressure P, equation (5.18) implies

Because {E) itself is proportional to V, the radiation pressure is independent of the
volume, being a function of temperature only: P oc T4.

Total number of photons
An estimate of the total number of photons (N) will prove useful and is readily set up:

f
(N) = j «(V)

— X 2.404. (6.19)
chj
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122 6 Photons and Phonons

Again, the definite integral can be cast into dimensionless form, and the dimensionless
version is tabulated in appendix A. The final expression for (N) has at least two uses,
as follows.

1. Energy of typical photon. The ratio of total energy (E) to total number of
photons provides an estimate of the typical photon energy. From equations (6.15) and
(6.19), one finds

H = 2J kT, (6.20)

and so the typical photon has an energy of approximately 3kT.
The peak in the Planck distribution produces a similar estimate. Differentiate the

distribution with respect to v; then set the derivative to zero. The process generates a
transcendental equation in hv/kT:

g = 3(1 - e-*/"1). (6.21)

Guessing that hv/kT is close to 3 and inserting that number into the right-hand side
yields 2.85; inserting the latter number on the right yields 2.83; and further iteration
leaves the right-hand side at 2.82, when rounded to two decimals. Thus the Planck
distribution yields

(6.22)

in satisfying agreement with our other estimate for the energy of a typical photon.
The relationship,

Vatpeak = 2 .82^ r , (6.23)

is one version of Wien's displacement law. the peak frequency shifts linearly with
changes in temperature T. Problem 3 develops another version of Wien's law.

2. Constancy during slow adiabatic change. If one expands the cavity slowly and
adiabatically, it is plausible that the total number of photons remains constant. If that is
so, then the product T3 V will remain constant:

T3 V = constant (6.24)

during a slow adiabatic expansion. This relationship is in fact true; we can prove it
quickly by an entropy argument, as follows.

For the photon gas, the heat capacity at constant volume is

Cv-(d{E)) - ( 3 2 7 r * W (6 25)
Cv~ Vary ~ \i5cw)T v- (6-25)

Imagine slowly heating the photon gas to temperature T by heating the metal walls of
the cavity; start at absolute zero, where there are no photons, and hence there is no
entropy. Then
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6.3 Radiative flux 123

(TCr(T>)
rv. (6.26)

The entropy is proportional to T3 V. In a slow adiabatic process, the entropy remains
constant, and therefore T3 V does.

6.3 Radiative flux

Hot objects radiate electromagnetic waves. After all, that is how the heating coils in a
kitchen oven fill the oven with infrared radiation. In this section, we explore the topic
of radiative flux, meaning the flow of electromagnetic energy.

First, a definition is in order. A surface is called perfectly black if it absorbs all the
radiation incident upon it.

Consider now an entirely closed cavity whose interior walls are black and are held
at temperature T. The cavity becomes filled with radiation and has an energy density
given by (E)/V, where (E) is given by equation (6.15). Next, make a small hole in
one wall, as indicated in figure 6.2, but pretend that the tube and its termination are
absent. The cavity radiates through the hole. If all electromagnetic waves moved
strictly leftward and rightward, then—in a short time interval At—the energy flux
through the hole (of area A) would be half the energy in a cylinder extending rightward
from the hole a distance cAt and having cross-sectional area A. Thus a rough estimate
of the energy flux (in joules per second and per square meter) is

(radiative f l u x ) - (6.27)

Reflecting walls

Surface
patch

Figure 6.2 Blackbody radiation. The interior walls are perfectly black and are held at a tempera-
ture T. Thus the interior constitutes a "blackbody." A narrow tube, whose interior walls are
perfectly reflecting, connects a hole in the cavity wall with a patch of surface, initially taken to
be perfectly black. The tube itself is made of insulating material; hence the surface patch is
thermally isolated except for the radiative flux through the tube (both leftward and rightward).
Further exterior insulation isolates the surface patch from the environment.
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124 6 Photons and Phonons

where (E)/V is the spatial energy density in the cavity. A more accurate assessment
notes that the distribution of photon velocities is isotropic and that radiation can pass
through the hole obliquely. Such a calculation replaces the 1/2 by 1/4 and yields

/energy flux from\ _ t (E)
I hole in cavity ) ~4 V

The symbol oB denotes the Stefan-Boltzmann constant, defined by

2jt5k42jtk
oB = —YT, = 5.67 X 1(T8 W/(m2 • K4). (6.29)

I5czn*

Next we pay attention to the tube with perfectly reflecting walls and the thermally
isolated patch of black surface at its left-hand end. The black surface will come to
thermal equilibrium with the cavity walls and will acquire the same temperature that
the walls have. In thermal equilibrium, the surface must radiate as much energy as it
absorbs. After glancing back at equation (6.28), we conclude that

( f T w ^V perfectly black surface

In short, a black surface radiates precisely as does a hole in the cavity. The relationship
(6.30) is called the Stefan-Boltzmann law.

Perfect absorbers are difficult to find. Even lampblack (soot) absorbs only 95 percent
in the visible range of electromagnetic waves. So we consider a situation where the
surface absorbs the fraction a and reflects the fraction 1 — a of the incident radiation.
The coefficient a is called the absorptivity. In thermal equilibrium at temperature T9

energy balance holds in the sense that

/ flux emitted \ , f flux reflected \ _ f flux incident \ ( _
y by surface J \ by surface / ~~ \ from hole J9

that is, the sum of the rightward fluxes through the tube equals the leftward flux.
Solving for the emitted flux, we find

/ flux emitted by surface \ _ f flux incident \ / flux reflected \
y with absorptivity a J ~ \ from hole J \ by surface J

= oBT4 - (1 - a)oBT4

= aoBT4. (6.32)

At first sight, this equation just says that the emitted flux equals the absorbed flux. But
the non-black surface will emit at the rate given in (6.32) even in the absence of an
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6.3 Radiative flux 125

incident flux; such emission is a consequence of the surface's nonzero temperature T
and the atomic characteristics of its constituents. In short, equation (6.32) generalizes
equation (6.30), and it tells us that a good absorber (with large coefficient a) is also a
good emitter.

For purposes of tabulation, the emissivity of a surface is defined by the relation

/ actual \ f . . ., . ., / flux that a black \ , , _ .^ A * I = (emissivity) X . 1 . (6.33)y emitted flux J \ SUI>face would emit J

Comparing equations (6.32) and (6.33) tells us that the emissivity equals the absorp-
tivity. The latter is often the tabulated quantity, but we may use one for the other
numerically whenever convenience recommends it. Table 6.1 provides a selection of
emissivities.

Absorption and emission as a function of frequency
Note that we could carry through a similar analysis with just a portion of the Planck
spectrum. Imagine placing in the tube a "reflection filter" that passes a narrow spectral
band, v to v + dv, and reflects all else on both of its sides. Insert the filter after thermal
equilibrium has been reached. Then all frequencies outside the pass band remain in
equilibrium; consequently, the energy fluxes in the pass band must also remain
in equilibrium, and to them we apply our preceding analysis.

Thus, if the absorptivity is a function of frequency, a = a(v), then

Table 6.1 Some emissivities (for total radiation) and the temperature range to which
they apply. For the temperatures listed here, the peak in the Planck spectrum lies in the
infrared. (The peak will lie in the frequency range where we see—the visible range—
only if the radiation source has a temperature comparable to that of the solar surface,
which is 5,800 K.)

Material

Gold, polished
Silver, clean and polished
Aluminum, polished
Lead, oxidized
Chromium, polished
Graphite
Varnish, glossy black sprayed on iron
Asbestos board
Lampblack (carbon)
Varnish, dull black

Temperature (°C)

200-600
200-600

50-500
200

50
0-3,600

20
20
20-400
40-100

Emissivity

0.02-0.03
0.02-0.03
0.04-0.06
0.05
0.1
0.7-0.8
0.87
0.96
0.96
0.96-0.98

Source: CRC Handbook of Chemistry and Physics, 71st edn, edited by David R. Lide (Chemical
Rubber Publishing Company, Boston, 1992).
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126 6 Photons and Phonons

( energy flux from surface \ _
V in range v to v + dv I = a(v) X

flux from hole in cavity \
in same spectral range J

\5(h\4 v3

ehv/kT _ dv. (6.34)

Reasoning by analogy with equation (6.28), one sets "flux from hole in cavity in
spectral range v to v + dv" equal to c/A times the corresponding spatial energy
density, which is the Planck distribution, given in equation (6.14). If the coefficient
a(v) is a constant, then integration of (6.34) over the frequency range from zero to
infinity reproduces equation (6.32).

But, in fact, the absorptivity sometimes varies strongly with frequency. Figure 6.3
shows three metal cans, each filled initially with half a liter of almost boiling water (at
temperature 370 K). One can has the original shiny metallic surface; another was
painted flat white; and the last was painted flat black. To the eye—and hence in the
visible portion of the electromagnetic spectrum—the shiny and the white cans are
good reflectors and therefore poor emitters. The black can is a good absorber and
hence a good emitter. One might expect the black can to cool relatively rapidly and the
two other cans to lag behind. When the experiment is done, however, both black and
white cans cool rapidly; only the shiny can lags.

Why? We see the cans in the visible and judge the absorptivity of each in that fre-
quency domain: (̂̂ visibie)- For the cooling, however, what matters is a(vpeak when T=3io K)>
the absorptivity at the peak in the Planck spectrum for an emitter at the cans' actual
temperature. How different are the frequencies? And the associated absorptivities?
The proportionality between the frequency at the peak and the temperature of the
emitter enables us to make the first comparison readily.

The wavelength of orange light is Aorange = 6 X 10"7 meter, and so visible light has
a frequency of order Grange = c/Xomnge — 5 X 1014 Hz, a convenient round number.
Most of our visible light arises from the solar surface, whose temperature is approxi-
mately 6,000 K. For our purposes, the peak in the solar spectrum (at the sun and as a
function of frequency) is close enough to the visible that we can associate vorange with

Figure 6.3 Is a good reflector necessarily a poor emitter? Comparing the emission rates of three
hot surfaces: shiny metal, flat white, and flat black. Richard A. Bartels reported the experiment
in Am. J. Phys. 58, 244-8 (1990).
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6.3 Radiative flux 127

the solar peak. The cans have a temperature of only 370 K to start with and cool to
350 K or so in the experiment. According to equation (6.22), the peak in the Planck
spectrum is shifted downward by the factor 370/6,000 = 0.06, and so the peak
frequency for the cans is approximately 0.06 X (5 X 1014) = 3 X 1013 Hz. That fre-
quency lies well into the infrared region of the spectrum. In the infrared, the absorptiv-
ity of flat white and black paint are virtually the same (roughly 95 percent), and so the
white can should cool just as rapidly as the black can, which it does. The shiny
metallic surface remains a good reflector and poor emitter at infrared frequencies;
hence that can lags.

Cosmic background radiation
According to standard cosmological theory, the early universe contained electromag-
netic radiation in thermal equilibrium with a hot plasma of primarily protons and
electrons. As the universe expanded, it cooled. When the temperature dropped to
approximately 3,000 K, the electrons and protons combined to form neutral hydrogen.
(There had been a dynamic equilibrium: hydrogen being formed and then dissociating.
Such a process continued at still lower temperatures. Nonetheless, as chapter 11 will
demonstrate, the balance shifts from mostly dissociated to mostly combined over a
surprisingly narrow interval of temperature.) The radiation had a Planck distribution,
as exhibited in (6.14), with the temperature of the combination era. As the universe
continued to expand, the radiation underwent adiabatic expansion, dropping further in
temperature as the volume increased; equation (6.26) provides the quantitative rela-
tionship. By today, the temperature has descended to approximately 3 K, but the
radiation—in its distribution of energy as a function of frequency—has preserved the
shape of the Planck distribution. (You can think of all wavelengths as having been
expanded by the same factor; such a scaling leaves invariant the shape of the energy
distribution.)

Figure 6.4 shows the cosmic spectrum as it was measured in 1990.

Planck's determination of h and k
In section 1.2, I remarked that Max Planck determined the numerical values of the
"Naturconstanten" h and k by comparing his theory with existing data on radiation.
Now we are in a position to understand his route. The energy flux from a blackbody
was known as a function of temperature; so equations (6.28) and (6.29) imply that the
Stefan-Boltzmann constant was known experimentally:

2jt5k4

= 5 - 6 7 x 10~8 watts/(m2 • K4), (6.35)

where the modern value is quoted here. Because the speed of light c was well known,
equation (6.35) provided a value for the combination k4/h3.
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Figure 6.4 Cosmic background radiation. Measurements by a spectrometer aboard a satellite,
the Cosmic Background Explorer, produced the data "squares" that display energy flux versus
frequency. The continuous curve is a fit to the data that uses the Planck distribution and only one
free parameter: the temperature T. Optimizing the fit yields a temperature of T= 2.735 ±
0.06 K for what is clearly a blackbody spectrum. The authors cited the frequency as v/c9 where
c = 3 X 1010 cm/s, and so the apparent units of "frequency" are cm"1. Plotted vertically is the
energy flux (in nanowatts per square meter) per unit solid angle (in steradians: sr) and per unit
frequency interval (in cm"1). [Source: J. C. Mather et al, Astrophys. I 354, L37-L40 (1990).]

For a second experimental relation connecting h and k, we could take equation
(6.22), which has the content

k __ Vat peak

h~~ 2.S2T'
(6.36)

where vatpeak denotes the frequency at which the spatial energy density per unit
frequency interval has its maximum. An experimental determination of vatpe^/T
would fix the ratio k/h, and then both h and k could be extracted from equations
(6.35) and (6.36).

Equivalent information about a peak value was available to Planck. Otto Lummer
and Ernst Pringsheim had determined an experimental maximum in the quantity
"spatial energy density per unit wavelength interval." (Problem 3 suggests a route to
the detailed theoretical expression.) Their measurement gave Planck a value for the
ratio k/h, equivalent to that provided by equation (6.36), and so Planck could extract
both h and k. His values were within 3 percent of today's values.

6.4 Entropy and evolution (optional)

This section poses a paradox and then resolves it. We begin with two eras in the Earth's
history. Bacteria arose in warm ocean waters approximately 3.5 billion years ago.
Dinosaurs roamed the lush, tree-studded valley of the Connecticut River 200 million
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years ago. A macrostate with complex animals like dinosaurs surely has smaller
multiplicity than a macrostate with just bacteria. It looks as though the Earth's entropy
decreased in the time interval between the formation of bacteria and the age of
dinosaurs. In short, history suggests

ASEar th<0 (6.37)

for the time interval under consideration. But how can that be?
The Earth absorbs sunlight on its illuminated side and thus absorbs energy. The

energy arrives as visible light (for the most part). Over periods of geologic time, the
Earth has not gotten dramatically hotter, and so it must be radiating away energy at
about the same rate that it receives energy. The Earth does that by emitting infrared
radiation. Indeed, between a scorching summer afternoon and dawn the next day, the
air temperature can drop by 15 degrees Celsius as infrared radiation streams out
through a clear night sky. (Note. The greenhouse effect and global warming are matters
of extremely serious concern. They are, however, very recent on a geologic time scale:
a matter of 100 years or so relative to billions of years. According to the geologic
record, the Earth's temperature fluctuates, even when averaged over thousands or
millions of years. Almost surely, however, the average temperature has varied by less
than several tens of degrees Celsius since life formed.) Thus, to first approximation,
the energy flow satisfies the equation

( energy in from sun\ / energy out from \
with the visible = Earth with the . (6.38)

radiation / y infrared radiation /
In section 6.2, we calculated the entropy per unit volume, S/V, associated with

blackbody radiation. If we approximate both the radiation from the sun and the
radiation leaving the Earth as blackbody radiation, then we may say that the radiation
has not only an energy density (E)/V but also an entropy density S/V. The heating
and cooling in our general relationship

A 5 ^ | , (6.39)

can be expressed here in terms of the entropy of incoming and outgoing radiation:

^Earth ( entropy in from\ / entropy out from\
sun with the J — I Earth with the I

visible radiation J \ infrared radiation J
(6.40)

On the right-hand side, which term dominates? The visible radiation is characteristic
of the sun's surface, whose temperature is roughly 6,000 K. The infrared radiation is
characteristic of the Earth's surface temperature, roughly 300 K. The temperatures
differ by a factor of 20. Recall that the energy of a typical blackbody photon is 2.1 kT,
and so the energy of a typical infrared photon is only 1 /20 that of a photon of the
visible light. Thus, for every photon arriving from the hot solar surface, the Earth
emits approximately 20 infrared photons. That increase in number suggests higher
multiplicity and higher entropy.
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Indeed, equations (6.19) and (6.26) imply the relationship

^ (6.41)

that is, the entropy per photon in blackbody radiation has the constant value 3.60£,
independent of temperature. Equation (6.38) told us that the rates of energy flow are
equal. Because 20 photons leave the Earth for every photon that arrives, the constant
value of the entropy per photon in blackbody radiation suggests that 20 times as much
entropy leaves as arrives. [In fact, the entropy ratio exceeds 20. A patch of Earth
radiates into a hemisphere of sky, but the light that reaches us from the sun forms
nearly parallel rays. Thus the outgoing radiation has a greater directional multiplicity
than the incoming radiation. The quotient in equation (6.41) refers to pure blackbody
radiation, in which radiation travels equally in all directions.] The difference in square
brackets in equation (6.40) is dominated by the infrared term (the right-hand term),
and so the difference is negative. In short, thermodynamics implies

A^Earth ^ (some negative value). (6.42)

In a manner of speaking, the Earth exports more entropy than it imports, and so—
despite rapid processes on Earth, such as volcanic eruptions—the net value of ASEarth
is not required to be greater than zero.

Figure 6.5 displays the implications for ASEarth made by history and by thermo-
dynamics. Because the right-hand side of equation (6.42) is negative, it is possible for
A»SEarth to be both greater than the right-hand side and yet negative. Without the sun
and without the consequent influx and outflux of radiation, thermodynamics would
have implied A^Earth ^ 0, and hence dinosaurs could not have developed from
bacteria.

Conclusions
1. History and thermodynamics are consistent.
2. The sun was essential to the development of our life—alone from a thermodynamic

point of view.

To be sure, the thermodynamic analysis does not imply that life must arise, nor does
it replace the insights of Charles Darwin. Rather, the thermodynamic calculation
shows that life is permitted to arise and to evolve.

6.5 Sound waves and phonons

Recall the general structure of this chapter, thus far: an introductory section on the
thermal physics of waves and then several sections devoted to electromagnetic waves.
Now the chapter turns to sound waves in a solid. We continue to rely on the unified
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Figure 6.5 What history and thermodynamics individually imply for the entropy change of the
Earth. Each shaded bar with an arrow (for continuation) represents the range of possible values
for AiSEarth according to history or thermodynamics. The time interval over which the change in
entropy occurs stretches from the emergence of bacteria to the age of dinosaurs; what is plotted
is A^Earth for the interval from 3.5 X 109 years ago to 200 X 106 years ago. For the implied
ranges of AiSEarth* ^ e r e *s a region of overlap.

description in section 6.1, but we apply that analysis to the coherent vibration of atoms
in a crystal.

In a solid, the interaction of a given atom with its neighbors confines the atom to the
immediate vicinity of some site in the lattice structure. (Actually, some wandering
occurs occasionally, but we suppress that possibility.) The atoms can, however, vibrate
about their equilibrium positions in the lattice, and there is energy, both kinetic and
potential, associated with such motion and mutual interaction. Our objective is to
estimate the heat capacity of a solid, especially as a function of temperature, on the
basis of this picture.

A hierarchy of methods, successively increasing in complexity, exists for coping
with the mutual interactions of the atoms. The essential ingredient of the simplest
model is this: the position-dependent potential energy for any given atom is calculated
as though all the other atoms were at precisely their equilibrium positions. This
approximation decouples the vibrational motions of the various atoms from one
another. Albert Einstein worked out the consequences of that picture, called the
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132 6 Photons and Phonons

Einstein model, in 1906; it was the first application of quantum theory to solid state
physics. Problem 16 explores the Einstein model, but here we go on to a more realistic
picture.

For the moment, we can think of the atoms as coupled together by Hooke's law
springs between neighboring pairs of atoms. (There is an amusing consistency here,
for Hooke's law comes precisely from the actual behavior of interatomic forces in a
solid.) In one dimension, an instantaneous picture might look like part (a) of figure
6.6. The sinusoidal curve indicates the amount of displacement from the equilibrium
sites, each of which is indicated by a short vertical line.

Because the force exerted on a given atom by its neighbors now depends on their
displacement as well as its own, the theory admits the possibility of coherent
vibrations, neighboring atoms vibrating with definite amplitude and phase relations
between them. We have opened the door to sound waves in the solid. The sketch
displays a portion of such a wave, one wavelength's worth, to be precise. The frequency
of vibration will be related to the wavelength by the speed of sound cs in the solid. The
heart of the Debye model consists of an astute association of two notions: coherently
vibrating atoms and sound waves.

The longest wavelength will be of the order of the crystal's diameter. The associated
frequency is relatively low, and we take it to be zero without loss of accuracy.

The shortest wavelength arises when adjacent atoms vibrate in opposite directions:
out of phase by 180 degrees. Part (b) of figure 6.6 illustrates this situation. Thus

^min = 2 X (interatomic spacing), (6.43)

and so the maximum frequency is given by

(6.44)
2 X (interatomic spacing) 2a'

(a)

(b)

Figure 6.6 Coherent vibrations as sound waves, (a) A typical longitudinal wave, (b) The wave
with smallest wavelength and highest frequency.
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6.5 Sound waves and phonons 133

The symbol a denotes the interatomic spacing. This result for the maximum frequency,
derived in one dimension, continues to hold in three dimensions, at least in order of
magnitude, as we shall see.

Density of modes
The two parts of figure 6.6 show atomic displacements parallel to the direction in
which a traveling wave would propagate. Such displacements constitute a longitudinal
wave. The atoms may also vibrate perpendicular to the propagation direction. Such
displacements produce a transverse wave in the solid, just as the electric and magnetic
fields make an electromagnetic wave a transverse wave. Two distinct polarizations
exhaust the transverse possibilities.

In an actual crystal and for a given wavelength, the frequencies of longitudinal and
transverse waves usually differ, and hence so do the associated speeds of sound. The
simplest version of the Debye model ignores this difference. It takes the speed of
sound to be a constant, independent of wavelength, the longitudinal-versus-transverse
distinction, and the direction of propagation. The presence of longitudinal modes, in
addition to the two transverse modes, increases the density of modes by the ratio 3/2
(relative to the electromagnetic density of modes). Thus the density of modes

for the simplest Debye model is

lx^-Vv2. (6.45)
Z Cs

If the N atoms that form the crystal were entirely uncoupled from one another, each
could vibrate independently in three orthogonal directions, and so there would be 3N
distinct modes. Coupling, which leads to coherent vibration, cannot change the total
number of modes. Thus, to determine the maximum frequency vmax, stipulate that the
integral of the density of modes from zero to vmax yields 3N modes:

f
Jo

v)</v = 3Ar. (6.46)
0

Thusrm I X ̂  Vv1 dv = ^r-v3
max - 37V, (6.47)

whence

/ 3 \ 1 / 3 c / 3 \ 1 / 3 cUJ ^ U J i- (6-48)
The root (V/N)1^ gives the average interatomic spacing a. The present result agrees
with equation (6.44) both in its dependence on crystal parameters and also in order of
magnitude.
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134 6 Photons and Phonons

The maximum frequency defines a characteristic temperature, the Debye tempera-
ture 0D, by the relation

k6D = hvmax. (6.49)

Equation (6.48) enables one to express the Debye temperature in terms of two crystal
parameters, the sound speed and the average interatomic spacing:

ka

The usefulness of the Debye temperature will become apparent soon.

Energy and heat capacity
As noted in section 6.1, quantum theory restricts the energy of a sound wave mode to
increments of magnitude hv. With each such increment, one says that an additional
phonon is present. The estimated number of phonons ~n{v) is given by (6.6).

If the coherent vibrations are responsible for the crystal's total energy, then the
expression for (E) takes the form

(E) = I hvn(v)DvtbYz(v)dv
Jo

dv. (6.51)
I /"3 & hv kT 1

JO L 5 c L

For explicit evaluation, we consider two regimes of temperature: high and low.

High temperature: T ^> Op

When the inequality T > #D holds, the exponent hv/kT in (6.51) is always much less
than 1, for its maximum value is

^ = = %«1. (6.52)

To simplify the integral, we can expand the exponential and retain just the first two
terms:

1 2JT /Z r̂ max

= kT X
^ Jo

= jtr x 3JV,

where the last step follows

v2 dv

from

tr) + — l

(6.47).

(6.53)
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6.5 Sound waves and phonons 135

The heat capacity Cy is simply

Note that, in this high temperature regime, Cy is independent of the crystal parameters
cs and a.

Low temperature: T <C ®D
When the inequality T <C #D holds, expansion of the exponential in (6.51) for merely
a few terms is not a valid route. Rather, the integral is best expressed first in terms of
the dimensionless variable x — hv/kT:

, . \27ihV (kf\ f̂ /r x3 ,
(E) = 3— -7- X — — dx. (6.55)

c] \ h j Jo ex - 1

The upper limit of integration is xmax = hvmax/kT = 9&/T. Because the physical
temperature T is much less than the Debye temperature, the upper limit of integration
is large relative to 1. Consequently, the integrand is exponentially small at the upper
limit, and we may—for convenience and without loss of accuracy—extend the upper
limit to infinity; then the integral takes the value jt*/15, as tabulated in appendix A.
The energy is proportional to T4, and the heat capacity Cy becomes

3 F . (6.56)

This low temperature expression for Cy, the Debye T3 law, is just 3/2 times the
electromagnetic result, once the speed of sound has replaced the speed of light.
Basically, when the inequality T <C #D holds, the estimated phonon number ~n{v)
becomes much smaller than 1 well before the frequency approaches vmax, and so the
existence of a cut-off to the integration at vmax is irrelevant. The outcome must be like
the electromagnetic result, except for the 3/2 to account for the longitudinal waves.

Figure 6.7 shows the excellent agreement between the Debye model and experiment
for solid argon at low temperature. The general run of the heat capacity is illustrated in
figure 6.8; that general run must be calculated from the derivative of (E) as given in
equation (6.51) or (6.55) and then computed numerically. At temperatures greater than
the Debye temperature, Cy approaches the value 3Nk, as we calculated earlier. Later, in
chapter 13, we will see that 3 M is the value that classical physics would predict for Cy
(at every temperature, alas). For the low temperature end of the graph, note that equation
(6.50) enables one to express the factor Vk3 / c3

s h3 in (6.56) in terms of TV and 6jy\
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0.002

Cy
Nk

0.001

0
T3

Figure 6.7 The heat capacity of solid argon at low temperatures: 0.44 K to 2.02 K. The slope of
the Cy versus T3 line is well fit with #D = 92 K. Then the upper end of the temperature range
corresponds to T/#D — 2/92 = 0.022, and so the Debye approximation should be excellent, as
indeed it is. [Source: Leonard Finegold and Norman E. Phillips, Phys. Rev. Ill, 1383-91
(1969).]

31
2.5

2
Cv

1

0.5

0 0.2 0.4 0.6 0.8 1.2
T/6D

Figure 6.8 The full run of the Debye theory's heat capacity as a function of temperature. The
dotted curve is a strictly T3 curve whose third derivative at the origin agrees with the Debye
theory's third derivative. Evidently the T3 behavior is restricted to temperatures below
T = 0.1#D- Indeed, when T ^ 0.10®, the T3 form differs from the exact value by 1 percent or
less. At the other limit, the heat capacity has reached 95 percent of its asymptotic value when
T/0D = 1, specifically, Cv/Nk = (0.952) X 3 at T = 6D.

When the temperature is low, specifically, when T ^ 0.1#D> SO that the T3 behavior
holds, then the heat capacity is substantially smaller than its classical limit. That
conclusion is evident in figure 6.8, also.

Table 6.2 gives a selection of Debye temperatures. Crystals formed from the noble
gases are loosely bound; so the maximum frequency vmax should be small and,
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6.5 Sound waves and phonons 137

Table 6.2 Some elements and their experimental Debye tempera-
tures, taken from experiments in the range where the T3 law
holds. Most of the experiments were done at liquid helium
temperatures and below: 4.2 K and lower.

Neon
Argon
Lithium
Sodium
Potassium
Rubidium
Cesium
Silicon

*b (K)

75
93

344
158
91
56
38

640

Carbon (diamond)
Iron
Cobalt
Copper
Zinc
Silver
Gold
Boron

ft>(K)
2,230

467
445
343
327
225
165

1,250

Source: AIP Handbook, 3rd edn, edited by D. E. Gray (McGraw-Hill,
New York, 1972).

correspondingly, #D should be small. The sequence of alkali metals, lithium to cesium,
goes toward less reactive elements and hence toward weaker binding, lower maximum
frequency, and lower &&. Diamond is extremely hard; hence high frequencies should
be expected, and a high Debye temperature should follow.

Some history
In 1819, the French physicists Pierre-Louis Dulong and Alexis-Therese Petit an-
nounced a remarkable finding: the heat capacity per atom was very nearly the same for
the dozen metals (plus sulfur) that they had studied. Their units were different from
ours, but their result was equivalent to the statement that Cy/N = 3 k at the tempera-
tures they used. Table 6.3 shows some modern values for Cp/Nk at 298 K, equivalent
to 25 °C. (For a solid, which expands little, CP ^ Cy, and CP is what Dulong and Petit
actually measured.) The elements iron through gold in the second column are ones that
Dulong and Petit investigated. They determined heat capacities by surrounding the
bulb of a mercury thermometer with a hot powdered sample and subsequently
monitoring the cooling rate. The initial temperatures lay in the range 300 to 500 K.
Their experimental values for Cp/N had comparably small variations from an average,
and so their conclusion was amply warranted. In their honor, the high temperature
limit for electrically insulating solids, Cy/N —> 3 A:, is called the Dulong and Petit
value. (Later, in chapter 9, we will see that conduction electrons in an electrically
conducting solid contribute separately and additionally to the heat capacity; so one
needs to distinguish between electrically insulating and electrically conducting solids.)

Einstein had been impressed by Planck's theory of blackbody radiation. In 1905, he
suggested a particulate nature for light, what came to be called the photon aspect of
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138 6 Photons and Phonons

Table 6.3 Heat capacity per atom at 298 Kfor selected solids.
The tabulated numbers are Cp/Nk, a dimensionless quantity.

Lithium
Sodium
Potassium
Rubidium
Cesium
Carbon (diamond)
Boron

Cp/Nk

2.93
3.39
3.54
3.70
3.81
0.749
1.33

Silicon
Iron
Cobalt
Copper
Zinc
Silver
Gold

Cp/Nk

2.37
3.01
3.20
2.94
3.04
3.07
3.05

Source: CRC Handbook of Chemistry and Physics, 71st edn, edited by
David R. Lide (Chemical Rubber Publishing Company, Boston, 1992).

the wave-particle duality. A year later, Einstein reasoned that the discreteness in
energy should carry over to atomic vibrations in a crystal. That extension, he said,
could resolve some difficulties in understanding the thermal and optical properties of
certain solids. Among other items, Einstein had in mind the heat capacity (per atom)
of carbon, boron, and silicon. As table 6.3 shows, those heat capacities fall well below
the Dulong and Petit value. For diamond, data in the range 222 ^ T ^ 1258 K were
available to Einstein. At the lowest temperature, Cp/Nk = 0.385, a mere 13 percent of
the Dulong and Petit value. Einstein's model, with only a single vibrational frequency
(rather than the spectrum of the Debye theory), did well over that range of tempera-
tures (although a systematic deviation began to appear in the lowest 15 percent of the
range). The Debye T3 behavior is clearly evident only when T ^ 0.1 #D> and table 6.2
indicates that the threshold for diamond is 0.10D ^ 220 K, right where the data
available to Einstein ended.

By 1912, experiments in Walther Nernst's lab had pushed heat capacity measure-
ments down to temperatures as low as 23 K. For Einstein's theory, the evidence was
unambiguous: the theory failed at such low temperatures. Unerringly, Einstein had put
his finger on the key element—discrete energies—but a single vibrational frequency
was too crude an approximation to represent a solid at very low temperature. In a
comprehensive paper published in 1912, Peter Debye proposed the theory that this
section developed: a spectrum of frequencies, derived from the picture of sound waves.
Debye even calculated the speed of longitudinal and transverse waves in terms of basic
crystal parameters such as the compressibility and the shear coefficient. The T3

behavior when T ^ 0.1 ̂ D was the theory's novel prediction. Of the data that Debye
could marshal in support of his new theory, perhaps the most convincing was the data
for copper. Figure 6.9 reconstructs a figure from Debye's paper. The lowest tempera-
ture, 23.5 K, corresponds to T/0D = 23.5/309 = 0.076. It lies within the region where
the T3 behavior is evident (theoretically), and Debye was pleased with the fit to the
data, as well he might be.
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3Nk

V

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.2 1.4
T/0D

Figure 6.9 The ratio CV/3M; versus 7y#D for copper, as presented by Debye, who chose
#D = 309 K. The experiments provided Cp\ Debye corrected to Cy before plotting. (The
maximum correction was 3.6 percent.) [Source: Peter Debye, Ann. Phys. (Leipzig) 39, 789-839
(1912).]

6.6 Essentials

1. The unified description of electromagnetic waves and sound waves (in a crystal)
centers on normal modes and the relationship

estimated number of photons or \ _ , x 1
phonons in mode with frequency v J ~ ehv/kT _ \'

Thermal equilibrium is presupposed, and the canonical probability distribution pro-
vides the foundation for the derivation.

2. The estimated energy of a mode is given by

1
(£) = • -hv.

ehv/kT _

3. A sum over all electromagnetic modes may be replaced with an integral:

A(v)= [A(y)
EM modes

where

/ number of EM modes in the
y frequency range v to v + dv v)dv^w1dv.

c5

4. The Planck distribution is the relationship

spatial energy density \ _Jper unit frequency interval J c3 ehvlkT — 1'
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140 6 Photons and Phonons

5. In thermal equilibrium, a gas of photons has energy and pressure as follows:

6. The peak in the Planck distribution occurs at

Thus the energy of a typical photon is approximately 3kT. The frequency at the peak
shifts linearly with changes in temperature; this is one version of Wien s displacement
law.

7. A body at temperature T emits radiation according to the Stefan-Boltzmann law.

flux emitted by surface \ _ 4

with absorptivity a J B

The absorptivity a lies in the range 0 ^ a ^ 1, being 1 for a perfect absorber, that is,
for a black body.

8. The Debye theory of crystalline lattice vibrations is based on sound waves and
normal modes. In the simplest version, the number of modes per unit frequency
interval, A)ebye(v)> differs from the electromagnetic analog in three ways: (1) multi-
plication by 3/2 because a crystal has longitudinal waves in addition to transverse
waves; (2) replacement of the speed of light by the (suitably averaged) speed of sound,
and (3) a cut-off at a maximum frequency, vmax, because a crystal with N atoms has
only 3N independent modes.

9. The maximum frequency leads to a characteristic temperature, the Debye tempera-
ture #D-

= hvmax.

10. When the temperature is low, specifically, when T ^ 0.1 #D, the heat capacity of
the lattice is

This heat capacity varies as T3 and is much smaller than the classical value of Dulong
and Petit: 3 M .
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Further reading

The cosmic blackbody radiation is ably surveyed by R. B. Partridge in his book, 3K:
The Cosmic Microwave Background Radiation (Cambridge University Press, New
York, 1995).

Problems

1. Contributions to the pressure within the sun. The major contributors to the pressure
inside the sun are (1) atoms, ions, and electrons (collectively called "particles" here)
and (2) photons. Calculate the contribution from each under the conditions specified
below; also, form the ratio of radiation pressure to particle pressure. Take the particles
to act like a classical ideal gas.

(a) Photosphere (the solar surface): T= 5,800 K. Particle number density: N/V =
1023 particles per cubic meter.

(b) Center: T = 1.5 X 107 K. Particle number density: N/V == 5 X 1031 m"3.

2. Expanding radiation.

(a) Consider radiation in thermal equilibrium at an initial temperature T{. The
radiation is allowed to expand slowly and adiabatically so that it occupies a volume
which is larger by the factor xve.f., where "v.e.f." denotes "volume expansion
factor." The peak in the energy distribution (as a function of frequency) shifts.
What is the ratio

(vat peak, finaOA^at peak, initial)?

(b) In the early universe, free electrons and nuclei combined to form neutral hydrogen
and helium when the temperature dropped to approximately 3,000 K. Neutral
matter scatters radiation much less than charged particles do; therefore, the then-
existing blackbody radiation could subsequently expand freely, uncoupled to
matter (to good approximation). By what factor has the "volume of the universe"
increased since the ionization in space dropped to essentially zero?

3. Spatial energy density per unit wavelength interval. Wavelength X and frequency v
are related by the speed of light c. Therefore, to a narrow frequency range v to v + Av,
there corresponds a unique wavelength range X to X + AX.

(a) Determine the ratio AA/Av.

Then reason that the energy in corresponding intervals must be equal:

spatial energy density \ , A -, _ / spatial energy density \ , . ,
per unit wavelength interval J \ P e r u n i t frequency interval J ' ''
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(b) Determine the "spatial energy density per unit wavelength interval" as a function
of A, c, h, k, and T.

(c) For fixed temperature T, what value of X yields the maximum in the density?
Express Aat max in terms of c, A, k, T, and a dimensionless number. Then compare
^at max with the quantity vat peak that is provided by equation (6.22).

(d) Based upon your analysis of spatial energy density per unit wavelength interval,
provide a "wavelength version" of Wien's displacement law, complete with its
own numerical coefficient.

(e) Take the sun to have a surface temperature of 5,800 K. What is the associated
value of Aat max? To what color of light does it correspond? (For your mental data
bank, note the "Convenient typical values" in appendix A.)

4. Radiation results by dimensional analysis.

(a) For radiation in thermal equilibrium, the spatial energy density (E)/V must
depend on merely kT, h, c, and a dimensionless constant of proportionality. By
considering the dimensions (or the units) of kT, h, and c, determine how (E)/V
depends on those three quantities.

(b) Extend your reasoning to the energy flux from a small hole in a cavity that contains
blackbody radiation.

5. Carnot cycle with photons. Figure 3.2 displayed the classic Carnot cycle; take the
"gas" to be a gas of photons in thermal equilibrium.

(a) For the isothermal expansion from V\ to F2, compare the magnitudes of the work
done by the gas and the energy absorbed from the hot reservoir. How does the
relationship here compare with that for a monatomic classical ideal gas?

(b) Calculate the total work done by the photons in one cycle (in terms of V\, F2, and
the two temperatures T^ot and rcoid). Do this by evaluating separately the work
done in each of the four segments of the cycle and then combining the contribu-
tions (with due regard for sign).

(c) Calculate the efficiency and compare it with the Carnot efficiency that we derived
as a general result.

6. The entropy of a certain (realistic) physical system is S = AE3/4 as a function of
the energy E at fixed volume. The constant A has the value A = 1.26 X 10~4 J1//4/K.
When the system's energy is E — 3.3 X 10~6 J, what is the system's temperature?

7. An older route to the bulk properties of blackbody radiation.

(a) Derive the general relationship

( ) (£)
A good route can be constructed from equations (5.16) and (5.19).
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(b) Check equation (1) against the ideal gas law.
(c) Specify that

(E) = f(T)V and P = const X (E)/V,

that is, the total energy scales linearly with the volume (at fixed temperature), and
the pressure is proportional to the energy density. Use equation (1) to determine
the function f(T) as far as you can.

(d) When the radiation is isotropic, already classical electromagnetism implies that
p = ±(E)/V. For thermal radiation, what conclusion can you draw about (E)/V as
a function of temperature?

8. Kitchen oven. The goal is to raise the temperature of 1 cm3 of water by transferring
energy from a cavity filled with blackbody radiation. The water is to change from
299 K to 300 K. (To adequate accuracy, the heat capacity of water is 4.2 J/gram • K,
and 1 cm3 of water has a mass of 1 gram.) The radiation is initially at "cookie baking
temperature," 350 °F, equivalent to 450 K (and the heating coils have been turned off).

(a) If the radiation is to drop in temperature by no more than 10 K, how large must the
cavity be? (Provisionally, take the energy of the radiation to be the sole energy
source.)

(b) If the cavity has a volume of 0.1 cubic meter (which is typical of a kitchen oven),
how long would you need to have the heating coils turned on to heat the water?
(The voltage is typically 240 volts, and the current is limited to 20 amperes, say.)

9. The factor of 1/4 in the radiative flux. Adapt the methods of section 1.2 and
problem 1.2 to compute the energy per second and per unit area delivered to a cavity
wall (or to a hole). Aim to emerge with the form in the first line of equation (6.28). If
you need the average of cos 0 over a hemisphere, try integration with spherical polar
coordinates.

10. Light bulb. A light bulb filament is made of 12 cm of tungsten wire; the wire's
radius is 1.0 X 10~4 meter. Take the emissivity of tungsten to be 0.4 at the bulb's
operating temperature.

(a) What is that temperature when the bulb consumes a power of 67 watts?
(b) Suppose you want to shift the peak in the emitted spectrum to a frequency that is

higher by 10 percent. By what percentage must you increase the power supplied to
the bulb?

11. Energy balance for the Earth. Take the sun to radiate like a blackbody with a
surface temperature of 5,800 K. Relevant distances and sizes are provided in appendix
A.

(a) Calculate the flux of solar radiant energy at the Earth's orbital distance (in watts
per square meter).
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144 6 Photons and Phonons

(b) Take the Earth to be in a thermal steady state, radiating as much energy (averaged
over the day) as it receives from the sun. Estimate the average surface temperature
of the Earth. Spell out the approximations that you make.

12. Radiation shield: black surfaces. Two large plane surfaces, at fixed temperatures
Jhot and Tcoid, face each other; a narrow evacuated gap separates the two black
surfaces.

(a) Determine the net radiant energy flux from the hotter to the colder surface (in
watts per square meter).

(b) Specify now that a thin metallic sheet, black on both sides, is inserted between the
original two surfaces. When the sheet has reached thermal equilibrium, (1) what is
the temperature of the metallic sheet and (2) what is the new net radiant energy
flux (in terms of 7hot and rcoid)?

(c) If n such black metallic sheets are inserted, what is the net radiant energy flux?

13. Radiation shield: reflective surfaces. The context is the same as in problem 12
except that all surfaces are partially reflective and have the same absorptivity a, where
a<\.

(a), (b), (c) Repeat parts (a), (b), and (c) of problem 12.
(d) Specify that liquid helium at 4.2 K fills a spherical tank of radius 30 cm and is

insulated by a thin evacuated shell that contains 60 layers of aluminized plastic, all
sheets slightly separated from one another. Take the absorptivity of the aluminum
coating to be a — 0.02. The outer surface is at room temperature. If the only
significant energy influx is through the radiation shield, how long will it take
before all the helium has evaporated? [A value for the energy required to evaporate
one atom of 4He (the latent heat of vaporization, Lvap) is provided by table 12.2,
and the number density N/ V can be extracted from table 5.2.]

14. Carnot cycle on a spaceship. A Carnot engine is to supply the electrical power
(denoted Pwr and measured in units of joules per second) needed on a small spaceship
(that is far from the sun and hence far from solar energy). The temperature 7hOt of the
hot reservoir is fixed (by some reaction, say). The energy that enters the cold reservoir
is radiated into empty space at the rate OBT^OU X A, where A denotes the area of a
black surface. A steady state is to hold for that reservoir, that is, the surface radiates as
much energy per second as the engine dumps into the cold reservoir.

(a) Determine the minimum area Am{n as a function of the fixed parameters Pwr and
Jhot (together with the Stefan-Boltzmann constant as) .

(b) When the engine operates at the minimum area, what is its efficiency?
(c) Could you improve the efficiency by changing the size of the area Al Explain your

response.
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15. Simulating a laser. The typical helium-neon laser in an instructional lab produces
a nearly monochromatic red beam of wavelength 632.8 nanometers and a total power
of 0.5 milliwatt. The wavelength spread of the beam is 10~3 nanometers, and the beam
emerges as a (narrow) cone of light with half-angle (angle from axis of cone to cone
itself) of 5 X 10~4 radian. Imagine approximating the laser beam by filtering appro-
priately the radiation from 1 mm2 of a blackbody.

(a) What temperature would be required for the body? Explain your reasoning and any
approximations.

(b) At what frequency would the radiation spectrum—before filtering—have its maxi-
mum? What would be the energy (in eV) of a photon associated with the peak
frequency?

(c) In what essential characteristic would the blackbody simulation fail to match the
laser?

16. Einstein model. Specify that all N atoms in a crystal vibrate independently of one
another and with the same frequency v, a fixed value. Define the Einstein temperature
#E? a characteristic temperature, by the equation kO^ = hv.

(a) Calculate Cy/3Nk as a function of temperature. Graph the behavior as a function
of the dimensionless variable T'/#E.

(b) In 1906, Einstein had available the data for diamond displayed in table 6.4. Graph
both data and theoretical curve as a function of T/6^. (There is no need to
distinguish between Cy/3Nk and Cp/3Nk.) You will have to adopt a good value
for the Einstein temperature #E of diamond. You can do that by forcing agreement
at one temperature or by some more sophisticated method. Cite your value for #E-
How well did Einstein's theory explain the data? [Einstein himself noted that
refinements were in order, such as a slow change in the frequency v as the material
contracted with decreasing temperature. For details, you can consult A. Einstein,
Ann. Phys. (Leipzig) 22, 180-90 (1907).]

Table 6.4 Data on Cp/3Nk for diamond as a function
of temperature (as of 1906).

T(K)

222.4
262.4
283.7
306.4
331.3
358.5

CP/3Nk

0.1278
0.1922
0.2271
0.2653
0.3082
0.3552

T(K)

413.0
479.2
520.0
879.7

1,079.7
1,258.0

CP/3Nk

0.4463
0.5501
0.6089
0.8871
0.9034
0.9235

Source: A. Einstein, Ann. Phys. (Leipzig) 22, 180-90 (1907).
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146 6 Photons and Phonons

17. Debye model with two distinct speeds. Suppose one preserved the distinction
between longitudinal and transverse waves in a crystal, assigning them speeds c/ and
ct. How would the results of the simplest Debye theory be modified?

For copper, the measured speeds are c/ = 4,760 m/s and ct = 2,325 m/s. The
average interatomic spacing is a — 2.28 X 10"10 meter. How does your predicted
value of 0D compare with the measured value?

18. A high temperature expansion.

(a) For the Debye theory, section 6.5 provided the first term in both the energy (E)
and the heat capacity Cy when the temperature is large relative to the Debye
temperature. Extend the calculation by computing, for both (E) and CV, the second
non-vanishing term in an expansion in powers of 9^/T. You can expand the
integrand in a power series, which will also simplify the integration. Take a
sufficient number of terms at each stage so that your final results will be complete,
that is, they will contain all contributions at the desired power of 0^/T.

(b) When 6^/T = 0.5, by what percentage do (E) and Cy differ from the values given
by the first term only?

(c) Graph Cv/3Nk versus T/0D for the range 0.6 «s T/0D ^ 3. Are your results
consistent with the graphs in section 6.5?

19. Calculate the entropy change of the system in the following circumstances. Initial
and final states are states of thermal equilibrium. Provide numerical answers.

(a) A monatomic classical ideal gas is initially at Tx — 300 K and volume V\. The gas
is allowed to expand into a vacuum so that Vf — 3 Fj. Then the gas is heated to a
final temperature Tf = 400 K. Take the number of atoms to be N = 1020.

(b) A diamond has been in liquid helium (at Tx = 4.2 K) and is transferred to liquid
nitrogen (at Tf = 77 K). The diamond's heat capacity while in the helium is
C = 10~6 J/K.

20. A different density of modes. Suppose a solid consisting of N atoms has a density
of wave modes given by

/ number of wave modes in the \ 7 4 7

\ frequency range v to v + dv )

where b denotes a constant (with appropriate dimensions) and where the exponent is
indeed 4. The frequencies range from zero to some cut-off.

Calculate the total energy (E) and the heat capacity in the limits of both low and
high temperature. Computing the leading term in each will suffice. Explain what you
mean (and what you think I mean) by "low temperature" and "high temperature."
Express your results exclusively in terms of N, h, k, T, and the constant b.
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21. A small sphere of silver, painted black, is set adrift in outer space. It has a radius
ro = 1 cm, contains N = 2.45 X 1023 silver atoms, and has an initial temperature
T{ = 300 K.

(a) How long does it take the sphere to cool to 250 K?
(b) Later, how long does it take to cool from 20 K to 10 K?
(c) What do you expect the sphere's final temperature will be (that is, the asymptotic

value)? Why?

22. A block of boron is placed in contact with a block of solid neon. The blocks are
otherwise isolated, and no chemical reaction occurs. Additional data are given below.
When thermal equilibrium has been reached, what is the final temperature?

Block Number of atoms Initial temperature
Boron NB = 1.21 X 1024 TB = 120 K
Neon NNe = 1.0 X 1023 TNe = 90 K

If you need to approximate, explain and justify your approximations.

23. Consider a thin film of solid material—only one atom thick—deposited on an inert
substrate. The atoms may vibrate parallel to the surface but not perpendicular to it.
Take the material to be a two-dimensional solid (so that sound waves travel only
parallel to the surface). Adapt the Debye theory to this context, and use it for both part
(a) and part (b) below.

A total of TV atoms form the solid, which is spread over an area A. The speed of
sound cs is a constant.

(a) Calculate the heat capacity CA (at constant area) at high temperature.
(b) Calculate the heat capacity Q at low temperature.
(c) State explicit criteria for "high" and "low" temperature.

Express all your final answers in terms of N9 cs, A9 h, k, T, and pure numbers.
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7 The Chemical Potential
7.1 Discovering the chemical potential
7.2 Minimum free energy
7.3 A lemma for computing ix
7.4 Adsorption
7.5 Essentials

The preface noted that "the book's conceptual core consists of four linked elements:
entropy and the Second Law of Thermodynamics, the canonical probability distribu-
tion, the partition function, and the chemical potential." By now, three of those items
are familiar. The present chapter introduces the last item and, for illustration, works
out a typical application. The chemical potential plays a significant role in most of the
succeeding chapters.

7.1 Discovering the chemical potential

The density of the Earth's atmosphere decreases with height. The concentration
gradient—a greater concentration lower down—tends to make molecules diffuse
upward. Gravity, ho\yever, pulls on the molecules, tending to make them diffuse
downward. The two effects are in balance, canceling each other, at least on an average
over short times or small volumes. Succinctly stated, the atmosphere is in equilibrium
with respect to diffusion.

In general, how does thermal physics describe such a diffusive equilibrium? In this
section, we calculate how gas in thermal equilibrium is distributed in height. Certain
derivatives emerge and play a decisive role. The underlying purpose of the section is to
discover those derivatives and the method that employs them. We will find a quantity
that measures the tendency of particles to diffuse.

Figure 7.1 sets the scene. Two volumes, vertically thin in comparison with their
horizontal extent, are separated in height by a distance H. A narrow tube connects the
upper volume Vu to the lower volume F/. A total number A t̂otai of helium atoms are in
thermal equilibrium at temperature T; we treat them as a semi-classical ideal gas What
value should we anticipate for the number Nu of atoms in the upper volume, especially
in comparison with the number Ni in the lower volume?

We need the probability P(Ni, Nu) that there are Ni atoms in the lower volume and
Nu in the upper. The canonical probability distribution gives us that probability as a
sum over the corresponding states Wji

148
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7.1 Discovering the chemical potential 149

Nu

H

N>

Figure 7.1 The context. The narrow tube allows atoms to diffuse from one region to the other,
but otherwise we may ignore it.

P(N,, Nu) =
cxp(-Ej/kT) _ Z(N,, Nu) (7.1)

states Wj with TV/ in Vj
and Nu in Vu

The second equality merely defines the symbol Z{Nu Nu) as the sum of the appro-
priate Boltzmann factors. In analogy with our analysis in section 5.6, an energy Ej will
have the form

j = sa(l) + ep(2) ey(Ni) e'a(V) + e'b(2') e'c(Nu).

The single-particle states with energy ea describe an atom in the lower volume V\\ the
states with energy e'a describe an atom in the upper volume Vu and are shifted in
energy by the gravitational potential energy mgH, where g is the force per unit mass
exerted by the Earth's gravitational field. Further reference to section 5.6 tells us that
the sum in (7.1) must yield the expression

(7.2)

The numerators alone correspond to relations (5.29) and (5.34). But we must correct
for over-counting. Every set of JV/ different single-particle states of the lower volume
has been included Nil times in the numerator; to correct, we divide by Nil Similar
reasoning applies to the upper volume.

Because Z(Nu Nu) factors so nicely into something dependent on Ni and some-
thing similar dependent on Nu, we write it as

Z(Ni, Nu) = Z,(Ni) X ZU(NU), (7.3)

where the factors themselves are defined by (7.2). Each factor is equal to the partition
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150 7 The Chemical Potential

function that the corresponding volume has when it contains the indicated number of
atoms.

Common experience suggests that, given our specifically macroscopic system, the
probability distribution P{Nu Nu) will have a single peak and a sharp one at that, as
illustrated in figure 7.2. An efficient way to find the maximum in P{Nu Nu) is to look
for the maximum in the logarithm of the numerator in equation (7.1). That logarithm is

In Z(NU Nu) = In Z/(tf/) + In ZU(NM - Ni).

The number Nu in the upper volume must be the total number TVtotai minus the number
of atoms in the lower volume. The derivative with respect to Ni is

din Z(Nu Nu) dlnZi d In Zu d(Ntota[ — Nf)
dNi dNi dNu dNi

Partial derivatives appear on the right-hand side because variables such as temperature
and volume are to be held constant while one differentiates with respect to the number
of atoms. The last derivative on the right equals —1. To locate the maximum, set the
full rate of change of In Z(iV/, Nu) equal to zero. Thus the maximum in the probability
distribution arises when Nj and Nu have values such that

d In Z/ d In Zu

dNu
(7.4)

The equality of two derivatives provides the criterion for the most probable
situation. This is the key result. The remainder of the section fills in details, refor-
mulates the criterion, and generalizes it.

Figure 7.2 The probability of finding JV/ atoms in the lower volume and Nu = (AWi — Nf)
atoms in the upper volume. No drawing can do justice to the sharpness of the peak. Suppose
each volume is one liter and that the total number of atoms is iVtotai = 5 X 1022 (as would be
true for air under room conditions). If mgH/kT were sufficiently large to place the peak as far
off-center as it is shown, then the peak's full width at half maximum would be 5 X 10~12 of the
full abscissa (from zero to Motai)- If the full printed range is 7 centimeters, then the peak's full
width at half maximum would be approximately one-hundredth of the diameter of a hydrogen
atom.
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7.1 Discovering the chemical potential 151

To compute the required partial derivatives, we regard them as shorthand for a finite
difference associated with adding one atom. Thus, for the lower volume, we have

dlnZj _ AlnZ/ _ In Zt(Nj) - In Zt(Nt - 1)
1 '

Then the explicit form,

In Zi{Ni) = Ni ln(F//4) - In#,!,

and the decomposition,

In Nil = ]n[Ni X (Nt - 1)!] = InNi + \n(Ni - 1)!,

imply

A similar expression holds for the upper volume. Now equation (7.4) becomes

The arguments of the logarithms must be equal, and so we can solve for the number
density Nu/ Vu in the upper volume:

The number density drops exponentially with height, a result with which you may be
familiar already from a purely macroscopic treatment of the "isothermal atmosphere."
(Problem 1 outlines such a route.)

Reformulation and generalization
Now we start to reformulate our major result, equation (7.4). (Why reformulate? To
connect with functions that are defined in thermodynamics as well as in statistical
mechanics.) Section 5.5 established a connection among (E), T, S, and In Z, namely,

Let us rearrange this equation as

(E) -TS= -kTXnZ. (7.8)
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152 7 The Chemical Potential

The combination on the left-hand side is called the Helmholtz free energy and is
denoted by F:

F=(E)- TS.

Thus equation (7.8) tells us that the
logarithm of the partition function:

F=-kTlnZ.

Helmholtz free energy equals

(7.9)

-kT times the

(7.10)

In chapter 5, we found that we could compute the energy (E) and the pressure P by
differentiating In Z appropriately. The same must be true of the Helmholtz free energy,
and therein lies some of its extensive usefulness. Most of the development is deferred
to chapter 10.

Right now, the merit of equation (7.10) lies in this: we can express In Z (which is
unique to statistical mechanics) in terms of the Helmholtz free energy, which is defined
in thermodynamics as well as in statistical mechanics. Thus we write

Fl(Nl) = -kTlnZl(Nl\
Fu(Nu) = -kTIn ZU{NU).

Then (7.4) takes the form

(7 11)
0Nu

and provides the criterion for the most probable distribution of atoms.
Equations (7.4) and (7.11) locate the peak in P(Ni, Nu). But how wide is that peak?

A calculation, outlined in problem 3, shows that

/ full width of peak \
V at half maximum / 1
^ L = order o f - = = . (7.12)

V^total
When iVtotai — 1022 or so, the peak is extremely sharp. Thermodynamics ignores the
peak's width; it uses, as the sole and actual numbers Ni and NU9 the values that the
canonical probability distribution says are merely the most probable. That is eminently
practical, though one should file the distinction away in the back of one's mind. At the
moment, the following conclusion suffices: in thermal equilibrium, the physical system
is pretty sure to show values for Ni and Nu extremely near the most probable values.

Chemical potential
Equation (7.11) provides a criterion for diffusive equilibrium: certain derivatives of F
must be equal. That makes the derivatives so useful that they deserve a separate name
and symbol. The relation

�((%��+++���"�&�����$&���$&��(�&"'���((%����,��$��$&����������������
��	�������
�$+#!$������&$"��((%��+++���"�&�����$&���$&����#�*�&'�(-�$����&+�� ��$#��������������(�����������')����(�($�(�����"�&������$&��(�&"'�$��)'����*��!��!���(

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.008
http:/www.cambridge.org/core


7.1 Discovering the chemical potential 153

V, N) = ( | ^ J - F(T, V, N) - F(T, V, N - 1)\dNJ

defines the chemical potential pi for the species (be it electrons, atoms, or molecules)
whose number is denoted by N. If more than one species is present, then the numbers
of all the other species are to be kept fixed while the derivative is computed. Similarly,
if there are other external parameters, such as a magnetic field, they are to be kept
fixed also.

Equation (7.13) indicates that the chemical potential may be computed by applying
calculus to a function of N or by forming the finite difference associated with adding
one particle. When N is large, these two methods yield results that are the same for all
practical purposes. Convenience alone determines the choice of method.

J. Willard Gibbs introduced the chemical potential pi in the 1870s. He called it
simply the "potential," but so many "potentials" appear in physics that the adjective
"chemical" was later added. In chapter 11, we will see that the chemical potential
plays a major role in the quantitative description of chemical equilibrium. That role
alone justifies the name.

For some examples of the chemical potential, we return to the context of figure 7.1.
From the definition of// and from equations (7.6) and (7.10), the chemical potential
for the helium atoms in the lower volume follows as

The minus sign that appears in equation (7.10) was used to invert the logarithm's
argument.

Equation (7.2) tells us that Zu differs from Z/ principally by an exponential in the
gravitational potential energy. Thus the chemical potential for the atoms in the upper
volume is

(7.15)

Figure 7.3 displays the run of the two chemical potentials. Suppose we found the
gaseous system with the number Ni significantly below its "equilibrium" or most
probable value. Almost surely atoms would diffuse through the connecting tube from
Vu to Vi and would increase Ni toward (Ni)most probable- Atoms would diffuse from a
region where the chemical potential is piu to a place where it is ///, that is, they would
diffuse to smaller chemical potential. In Newtonian mechanics, a literal force pushes a
particle in the direction of lower potential energy. In thermal physics, diffusion
"pushes" particles toward lower chemical potential.
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154 7 The Chemical Potential
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Process: Pi <Pu
so Nj increases

Pu<Pl
so Nu increases

Figure 7.3 Graphs of the two chemical potentials as functions of Ni and Nu — (Ntot2i\ — Nf). The
arrows symbolize the direction of particle diffusion relative to the graphed values of the
chemical potentials (and not relative to the local vertical). When Ni is less than its most
probable value, particles diffuse toward the lower volume and its smaller chemical potential;
when Ni is greater than its most probable value, diffusion is toward the upper volume and its
smaller chemical potential.

As a system heads toward its most probable configuration, particles diffuse from
high chemical potential to low. At equilibrium, as it is understood in thermodynamics,
the chemical potential is uniform in space: JU has everywhere the same numerical
value. In the context of figure 7.1 and its two volumes, the statement means

(7.16)

which is precisely the content of equation (7.11) but expressed in the language of the
chemical potential.

Next comes a profound parallel. Take a tablespoon from the kitchen drawer and
place one end in a pot of hot soup that is bubbling on the stove. The spoon's other end
soon warms up, indeed even becomes too hot to hold. Energy diffuses (by conduction)
from the boiling hot end to the room temperature end. Just as temperature tells us how
energy diffuses, so the chemical potential tells us how particles diffuse: from high
chemical potential toward low. The meaning of temperature, as stated earlier, is
"hotness measured on a definite scale." Analogously, the meaning of the chemical
potential is "the tendency of particles to diffuse, as measured on a definite scale."
(The word "tendency" is rarely used in technical writing, but it seems to be the best
word to describe the physics here.) When the chemical potential has the same
numerical value everywhere, the tendency of particles to diffuse is the same every-
where, and so no net diffusion occurs. Before such equality, particles migrate away
from regions where they have the greatest tendency to diffuse.

With this understanding of the chemical potential in mind, let us return to the
examples of this section. Equation (7.14) shows that the chemical potential grows
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7.2 Minimum free energy 155

when the concentration of particles, N/V9 grows. As one might expect, a high
concentration increases the tendency to diffuse.

The chemical potential for the upper volume, fiU9 has the term mgH. That expres-
sion represents the additional gravitational potential energy of an atom (relative to the
energy of an atom in the lower volume). The increase in energy arises from the
downward gravitational force. In turn, that force tends to make atoms diffuse down-
ward, away from the upper volume. Accordingly, the chemical potential ptu is larger by
mgH to reflect that diffusive tendency.

Understanding the chemical potential usually takes a long time to achieve. In
chapter 10 we will return to that project and gain some insight into the numerical
values that the chemical potential takes.

The present section developed many new concepts and properties. Table 7.1
provides a synopsis.

We will understand the chemical potential best by seeing how it is used. Thus
another, and different, example is in order. Before we turn to that, however, we note a
corollary and establish a useful lemma.

7.2 Minimum free energy

For the corollary, we return to the canonical probability distribution and its full
spectrum of values for Ni and Nu . With the aid of equation (7.10), we can form a
composite Helmholtz free energy by writing

Table 7.1 A listing of the major steps and conclusions as we developed the chemical
potential. Statements are given in abbreviated form, and some conditions have been
omitted.

Construct P(Nj, Nu) from the canonical probability distribution.

Locate the maximum in its logarithm.

Define the Helmholtz free energy: F = (E) - TS.

Relate the Helmholtz free energy to In Z: F = -kT In Z.

Define the chemical potential: JU(T, V, N) =
{dNJ

Recast the criterion for locating the maximum in P(Nj, Nu) in terms of the chemical
potential: /*/ = juu.

Note generalization: in the most probable situation, which is the only situation that
thermodynamics considers, the chemical potential pi is uniform in space.

Before the most probable situation becomes established, particles diffuse toward lower
chemical potential.

Succinctly stated, the chemical potential measures the tendency of particles to diffuse.
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156 7 The Chemical Potential

F(Nh Nu) = -kTlnZ{NU Nu) = FU(NU). (7.17)

Note especially the minus sign. Where P{Nu Nu) and hence Z(Ni, Nu) are relatively
large and positive, F(Ni, Nu) will be large and negative. Figure 7.4 illustrates this. At
the maximum for P(Ni, Nu) and hence for Z(Ni, Nu), the function F(Ni, Nu) will
have its minimum. Thus we find that the composite Helmholtz free energy has a
minimum at what thermodynamics calls the equilibrium values of Ni and Nu. This is a
general property of the Helmholtz free energy (at fixed positive temperature T and
fixed external parameters):

In the most probable situation, which is the only situation that thermody-
namics considers, the Helmholtz free energy achieves a minimum.

Chapter 10 will derive this conclusion directly from the Second Law of Thermo-
dynamics and thus will confirm its generality. Right now, the minimum property is a
bonus from our route to discovering the chemical potential. The method used in
chapter 10 is powerful but abstract, and so it is good to see the minimum property
emerge here in transparent detail.

7.3 A lemma for computing

Whenever the partition function has the structure

(Zi)N

z = N\
(7.18)

and if Z\ is independent of N, then the definition of the chemical potential in (7.13)
implies that JU will have the form JU = —kT\n(Z\/N). The result is derived as follows.

0 Watpeak Ntotal

Figure 7.4 The run of F(Ni, Nu). Because of the constraint Nu — (Ntota\ — Ni), the composite
Helmholtz free energy is effectively a function of only one particle number, which we may take
as Ni. The composite Helmholtz free energy has a minimum at what thermodynamics calls the
equilibrium values of Ni and Nu.
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7.4 Adsorption 157

The given structure implies
F(N) = -kTln Z = -kT(N In Zx - In N\).

Recall that

In AH = ln[N X(N- 1)!] = inN + \n(N - 1)!.

Then

~ J> = ~kT(^ Z l " l n ^

= -*TIn(Zi/Ar). (7.19)

The condition that Z\ be independent of TV is usually met. Nonetheless, one should
always check. If the condition is not met, then one can go back to the very definition of
the chemical potential and compute JU for the specific case at hand.

Now we turn to another physical situation where the chemical potential comes into
play.

7.4 Adsorption

Suppose we put iVtotai atoms of argon into an initially evacuated glass container of
volume V and surface area A. The walls are held at the low temperature T by contact
(on the outside) with liquid nitrogen. How many argon atoms become adsorbed onto
the walls, that is, become attached to the walls? And how many atoms remain in the
gas phase? To answer these questions, we compute the chemical potential for each
phase and then equate them.

For the Afgas atoms that remain in the gas phase, we adapt equation (7.14) and write
the chemical potential of that phase as

This form is valid for any spinless, monatomic, semi-classical ideal gas (that is free to
move in three dimensions).

Two-dimensional theory: the featureless plane
The adsorbed atoms are bound to the surface through attraction by the atoms that
constitute the walls. For an electrical insulator like glass, the attraction arises from an
electric dipole moment that is induced in an argon atom by fluctuating electric dipole
moments in the silicon dioxide of the walls. The induction process is actually mutual,
but the details are not essential. Figure 7.5 sketches the potential energy of an argon
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158 7 The Chemical Potential

Distance
from wall

Figure 7.5 The potential energy of an argon atom near a wall. The attractive part (where the
slope is positive) arises from mutual electric dipole interactions. The repulsive part (where the
slope is negative) arises from electrostatic repulsion and the Pauli exclusion principle. The
horizontal line represents the energy — eo of an atom trapped in the potential well (that is,
trapped so far as motion perpendicular to the surface is concerned). The distance from the wall
to the potential minimum is approximately equal to the radius of an argon atom.

atom as a function of distance from the glass. We suppose that the potential well has
only one bound state. The state's energy is — £o, where £o is positive and of order 0.05
electron volt. (The zero of energy corresponds to an atom that is at rest far from the
surface and hence is part of the gas phase.) The energy — £Q incorporates not only the
potential energy but also the kinetic energy of the tiny vibrational motion perpendi-
cular to the surface that arises even while the atom is trapped in the well. In the
simplest theory, the atom remains free to move around on the surface, which is taken
to be a perfectly flat and uniform plane. We treat the total area A as though it were an
x—y plane of square shape, LA X LA, where LA denotes an edge length.

Single-particle partition function Zj for adsorbed atom
Now we can turn to calculating the single-particle partition function Z\. The analysis
of section 4.1 carries over, and so we can write

/ energy of single-particle \ _ ( kinetic energy of \
y surface state / ~~ \ m°tion on surface J

kinetic and potential energy \
of motion perpendicular to surface J

(7.21)

The pair of integers { nx, ny} specifies a point in the x—y plane of figure 4.2.
The single-particle partition function Z\ is

nx=\ « =1

h2 1
8mL2

AkT
(-go)

kT
(7.22)
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7.4 Adsorption 159

The double sum goes over all points in the positive quadrant of figure 4.2. Because
there is one state per unit area in that mathematical plane, we convert the sum to a
integral with differential area \ X Inndn, that is, 1/4 of the area in an annulus of
circumference Inn and radial width dn:

Z, = e ^ " expi: n
h2 1 2

A

I X Ijtn dn

ee»/kT. (7.23)

The differential n dn is the differential of the exponent (except for a multiplicative
constant), and so the integral can be done as the integral of an exponential. The
thermal de Broglie wavelength Ath collects the constants into a succinct expression,
one that is entirely analogous to the quotient V/l^ that we found for the gas phase in
section 5.6.

Chemical potential for adsorbed atom
Section 5.6 and, in particular, equation (5.31) imply that the partition function for the
adsorbed phase is

(Zi)^adsorbed

Zadsorbed(^adsorbed) = ~jTf T • (7.24)
-^ adsorbed*

The expression has precisely the structure specified in the lemma of section 7.3, and
Z\ is independent of N. Consequently, the lemma implies that the chemical potential
for the adsorbed phase is

/̂ adsorbed = —kT]n(Z\/ Absorbed)

/ A eeo/kT\
= - AT In j - . (7.25)

\ ^adsorbed 2 t h /

Thermodynamic equilibrium
To describe equilibrium, we equate the chemical potentials of the adsorbed and
gaseous phases:

/̂ adsorbed = /^gas- (7.26)

That equation takes the explicit form

/ A e^kT\ __ ( V 1 \
\ -^adsorbed A^ / I ^gasA^ /
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160 7 The Chemical Potential

The arguments of the logarithms must be equal, and so we can solve for the number
density in the gas phase:

^gas = ^adsorbed c-sQ/kT /y 27)
V AX

This equation and the constraint,

Ngas + ^adsorbed = Motah (7.28)

provide two equations in the two unknowns. Thus, implicitly, the equations answer the
questions about how many atoms are adsorbed and how many remain in the gas phase.

People who study adsorption often assess the adsorptive coverage NadSOrbed/A by
measuring the vapor pressure Pgas. If we multiply equation (7.27) by Wand presume
that the ideal gas law holds, then we find

p _ ^adsorbed kT £o/kT n ?Qx
' g a s — ~A ~] e - \'-Ay)

A Ath

The implication is that, at fixed temperature, the coverage iVadsorbed/̂  is directly
proportional to the vapor pressure.

The proportionality in (7.29) arises when we take the wall surface to be a featureless
plane and treat the adsorbed atoms as a semi-classical ideal gas restricted to two-
dimensional motion on that plane. This picture forms one end of a spectrum of ways to
treat the surface's effect on the argon atoms. If the surface has a pronounced periodic
structure, as would graphite or mica, an atom may be restricted to discrete sites on the
surface, being both unable to move and unwilling to share the site with another atom.
That picture, developed by the American chemist Irving Langmuir in 1918, leads to a
different relationship between vapor pressure and coverage; problem 4 shows a route
to Langmuir's relationship. In the summary of his paper [J. Am. Chem. Soc. 40, 1361 —
403 (1918)], Langmuir commented, "No single equation other than purely thermo-
dynamic ones [such as equality of chemical potentials for the phases] should be
expected to cover all cases of adsorption any more than a single equation should
represent equilibrium pressures for all chemical reactions." Rather, said Langmuir,
one should examine various limiting cases, as we did in adopting the featureless plane.

In the next two chapters, the chemical potential plays a supporting role. It is
certainly not the dominant concept, but it is ever-present. For those reasons, this
chapter introduced the chemical potential. A lot more remains to be done—both in
developing formal relationships and also in achieving that elusive goal, an intuitive
understanding—but those projects are deferred to chapter 10.

7.5 Essentials

1. The Helmholtz free energy, denoted by F, is defined by

F=(E)- TS
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Further reading 161

and may be computed from the logarithm of the partition function as

F=-kTlnZ.

2. The chemical potential JU is defined by

/*(T, V, N) = ( | J ) = F(T, V, N) - F(T, V, N - 1).
\oNJ TfV

The chemical potential measures the tendency of particles to diffuse.

3. In the most probable situation, which is the only situation that thermodynamics
considers,

(a) the chemical potential JU is uniform in space, and
(b) the Helmholtz free energy achieves a minimum.

Before the most probable situation becomes established, particles diffuse toward lower
chemical potential.

4. If a system can be divided meaningfully into two subsystems, such as adsorbed
atoms and atoms in a vapor, then the chemical potentials of the two subsystems are
equal at thermal equilibrium. [This statement is just a corollary of point (a) in item 3.]

5. Whenever the partition function has the structure

7_(Zxf_

and if Z\ is independent of N, then the chemical potential has the form

6. Item 5 implies

for any spinless, monatomic, semi-classical ideal gas (that is free to move in three
dimensions).

Further reading

For adsorption, J. G. Dash provides a thorough, yet readable, discourse in his Films on
Solid Surfaces: The Physics and Chemistry of Physical Adsorption (Academic Press,
New York, 1975).

G. Cook and R. H. Dickerson offer help in "understanding the chemical potential"
in their article by that name: Am. J. Phys. 63, 737-42 (1995). Charles Kittel argues for
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162 7 The Chemical Potential

using the chemical potential as a major analytical tool in his paper, "The way of the
chemical potential," Am. J. Phys. 35, 483-7 (1967).

Problems

1. The isothermal atmosphere. Consider a tall column of gaseous nitrogen standing in
the Earth's gravitational field; its height is several kilometers, say. The gas is in thermal
equilibrium at a uniform temperature T, but the local number density n(z\ the number
of molecules per cubic meter at height z, will be greater near the bottom.

(a) Note figure 7.6 and then explain why the equation

P{z) = P(z + Az) + mgn(z)Az

must hold. Start with Newton's second law applied to the gas in the height interval
z to z + Az.

(b) Convert the equation to a differential equation and solve it for P(z), given that the
pressure is P(0) at the base. Recall that the ideal gas law may be used to re-express
n(z) in terms of more convenient quantities. Take g to be a constant.

(c) Describe the behavior with height of the local number density. At what height has
the number density dropped to one-half of its value at the surface? Provide both
algebraic and numerical answers.

Figure 7.6 Sketch for analyzing the isothermal atmosphere.
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2. Isothermal atmosphere via the chemical potential Let n{z) denote the local number
density, that is, the number of atoms per cubic meter at height z. Adapt the relationship
in (7.15) to fill in the two blanks in the expression below for the chemical potential:

(a) How does the chemical potential pt(z) vary with concentration n(z)l
(b) At equilibrium, how must n(z) vary with z? Explain your reasoning.

3. Relative width. Continue the heuristic calculation of section 7.1 and determine the
relative width of the peak in the probability distribution P{Nu Nu). In short, work out
the details for equation (7.12). For a good route, expand the logarithm of P(Ni, Nu) to
second order around the peak. For simplicity, take the two volumes to be equal.

4. The Langmuir model As atoms from the vapor become bound to the surface, they
are restricted to discrete sites and are not able to move about on the surface. Specify
that sites of individual area A\ cover, like tiles, the entire surface area A, so that there
are a total of Ns = A/A\ sites. Only one atom may occupy any given site. Suppose
further that an atom on a site has energy — £o relative to an atom at rest in the gas
phase. (The energy — £o incorporates both the binding to the surface and any motion
confined to the immediate vicinity of the site. In short, each site has only one quantum
state.) All other conditions are as specified in section 7.4.

One further preliminary may be useful. Suppose you have a checkerboard with Ns

squares and a handful of pebbles from the beach, N of them, each pebble slightly
different in shape or color. In how many distinct ways can you place the pebbles on the
checkerboard, one to a square? You may place the first pebble in any one of Ns

locations. The second pebble may go into any one of the remaining Ns — 1 free
locations, giving you Ns X (Ns — 1) possibilities so far. And so it goes until you place
the Mh pebble in one of the remaining Ns — (N — 1) open locations. Thus we find
that, given Ns sites,

(number of distinct arrangements\ , r V / / A r 1N w K. rAr / A r 1V1
* Ar A- *• • u ui uui ) = NSX (Ns - 1) X • • • X [Ns - (N - I)]

\ of N distinguishable pebbles J v J L v n

(Ns - N)\'

(a) Explain why the partition function for the adsorbed atoms is

7 A u A(N A\ -
Z a d s o r b e d ( ad)~

where Nad denotes the number of adsorbed atoms.
(b) Calculate the chemical potential of the adsorbed atoms. Then express the vapor

pressure in terms of the ratio Nad/NS9 kT, eo, and A&.

Langmuir found the relationship to hold quite well for hydrogen, oxygen, argon,
nitrogen, carbon monoxide, methane, and carbon dioxide when adsorbed on both mica
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164 7 The Chemical Potential

and glass (so long as the coverage remained below a complete monomolecular layer).
The run of coverage versus pressure at fixed temperature is called the Langmuir
isotherm.

5. Liquid-vapor equilibrium. A liquid is substantially incompressible, and so we may
approximate its volume by the product NVQ, where N is the number of molecules and
Vo is a fixed volume of approximately the size of a single molecule. The short-range
attractive forces between molecules (which give cohesion to the liquid) "bind" a
molecule into the liquid by an energy — £0 relative to the gas phase, where £o is a
positive constant. Otherwise, treat the molecules as forming two semi-classical ideal
gases, one the vapor, the other the "liquid gas." Use this information to estimate the
vapor pressure over a liquid at temperature T. (Imagine squirting liquid into a totally
evacuated volume. Some liquid will evaporate, and an equilibrium between vapor and
remaining liquid will be established.)

6. Semi-classical ideal gas in two dimensions. Extend the analysis in section 7.4 to
calculate (a) the energy (E), (b) the heat capacity at constant area C^, and (c) the
entropy S of N atoms confined to two-dimensional motion on a featureless plane.

7. Centrifuge. Specify that a dilute gas fills a hollow cylinder whose outer curved wall
rotates with angular velocity CD about the cylinder's axis. The gas—when the molecular
motion is averaged over a small volume (1 cm3, say)—rotates with the same angular
velocity. The goal is to calculate the radial dependence of the number density n(r)
when the gas is in thermal equilibrium at temperature T. Two routes (at least) are open
to you, as follows.

Route 1. In order that the gas move in circular motion, a net force, directed radially
inward, must act on each little volume. Only a pressure gradient can supply that force.
A pressure gradient implies (here) a gradient in the number density. Newton's second
law will provide a differential equation for the number density.

Route 2. Transform to a reference frame rotating with angular velocity co. In this
non-inertial frame, the gas is at rest (macroscopically), but each atom is subject to an
apparent force of magnitude mrco2, where m is the atomic mass; that fictitious force is
directed radially outward. There is an associated effective potential energy, and so one
can reason with the chemical potential.

(a) Determine the radial dependence of the number density n(r) as a function of r, m,
co, and T.

(b) If the gas were a mixture of two uranium isotopes, 235U and 238U, both as the gas
uranium hexafluoride, would you expect the ratio of the number densities for the
two isotopes to be the same everywhere? If no, what implications does this have?

(c) At which radius, if any, does the number density have the same value that it had
when CD = 0? (Only one isotope is present. Denote the maximum radius by rmax.
You may invoke "slow rotation," but—if you do—then specify that condition in
dimensionless fashion.)
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Problems 165

8. Return to the context of problem 1. Specify now that the gravitational force per unit
mass falls off inversely as the square of the distance from the Earth's center, (a) If the
isothermal column extended to a height of only three Earth radii, how would the
number density vary?

(b) If the column stretched indefinitely far from the Earth's surface, would thermal
equilibrium be possible? What consequences for the Earth's atmosphere do you infer?

9. Adiabatic relation in two dimensions. An ideal gas of N spinless atoms is confined
to two-dimensional motion on a featureless plane of area A. (Desorption from the
plane is no longer an option.) What combination of area A and temperature T remains
constant during a slow adiabatic compression of the area? Justify your assertion with a
derivation.
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8 The Quantum Ideal Gas
8.1 Coping with many particles all at once
8.2 Occupation numbers
8.3 Estimating the occupation numbers
8.4 Limits: classical and semi-classical
8.5 The nearly classical ideal gas (optional)
8.6 Essentials

By now, the classical ideal gas should be a familiar system. We can turn to the full
quantum theory of an ideal gas. The applications are numerous, and some will be
examined in chapter 9. The present chapter develops an effective technique for
working with a quantum ideal gas.

8.1 Coping with many particles all at once

Every macroscopic system consists of a great many individual particles. Coping with
all of them simultaneously, even if only statistically, can be a daunting task. A flow
chart will help us to see some of our accomplishments and to see what steps lie ahead.
Figure 8.1 displays such a chart on the supposition that the system consists of one
species of particle only, for example, N electrons or N helium atoms (of a specific
isotope).

If the forces between the particles must be included, then the analysis is difficult.
Moreover, there is no general algorithm for proceeding, not even by computer. To be
sure, the canonical probability distribution usually is applicable and provides estimates
in principle, but the actual evaluation of the partition function, say, defies a direct
approach. We have, however, successfully dealt with one such difficult situation. The
Debye model for a solid incorporates the inter-particle forces, for example, those
between adjacent copper atoms in a crystal. The forces ensure that the motions of
adjacent atoms are correlated, and the correlation leads to sound waves, the theoretical
basis of the Debye model.

(Note. The Einstein model of a solid provides a rarity: a calculation that incorpo-
rates inter-particle forces and yet is easily soluble. The simplicity arises because the
force on any one atom is calculated as though all the other atoms were at their
equilibrium locations in a periodic lattice. Thus each atom experiences a force that
arises from a known, time-independent potential energy. That splits the difficult TV-
particle problem into N separate one-particle problems, which are easy.)
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8.1 Coping with many particles all at once 167

N particles of
a single species

May we ignore
inter-particle forces?

No Difficult!
Debye model
Other special models

Yes

Use single-particle states

May we use a
semi-classical analysis?

rYes

(7 VV
Z N\

and consequences
thereof

No Quantum ideal gas

Figure 8.1 A flow chart for methods when one needs to deal with many particles simultaneously
The phrase "inter-particle forces" means the forces between whatever particles one takes as the
basic entities. If atoms are the basic entities, as they would be in a solid, then "inter-particle
forces" means the forces between the atoms. If the basic entities are the molecules in a gas, then
"inter-particle forces" means the forces between the molecules, not the forces that bind the
atoms together to make the molecules. The explicit partition function in the lowest box
presumes gas-like behavior. For spatially localized particles, a different expression applies.

If we may ignore the inter-particle forces, then we may base our analysis on the
single-particle quantum states (without further significant approximation). Specify a
gaseous context (in contrast to spatially localized particles). The indistinguishability of
identical particles presents us with the next question. When we ask "may we use a
semi-classical analysis?", we are asking whether the indistinguishability can be taken
into account adequately by a single simple approximation. In section 5.6, we reasoned
that, when the thermal de Broglie wavelength is much smaller than the typical
separation between particles, then we could adequately approximate the partition
function for TV indistinguishable particles by two steps.

1. Calculate the partition function as though indistinguishability imposed no restric-
tions, thus finding the provisional result (Z\) ,
for a single particle.

2. Divide by N\, the number of permutations among
regarded as distinguishable).

, where Z\ is the partition function

particles (that had been

Often the N\ will not affect the estimate of a physical quantity. For example, energy,
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168 8 The Quantum Ideal Gas

pressure, and magnetic moment are not affected. The technical reason is that such
quantities can be computed by differentiating the logarithm of Z with respect to
temperature or an external parameter; the N\ appears as a separate term in the
logarithm and does not survive such differentiation. If a derivative is taken with respect
to N or if In Z enters without differentiation, then the AH does matter. Such is the case
with the chemical potential and the entropy.

If a semi-classical analysis is not adequate, then we move to the quantum ideal gas,
which is the subject of this chapter.

8.2 Occupation numbers

Following Wolfgang Pauli, we divide the particles of physics into two classes.
1. Fermions. The first class consists of particles whose intrinsic angular momentum

equals half an odd positive integer times ft, where ft = h/2jt; that is, the spin is
^ft, |ft, |ft, . . . . Some examples are the following: spin \—an electron, a proton, or a
neutron; spin \—a nucleus of the most common lithium isotope, 7Li; and spin |—a
nucleus of the rare oxygen isotope, 17O. These particles obey the Pauli exclusion
principle. Enrico Fermi (in 1926) and Paul A. M. Dirac (also in 1926, but indepen-
dently) worked out the statistical consequences of the exclusion principle, and so their
names are intimately associated with these particles.

2. Bosons. The second class consists of particles whose intrinsic angular momentum
equals zero or a positive integer times ft; that is, the spin is 0, lft, 2ft, Again,
some examples are the following: spin 0—the common isotope of helium, 4He, both
the nucleus alone and also the entire atom; spin 1—a nucleus of the uncommon
lithium isotope, 6Li; and spin 2—a nucleus of a radioactive nitrogen isotope, 16N. The
Indian physicist Satyendra Nath Bose (in 1924) and Albert Einstein (also in 1924 and
building on Bose's paper) worked out the statistical consequences of indistinguish-
ability for such particles, and so their names are intimately linked to them. (Writing
from India, Bose submitted his paper to the Philosophical Magazine in England. The
referee's report was negative, and so the editor rejected the paper. Then Bose sent the
manuscript to Einstein in Berlin, asking him—if he thought it had merit—to arrange
for publication in the Zeitschrift fur Physik. Thus it came about that Bose's manuscript
was translated for publication in German by none other than Einstein himself. His
"Note from the translator" praised the paper as providing "an important advance.")

Most of the examples are composite particles, for instance, a bound collection of
protons and neutrons that form an atomic nucleus. A collection of fermions, regarded
as a single composite particle, behaves like a fermion if the collection is composed of
an odd number of fermions and acts like a boson if composed of an even number of
fermions. Thus, while 4He is a boson, the isotope 3He has an odd number of fermions
and is itself a fermion. The striking difference in behavior between 3He and 4He at low
temperature arises from this distinction.

In the following, we consider a system consisting of N identical particles, for
example, N electrons (fermions) or TV atoms of 4He (bosons).
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8.2 Occupation numbers 169

Occupation number
An energy eigenstate W7 of the entire A^-particle system is determined as soon as we
say

(a) which single-particle states are occupied and
(b) how often each of those states is occupied.

For fermions, of course, the exclusion principle prohibits multiple occupancy. In
contrast, a system of bosons may have, for example, five bosons in single-particle state
<p7.

The indistinguishability of identical particles implies that we should not even try to
specify which particles are in which single-particle states. It suffices to know the
following set of numbers:

( number of times that
single-particle state cpa is ] . (8.1)

occupied in the full state

The number naQVj) is called the occupation number for the single-particle state q>a in
Wj. For fermions, the occupation number is always restricted to zero or 1. For bosons,
the range is 0, 1, 2, . . . , N. To be sure, the occupation numbers must satisfy the
equation

na(Wj) = N. (8.2)

Altogether, N single-particle states are occupied (when multiple occupancy is coun-
ted), even though we cannot say which of the TV identical and indistinguishable
particles occupies which single-particle state.

Estimating the total energy
To determine the energy Ej of a state Wj, we add up the energies of the occupied
single-particle states. Thus

When the physical system is in thermal equilibrium at some temperature 7, we do
not know which quantum state Wj to use to describe the system. Nonetheless, we can
estimate the total energy by applying the canonical probability distribution to the
entire system of TV particles. We start as in section 5.4 and then use (8.3):
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170 8 The Quantum Ideal Gas

POP,)

(8.4)

The double summation in the first line is a sum over all terms in a rectangular array;
the elements are labeled by a row index a and a column index j . As specified in that
line, one is to sum first over all elements in a given column and then over all columns.
But one may equally well sum first over all elements in a given row and then over all
rows. That order of summing is shown in the second line, and it has some advantages.
The step to the last line follows from the definition

The function (na) is the estimated number of particles in single-particle state cpa.
Often we will call it the estimated occupation number. A verbal description of equation
(8.4) runs as follows: to estimate the total energy, multiply the energy of each single-
particle state by the estimated number of particles that occupy the state and then add
up all the contributions.

Whenever a physical quantity is well-defined already in a single-particle state, we
can reduce a calculation for the entire system of N particles to a form like that for
energy in (8.4). Therein lies the great usefulness of the estimated occupation numbers
(na). In the next section, we calculate them in general.

8.3 Estimating the occupation numbers

A few words about tactics are in order. First, recall that the occupation numbers for
fermions are restricted to zero or 1, whereas for bosons there is no such restriction.
Consequently, we handle fermions and bosons separately.

Second, equation (8.2) asserts that, for each full state W/, the sum of the occupation
numbers is N. The same must be true for the sum of the estimated values:

[To prove the claim, multiply both sides of (8.2) by P(*Pj) and sum over/]
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8.3 Estimating the occupation numbers 171

Third, to keep the notation from getting out of hand, we start with a = 1 and then
generalize to other values of the index a.

Fermions
We begin with the definition of (n\) and then write out the probability PQVj) in some
detail:

subject to n\ + n2 + • • • = N. (8.7)

I replaced a sum over j by a sum over all sets of occupation numbers, consistent with
there being N particles in the system. The unique correspondence between a state Wj
and the set of occupation numbers permits this replacement. (Appendix B provides an
example worked out in detail, and you may find it helpful to look at that now.) The
ellipsis dots following the two summation signs indicate more summations, associated
with «3, W4, etc.

Next we focus our attention on the first summation, that over n\9 the occupation
number for state q>\. When n\ is taken to be zero, the contribution vanishes. When n\
is taken to be 1, which is its only other value, we get

n2

subject to n2 + n3 -\ = N - 1. (8.8)

When n\ = 1, the sum of the other occupation numbers must be N — 1. For conveni-
ence later, I factored out the exponential that contains e\.

Now comes the unexpected move: arrange matters so that the summation once again
goes over all sets of occupation numbers, n\ included, but subject to the restriction that
the occupation numbers add up to TV — 1. To achieve this arrangement, insert a factor
of (1 - nx):

, * 1

subject to n\ + n2 + n3 + • • • = N — 1.

Let's check the legitimacy of this unanticipated step. When n\ = 0, the contribution
reproduces (8.8). When n\ = 1, the contribution vanishes. It checks.
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172 8 The Quantum Ideal Gas

Moreover, we can interpret the two terms produced by the " 1 " and the "« i " in the
full summation, as follows:

e-ei/kT

[Z(Nl)()Z(Nl)]. (8.9)

The " 1" gives a sum of Boltzmann factors but for a system with N — I particles;
hence the sum produces the partition function for such a system. The sum with " n \ " is
proportional to an estimated occupation number, but for a system with N — 1
particles.

Nothing depended on the index a having the value 1; so we may generalize to

- (na)forN^l (8.10)

No one would claim that the steps or this result are intuitively obvious, but the steps
are few, the result is exact, and the canonical probability distribution has sufficed.

When the system is macroscopic and when the temperature has a realistic value,
tiny fractional changes in individual (wa)s will shift their sum from N to N — 1 or vice
versa. So we set

(na)forN-i = (na)> (8.H)

our sole approximation, and make the corresponding replacement in (8.10):

-(na)]. (8.12)

The ratio of partition functions introduces the chemical potential, as follows. From
section 7.1,

= -kT[ln Z(N) - In Z(N - 1)], (8.13)

whence

Inserting the last expression into (8.12) and solving for (na)9 we emerge with the result

where the subscript F emphasizes that the expression applies to fermions. The " + 1 " in
the denominator ensures that the relation (wa)p ^ 1 holds, a consequence of the Pauli
principle. The chemical potential itself is to be chosen (numerically) so that equation
(8.6) is satisfied. [In principle, the chemical potential is already determined by the
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8.4 Limits: classical and semi-classical 173

relations in equation (8.13), but we do not know either F(N) or Z(N) in detail, and so
an indirect route is the best option.]

Bosons
The derivation for bosons follows a similar route, and we can dispatch it quickly. The
definition of (n\) leads to an equation like (8.7), much as before. The sole difference is
that each sum, such as the sum over n\, runs over the values 0, 1, 2, . . . , N. (Again,
appendix B provides an explicit example.) As before, when n\ is taken to be zero, the
contribution vanishes. The significant sum over n\ starts with n\ = 1. To benefit from
this circumstance, make the substitution

where the new summation variable n\ ranges from 0 to N — 1. Thus

In \ — X ^ V ^ (\ 4- w'V~K1+"1')£i + «2

subject to n[ + ni + • • • = N — 1.

Factoring and identifying as before, we get
e-ei/kT

Comparing this expression with the analogous fermion expression, equation (8.9), we
find that the minus sign in the latter has become a plus sign for the bosons.

The remaining steps are just as before. The result is

where the subscript B emphasizes that the expression applies to bosons. The minus
sign permits the estimated occupation number to be larger than 1, indeed, much larger.
The structure in (8.16) is fundamentally the same as what we found for ~n(v), the
estimated number of photons in a mode of frequency v. Photons are bosons, and so the
similarity is no coincidence. Section 10.3 will elaborate on the comparison.

8.4 Limits: classical and semi-classical

Classical physics does not distinguish between fermions and bosons. When the
conditions of temperature and number density are such that classical reasoning
provides a good approximation, then fermions and bosons should act the same way.
The ±1 distinction in (na) must be insignificant relative to the exponential. Thus the
strong inequality
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174 8 The Quantum Ideal Gas

must hold for all states cpa and energies ea. In short, in the classical limit,

where the strong inequality follows because the exponential must be much larger than

To evaluate the chemical potential that appears in (8.18), turn to the summation
condition (8.6) and use the classical limit of (na):

J2 (na) = e^kT ]T e-£^kT = N. (8.19)
a a

The sum over a is the single-particle partition function, which we previously denoted
by Z\. Thus

= — , (8.20)

whence

JU = -kTln(Zi/N\ (8.21)

a result that reproduces what we found in section 7.3.
Moreover, equation (8.18) now takes on an appealing form:

pSa/kT

(na) = N . (8.22)

Estimates of energy or pressure made with this (na) will have a form that looks as
though there were TV totally independent particles, each of them described by the
canonical probability distribution for a single particle.

The semi-classical limit of the partition function
The elements are at hand to work out the limiting expression for Z(N), the full
partition function. Equation (8.14) relates Z(N) to Z(N — 1):

Z(N) = e~^kTZ(N - 1). (8.23)

Substitution from (8.20) for the exponential gives

Z(N) = — Z(N- 1). (8.24)

Here is a tidy relationship between partition functions that differ by one particle. We
can use the connection repeatedly. Thus we can relate Z(N — 1) to Z(N — 2):
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8.5 The nearly classical ideal gas (optional) 175

Proceeding inductively, we find

ik (8<25)

Note the division by Nl The limiting value of the full partition function retains a
trace of the indistinguishability of identical particles. Moreover, in (8.25) we have
confirmation that our approximate summation in section 5.6 was done correctly. The
AH is preserved in the expression for the entropy, equation (5.39), and the factorial is
responsible for the TV in the chemical potential, as seen in equation (7.19), for
example. In a vital sense, these three quantities—full partition function, entropy, and
chemical potential—do not have a true classical limit. What we have found for them is
better called a semi-classical limit.

Moreover, a little digging would show that all three quantities—full partition
function, entropy, and chemical potential—retain Planck's constant h when they are
expressed in their most explicit forms. The adjective "semi-classical" is used (at least
in this book) to denote an expression or situation in which vestiges of indistinguish-
ability or of Planck's constant remain.

8.5 The nearly classical ideal gas (optional)

In the next chapter, we apply our results for the quantum ideal gas to systems at low
temperature and high number density, a context where the behaviors of fermions and
bosons differ radically. Before doing that, however, it would be good to become more
familiar with the notion of estimated occupation numbers. So this section calculates
the pressure and energy of a quantum ideal gas when its behavior is close to that of a
classical ideal gas. We know what to expect in lowest order, and the first-order
corrections to the classical results nicely foreshadow a characteristic distinction
between fermions and bosons.

First we develop a general connection between pressure and energy, valid for any
non-relativistic ideal gas. Section 5.4 gave us the entirely general relationship

( 8 - 2 6 )

Section 4.1 showed that the single-particle energy ea depends on volume as V~2/3.
Implicit were the assumptions of non-relativistic motion and zero potential energy.
The derivative of ea with respect to volume will be

dea_ 2ea

W-~3Y' (8-27)

The energy eigenvalue Ef of the entire ideal gas will be a sum of single-particle
energies, and so the derivative with respect to volume will have the same structure as
in (8.27):
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176 8 The Quantum Ideal Gas

w~~w (8-28)
Upon inserting this form into (8.26), we find

P = \^y- (8-29)

as the connection between pressure and kinetic energy for any non-relativistic ideal
gas.

Now we turn to calculating (E), which equation (8.4) gave as

(E) = ^ ea(na) (8.30)
a

in terms of the estimated occupation numbers. We can compute for fermions and
bosons simultaneously by adopting a ± notation and the convention that the upper sign
always refers to fermions. Thus

handles both cases.
When the gas is nearly classical, the exponential is much greater than | ± 11, and we

can profitably expand with the binomial theorem. Let A denote the exponential. Then
the structure of the expansion is

= A~\l =F A"1 + • • • ) = A~l T A'2,

provided A is much larger than 1 and provided we truncate after the first correction
term. Thus

(na) = e^~E^kT T e2^-£^kT. (8.32)

The chemical potential is determined by the requirement that the sum of (na) over
all a yields N:

e-ea/kT T e2fi/kT y^ e-2ea/kT ==

To evaluate the sums, one converts them to integrals with a density of single-particle
states. Section 4.1 gave us the density D(e) for a spinless particle. When a particle has
a spin sfi (and when the energy does not depend on the spin orientation), the density is
augmented by the factor (2s + 1):
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8.5 The nearly classical ideal gas (optional) 177

Here is the reason: a spin of sh can have 2s + 1 distinctly different orientations, and so
each state of a spinless particle splits into 2s -f 1 new states but without any change in
energy.

The first sum in (8.33) was evaluated in section 5.6; the second sum is similar. The
outcome can be arranged as

1 AT .
(8.35)^23/2* ~ ( 2 s + l ) F

In section 8.4, we reasoned that e^Ea~^/kT must be large for every value of a. This
requires that e'^^1 be large and hence that e^kT be small. Thus (8.35) implies that
Ath must be small relative to (F/iV)1//3, the typical inter-particle separation. In short,
we recover here the criterion for classical behavior that qualitative reasoning gave us
in section 5.6.

Knowing that e^lkT is small enables us to solve equation (8.35) readily—at least to
the required accuracy. We merely replace e2/*/kT by the square of the lowest order
expression for e^^kT, as follows:

"(2s+1)7 th±~~~P

(2s + l ) V th 2 3 / 2 [(2s + l ) V

777 4 i X 1 ± ^ / 9 ^ _ , ixT7^4 I • (8-36)(is +1) v

Return now to (E) as presented in (8.30) and use (8.32):

(E) = e^kT J2 £ae-£«/kT T e^'kT ^ eae-2e«'kT. (8.37)

Again the sums can be converted to integrals with a density of states. Moreover, the
exponentials th
the outcome is
exponentials that contain the chemical potential are known. To first order in Nk\/ V,

(E) = \NkT 1± (2s+\)V
(8.38)

Several conclusions follow from this result.
First, recall that P = ^(E)/V for any non-relativistic ideal gas, as derived earlier in

this section. Thus, when one uses equation (8.38) for (E), the leading term in P is the
familiar NkT/V. The correction term is positive for fermions, negative for bosons.
The Pauli exclusion principle compels fermions to populate single-particle states of
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178 8 The Quantum Ideal Gas

high energy more heavily than if no such exclusion principle held. At low temperature,
the effect becomes extreme, as the next chapter shows.

Second, the average kinetic energy per particle, (E)/N, differs between fermions
and bosons even when the particles have the same temperature. For example, one
could have a dilute gaseous mixture of 3He atoms, which are fermions, and 4He atoms,
which are bosons. As gases coexisting in the same volume at thermal equilibrium, the
gases are unquestionably at the same temperature. By using a dilute mixture of these
inert gases, one can approximate nearly-classical ideal gases. Some textbooks assert
that temperature is a measure of average translational kinetic energy per particle, as
though such a statement provided an adequate definition of temperature. Not only is
the statement inadequate; it is also incorrect. Gases that are manifestly at the same
temperature can have different average translational kinetic energy per particle. The
goal of the temperature notion is not to tell us about energy per particle. Rather, the
goal is to quantify "hotness."

In turn, the attribute "hotness" arises because, when macroscopic objects from two
different environments are placed in thermal contact, one object will gain energy by
being heated and the other will lose energy (by being cooled). For a homely example,
imagine putting a package of frozen strawberries into a pot of hot water for a quick
thaw in time for dessert. Energy flows by conduction from the water to the straw-
berries. The direction of flow implies, by definition, that the water is "hotter" than the
strawberries. Assigning temperatures of (80 + 273) K to the water and (—25 + 273) K
to the strawberries is a way to quantify the "hotness" of each. Then one knows, for
example, that shortcake at T = (20 + 273) K would be hotter than the strawberries
and would transfer energy to them if the berries were immediately placed on the cake.

As a third conclusion, equation (8.38) displays clearly the quantity that must be
small if the classical limit is to be adequate. That is, the strong inequality

must hold. The analysis in section 5.6, which culminated in equation (5.47), gave
essentially the cube root of the strong inequality displayed here.

8.6 Essentials

1. The particles of Nature divide into two classes: (1) fermions, whose spin is one-
half of an odd positive integer times ft and which are subject to the Pauli exclusion
principle; (2) bosons, whose spin equals zero or a positive integer times ft and which
are exempt from the Pauli exclusion principle.

2. Estimated occupation numbers are defined by

{na) = V na(
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Further reading 179

where the occupation numbers themselves are defined by

/ number of times that
naQVj) = I single-particle state cpa is

y occupied in the full state Wj

The context is an ideal gas: no literal forces between the particles.

3. For a first glimpse of the utility of estimated occupation numbers, note that

= ]T ea(na).
a

The complicated TV-body problem is reduced to a sum over single-particle states.

4. The canonical probability distribution provides the following expressions for the
estimated occupation numbers:

V a/t
 e(ea-[i)/kT + l '

1
B ~~ e^Ea~^lkT — 1 '

The expressions differ by a crucial ±1 in the denominator.

5. In both cases, the estimated occupation numbers must sum to N, the fixed total
number of particles:

^2(na) = N.
a

If the chemical potential is not otherwise known, this constraint serves to determine it.

6. When a particle has a spin sh (and when the energy does not depend on the spin
orientation), the density of single-particle states is augmented by the factor (2s + 1):

Here is the reason: a spin of sh can have 2s + 1 distinctly different orientations, and so
each state of a spinless particle splits into 2s + 1 new states but without any change in
energy.

Further reading

The derivation of (na) for fermions and bosons is based on a paper by Helmut
Schmidt, Z Phys. 134, 430-1 (1953). An English translation was given by R. E.
Robson, Am. J. Phys. 57, 1150-1 (1989). Some papers that focus on rigor in the
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180 8 The Quantum Ideal Gas

derivation are provided by A. R. Fraser, Phil Mag. 42, 156-64 and 165-75 (1951),
and by F. Ansbacher and P. T. Landsberg, Phys. Rev. 96, 1707-8 (1954).

The seminal papers on bosons and fermions were the following:
S. N. Bose, Z Phys. 26, 178-81 (1924).
Albert Einstein, Berlin Ber. 261-7 (1924) and 3-14 (1925).
Wolfgang Pauli, Z Phys. 31, 765-83 (1925), proposing the exclusion principle.
Enrico Fermi, Z Phys. 36, 902-12 (1926).
Paul A. M. Dirac, Proc. R. Soc. Lond. A 112, 661-77 (1926).

The papers by Bose and Einstein took account of the true indistinguishability of
identical particles but placed no restrictions on multiple occupancy. (In the preceding
classical physics, it had been considered meaningful to label and thereby to distinguish
among identical particles, much as names distinguish between human twins, say.)
After Pauli introduced the exclusion principle for electrons in atoms, Fermi and Dirac
extended the principle to gas molecules. A sentence from Dirac's paper gives us some
sense for the era: "The solution with antisymmetrical eigenfunctions, though, is
probably the correct one for gas molecules, since it is known to be the correct one for
electrons in an atom, and one would expect molecules to resemble electrons more
closely than light-quanta." The recognition that even "gas molecules" come in two
classes, fermions and bosons, came only later.

More accessible for readers of English is the fine chapter, "Exclusion principle and
spin," by B. L. van der Waerden in Theoretical Physics in the Twentieth Century: A
Memorial Volume to Wolfgang Pauli, edited by M. Fierz and V F. Weisskopf
(Interscience, New York, 1960).

An endearing vignette of Bose—based in part on a long interview—is provided by
William A. Blanpied, "Satyendranath Bose: Co-founder of quantum statistics," Am. J.
Phys. 40, 1212-20(1972).

Problems

1. Another meaning for (n a) Y.

(a) For fermions, construct a proof that

/probability that single-particle \ _ , ,
y state cpa is occupied J \ a'v'

Start with the probabilities PQffj) or at least use them. This result extends the
significance of (wa)F from merely "the estimated number of particles in <pa"

(b) Why does such a result not hold for bosons?

2. Some effects of spin.

(a) Use the limiting expressions in section 8.4, specifically relations (8.18) to (8.22),
to compute the energy, pressure, and chemical potential of an TV-particle gas in
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Problems 181

terms of T, V9 and N. Specify that each particle has a spin sh, where s may differ
from 0 and \.

(b) In which calculated quantities does the value of s make a numerical difference (in
this limiting regime)?

3. Criterion for the classical limit.

(a) If equations (8.18) to (8.22) are to be self-consistent, what strong inequality must
hold among the quantities N, V, m, and Tl

(b) What can you say about the sign and size of the chemical potential?

4. Section 8.5 outlined the calculation of pressure and energy for a nearly classical
ideal gas. Compute the four integrals and otherwise fill in the omitted steps, so that
you present a complete derivation of the expression for (E). Do you confirm the factor
of±l /2 5 / 2 ?

5. Continuing with the approximations in section 8.5, calculate (na) inclusive of the
first terms that distinguish between fermions and bosons. That is, eliminate the
chemical potential from the expression in equation (8.32). Check that you have
preserved the correct value for the integral over all single-particle states. Offer a verbal
interpretation of the different behaviors of (na) for fermions and bosons (based, in
part, on the exclusion principle).

6. Entropy. The entropy S of a quantum ideal gas can be expressed in terms of the
estimated occupation numbers:

</ia»ln(l T (na))-(na)ln(na)l

where the upper sign applies for fermions and the lower for bosons.

(a) In general, how should the derivative (dS/dT)y be related to the derivative
(d(E)/dT)v?

(b) Check whether the expression for S displayed above satisfies the relationship in
(a). (Your steps reverse the process by which S was computed by integration—and
are much easier steps.)
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9 Fermions and Bosons at Low
Temperature
9.1 Fermions at low temperature
9.2 Pauli paramagnetism (optional)
9.3 White dwarf stars (optional)
9.4 Bose-Einstein condensation: theory
9.5 Bose-Einstein condensation: experiments
9.6 A graphical comparison
9.7 Essentials

This chapter applies the occupation number analysis to ideal gases at low temperature.
While "low" temperature will mean 3 K in one instance, in another situation already
room temperature is "low" temperature. Each gaseous system has a characteristic
temperature, distinct from its physical temperature T and defined by parameters such
as particle mass and typical inter-particle separation. The physical temperature T is
"low" whenever it is substantially smaller than the characteristic temperature. This
suffices as an introduction. The subject is understood best by seeing the applications
themselves, and so we proceed to them.

9.1 Fermions at low temperature

Chapter 8 provided several general results for an ideal fermion gas. The estimated
occupation number (na) has the structure

The chemical potential pi is determined by the equation

J > « ) = N. (9.2)
a

This relation says that summing the estimated occupation numbers over all single-
particle states yields the fixed total number of particles in the system. The total energy
(E) may be computed from the relation

182
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9.1 Fermions at low temperature 183

The sums are best evaluated by converting them to integrals with a density of
single-particle states. Section 4.1 gave us the density D(s) for a spinless particle.
When a particle has a spin sh (and when the energy does not depend on the spin
orientation), the density is augmented by the factor (2s +1 ) :

= Ce1/2, (9.4)

where C is a constant defined by the preceding line. The most common application is
to electrons, whose spin is \h, and for which the factor (2s + 1) equals 2. That value
will be used henceforth. The behavior of D(e) as a function of its argument was
displayed in figure 4.3, and it would be a good idea to look at that graph again now.

Conversion to integrals implies that the discrete single-particle energy spectrum is
being approximated by a continuous energy spectrum. The common notation for (na)
in that context is

The function f(e) is called the Fermi distribution function. The name is apt, for f(e)
describes the way that fermions are "distributed" over the various single-particle states
(in the sense of an estimated distribution). A shorter name for f(e) is simply the Fermi
function. Although the notation f(e) displays only the dependence on energy £, the
Fermi function depends also on the temperature T and the chemical potential /u, which
itself is a function of temperature. Remember, too, that we have introduced new
notation only; the Fermi function is just the function (na) but with different clothes on.

In section 5.6, we reasoned that a classical (or semi-classical) analysis is valid
provided the thermal de Broglie wavelength is small relative to the typical inter-
particle separation:

At fixed number density, the classical limit corresponds to a temperature T high
enough so that the strong inequality holds. Quantum effects dominate at the other
limit, when the temperature is so low that the inequality is reversed.

LimitT^O
Let us take first the extreme situation: the limit as the temperature descends toward
absolute zero. The canonical probability distribution,

_ Qxp(-EjfkT)
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184 9 Fermions and Bosons at Low Temperature

implies that the system settles into its ground state. [For all states of higher energy,
their probability (relative to that of the ground state, denoted by g.s.) is exp[—(Ej —
Eg.s.)/kT] and hence vanishes exponentially as T —> 0.] We can mentally construct the
system's ground state by filling single-particle states, starting with the lowest and
continuing until we have placed N fermions into single-particle states, one particle per
single-particle state. The single-particle energy that marks the end of this process is
called the Fermi energy and is denoted by £p. Thus the Fermi function for the system's
ground state (and hence for the limit T —» 0) has the rectangular form shown in
figure 9.1.

Return now to the structure of f{e) as displayed in equation (9.5). When the Fermi
function is evaluated at £ = /*, its value is always \. One may turn the sentence around:
whenever the equation f = \ holds, the relation e = ju holds. The value | appears in
figure 9.1 only on the (limiting) vertical line at the Fermi energy £F. (At temperatures
above absolute zero, the Fermi function descends smoothly from 1 to zero, as we will
find later. The vertical line in figure 9.1 is the low temperature limit of a curve that
steepens as the temperature drops.) Because the vertical line occurs at the Fermi
energy and contains the value f = j9 the chemical potential has the Fermi energy £F as
its limiting value:

limpt(T) = e¥. (9.7)

Here is a check. If s > £F, the limit of the exponential in f(e) is infinite, and the Fermi
function goes to zero, as required by figure 9.1. If £ < £F, the exponential vanishes as
T —> 0, and so f(e) goes to 1, again as required.

Equation (9.2) and the density of states D(s) enable us to determine £F as a function
of the system's fundamental parameters. The general form for the continuous version
of equation (9.2) is

f(e)D(e)de = N. (9.8)
oI

Given the rectangular shape for the Fermi function, equation (9.8) reduces to
r^F r^F

\D(e) de = Csl/2 de = \Ce^2 = N. (9.9)
Jo Jo

Figure 9.1 The Fermi function f(e) in the limit T —> 0. The distribution represents the estimated
occupation numbers for the system's ground state.
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9.1 Fermions at low temperature 185

Taking the constant C from (9.4) and solving for £F, we find

The Fermi energy is determined by the particle mass m and the number density N/ V.
Low mass and high number density imply large £p. Table 9.1 gives values for the
conduction electrons in some metals. The quantity (V/N)1/3 is the average inter-
particle separation. If a particle has a de Broglie wavelength equal to that separation,
then h/(V/N)1/3 is its momentum. Moreover, the square of its momentum, divided by
2m, is the particle's kinetic energy. Thus, in order of magnitude, the Fermi energy £F is
the energy of a particle whose de Broglie wavelength is equal to the inter-particle
separation.

As the characteristic energy for the fermion system, the Fermi energy defines a charac-
teristic temperature, denoted 2p and called the Fermi temperature, by the relation

kT¥ = £F. (9.11)

Table 9.1 indicates that the Fermi temperature for conduction electrons in metals is of
order 5 X 104 K. Already room temperature (= 300 K) is low by comparison. Shortly
we will put this observation to good use.

Table 9.1 Fermi energies and Fermi temperatures for some metals. The integer that
follows the element symbol is the number of conduction electrons contributed by each
atom. The typical separation (V/N)1/3 is given in units of 10~10 meter (1 angstrom).
The separations are those at 20 °C [except for Na (25 °C) and K (18 °C)J. In almost all
cases, the experimental Fermi temperature comes from measurements at 4 K or less.

Element

Li
Na
K
Rb
Cs
Cu
Ag
Au
Mg
Ca
Al

1
1
1
1
1
1
1
1
2
2
3

(V/N)1/3

(10~10 m)

2.78
3.41
4.23
4.53
4.88
2.28
2.58
2.57
2.26
2.79
1.77

£F (theory)
(eV)

4.70
3.14
2.03
1.78
1.53
7.03
5.50
5.53
7.11
4.70

11.65

7]F (theory)
(104 K)

5.45
3.65
2.36
2.07
1.78
8.16
6.38
6.41
8.25
5.45

13.51

TY (experimental)
(104 K)

2.5
2.9
2.0
1.7
1.3
6.0
6.3
5.9
6.3
2.8
9.1

Sources: Encyclopedia of the Chemical Elements, edited by Clifford A. Hampel (Reinhold, New
York, 1968) and AIP Handbook, 3rd edn, edited by D. E. Gray (McGraw-Hill, New York, 1972).

�((%��+++���"�&�����$&���$&��(�&"'���((%����,��$��$&����������������
��	��������
�$+#!$������&$"��((%��+++���"�&�����$&���$&����#�*�&'�(-�$����&+�� ��$#��������������(����	������')����(�($�(�����"�&������$&��(�&"'�$��)'����*��!��!���(

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.010
http:/www.cambridge.org/core


186 9 Fermions and Bosons at Low Temperature

But first we compute the system's total energy at T — 0. Denoting the ground state
energy by EgtSm9 we find from (9.3)

The step to the second line uses equation (9.9). Single-particle states from energy zero
(approximately) to energy £F are filled by a total of TV fermions. Thus the total energy
ought to be roughly N times ^£F. The growth of the density of states with £, produced
by the factor e1/2 in D(s), pushes the numerical factor up to | .

Before we leave the domain of absolute zero, we should note one more relationship.
The density of states, evaluated at the Fermi energy, may be written as

D(eF) = Cel/2=~; (9.13)

equation (9.9) provides the last step. Basically, the relationship says that D(e^) times
the entire energy range £F gives a number of order N, as it ought to.

The thermal domain 0 < 7 < 7F

Now we turn to physical temperatures above absolute zero but far below the Fermi
temperature. Once the temperature is above zero, the Fermi function will vary
smoothly with energy e. It will have the value \ when e — //(T), the new value of the
chemical potential. This information provides the middle entry in table 9.2 and one
point in figure 9.2. When e exceeds ju(T) by a few kT, where "a few" is 3 or so, the
exponential in f(e) is large, and so the Fermi function has dropped almost to zero.
When e is less than pt{T) by a few kT, the exponential is small, and f{e) has almost the
value 1. The curve drops from approximately 1 to approximately zero over an interval
of 2X(a few kT). Because we specified T <C rF, this interval is much less than kT?
and hence is much less than the Fermi energy.

Concerning the interval of variation, we know that the width is much less than £p-
Where, however, is the interval located relative to £F? That is equivalent to asking,

Table 9.2 Assessing the Fermi function
when 0<r«r F .

a few kT
0
- (a few kT)
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1
0.8
0.6
0.4
0.2

0
fi(T)

Figure 9.2 The Fermi function in the thermal domain 0 < T <C 2p. The dot on the curve
represents the point f\e=^ — \.

where does ju(T) lie relative to £p? Because the physical temperature remains small
relative to the system's characteristic temperature Jp, we can expect that the chemical
potential will have shifted only a little relative to £p? its value at absolute zero. We can
confirm this, as follows.

We capture all the physics and can see the results most clearly if we approximate the
Fermi function by a trapezoidal shape, as illustrated in figure 9.3. The integral that
determines JU(T) is the continuous version of (9.2), namely equation (9.8). We approx-
imate the integral by three terms:

= N. (9.14)

The first term corresponds to integrating with a rectangular shape for f(s) all the way
to e = ju(T). A correction will be applied shortly. The second term incorporates
integration over the region beyond /u. The density of states is evaluated at the mid-
point, pi + \de, and factored out of the integral. The integral of f(e) itself is the area of
the little triangle; because the triangle's height is \, its area is \ X i X de. The third
term corrects for the rectangular shape adopted in the first contribution. Using
f(s) — 1 all the way to e = /u(T) over-estimated the integral by the following amount:

[A-de /u(T) ju + de £

Figure 9.3 The trapezoidal approximation for the Fermi function. The symbol de denotes an
energy interval of a few kT.
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188 9 Fermions and Bosons at Low Temperature

the density of states, evaluated at the mid-point of the upper triangle, D(/u — \de),
times the triangle's area, \de.

Regardless of whether fi(T) lies slightly below or above £F, we may formally
approximate the first contribution in (9.14) as an integral from zero to £F (which yields
precisely N) plus a product: the remaining integration range, which is (/u — £F), times
the density of states evaluated at eF. The second and third terms in (9.14), taken
together as a difference, are proportional to the derivative of D at JU, which is
adequately represented by D'(£F)> the derivative evaluated at £F. Thus equation (9.14)
becomes

N + (/*-e¥)D(e¥) + D'(eF)de X \de = N.

Canceling TV on each side and solving for ft, we find

r 4D(e?)
The energy interval de is a few kT. If we take "a few" to be 3, then the numerical
coefficient is | . A treatment that uses the exact variation of f(e) as displayed in (9.5)
yields

correct through quadratic order in 7, and so we did quite well. (The further reading
section at the end of the chapter provides a citation for the more elaborate calculation.)
Because D(e) depends on e as e1/2 when the gaseous system exists in three spatial
dimensions, the necessary derivative is Df (e¥) = ^D(e¥) / e¥. Thus (9.15) takes the
form

The chemical potential shifts to a smaller value, but the fractional shift, (fi — £F)/£F, is
of order (T/T¥)2 and hence is quite small.

Looking back, we can see that the only reason that /u shifts at all (to second order in
T) is because the density of states varies with e.

Now we turn to the system's energy and its heat capacity. For the same accuracy—
that of the trapezoidal approximation—the calculation is much easier than that for the
chemical potential. Look again at figure 9.3 and approximate fi{T) by £F, a step that is
justified by now. At finite but low temperature, some electrons have been promoted in
energy from £F — \de to £F + \de, an increase of de. How many such electrons? Those
associated with the little triangle beyond JU, namely, D(s¥ + \5e)\ds electrons. In the
present calculation, we can afford to drop the " + \de'\ and so we estimate the
system's energy as
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9.1 Fermions at low temperature 189

IE) = E + ( n u m b e r o f \ x ( s h i f t i n
\ / g s. ^ shifted electrons J y their energy

= £g.s. + [D(e¥)\de] X de = Eg.s. + \D(eF)(de)2. (9.17)

Because de is a few £JT, we find that the energy increases quadratically with T and that
the numerical coefficient is approximately | A more precise calculation, carried out to
order T2, yields

(E) = Eg.s.+^D(e¥)(kT)2. (9.18)

Succinctly: both the energy shift de and the number of electrons promoted are
proportional to kT, and so the energy increases quadratically with temperature.

The heat capacity at constant volume, Cy, follows as

equation (9.13) provides the step to the last line. The conduction electrons contribute
to the heat capacity a term linear in T. Moreover, because the ratio T/ T¥ is quite small
already at room temperature, being of order 0.01, the heat capacity is much smaller
than the \Nk that a classical analysis would predict. Quantum effects dominate.

The Debye model asserts that the vibrations of the crystal lattice—the sound
waves—contribute to Cy a term cubic in T at low temperature (low now relative to the
Debye temperature #D). Combining the results from equations (9.19) and (6.57), we
have

as the heat capacity for a metallic solid when T ^ 0.1 ^D- A plot of Cy/NkT versus
T2 should yield a straight line. The intercept along the vertical axis as T2 —» 0 should
be finite. According to our theory, the intercept will have the value JI2/(2T¥). In any
event, if the electronic contribution to the heat capacity is linear in T9 the experimental
intercept will give the numerical coefficient of the electronic heat capacity. Figure 9.4
shows a fine example of Cy/NkT plotted against T2. The data fall nicely along a
straight line.

For the elemental metals listed in table 9.1, the theoretical values of TF predict
intercepts that agree with the experimental intercepts to within a factor of 2. If we stop
to think about the context, the agreement is remarkably good. After all, the conduction
electrons interact with the positive ions of the periodic crystal lattice; the force is an
attractive Coulomb interaction. Moreover, the electrons interact among themselves
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NkT

8 10 12 14 16
T2

18

Figure 9.4 The heat capacity of copper at low temperature. The literal temperature range is
1.1 ^ T ^ 4.2 K. The upper limit is approximately 1 percent of the Debye temperature:
0D = 343 K. Experimentally, the intercept as T2 - • 0 is 8.27 X 10~5 K"1, accurate to within 1
percent. Equation (9.20) and table 9.1 predict an intercept of JT2/(2T¥) = 6.05 X 10~5 K"1.
[Source: William S. Corak etal, Phys. Rev. 98, 1699-707 (1955).]

with a repulsive Coulomb force. This extensive set of interactions has been treated as
though it merely confined the electrons to the volume V but otherwise permitted the
conduction electrons to move as free particles: a quantum ideal gas.

To understand the reasons for the success, glance back to equation (9.18), which
gives the estimated energy (E). The temperature-dependent part is proportional to
D(SY), the density of single-particle states at the Fermi energy. A pretty good value for
the heat capacity can be gotten even if we have only an approximate value for that
density of states. When the Coulomb interaction between the conduction electrons and
the periodic lattice of positive ions is treated in detail, then the single-particle states
are different from those that we used. The density of states will vary differently with
energy e and will have a different value at the Fermi energy. Nonetheless, so long as
the better density of states behaves near its Fermi energy approximately as the density
of states for an ideal gas, the analysis will go through as it did for us. The heat capacity
will have the structure shown in the first line of (9.19): proportional to T and with
Z)(£p) as the sole factor that depends on the specific metal. The linear dependence on
temperature arises primarily because of the Pauli principle and the existence of a Fermi
energy. Only the numerical value of the coefficient depends on the interaction of the
conduction electrons with the ions of the periodic lattice.

But what about the Coulomb interactions of the conduction electrons among
themselves? To the extent that wave functions for the conduction electrons extend over
the entire metal sample, the negative charge is distributed more or less uniformly.
Rather than thinking of one electron as interacting with N — \ point electrons, we may
think of it as interacting with a rather smooth smear of negative charge. Moreover, that
negative charge is largely canceled by the positive charge of the ions in the crystal
lattice, for one can think of their positive charge as a uniform smear plus a periodic
variation. As the one electron wanders through the metal sample, it experiences
only residual interactions. For the purposes of calculating the heat capacity, those
interactions are relatively insignificant, and the quantum ideal gas provides a good
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9.1 Fermions at low temperature 191

approximation. (To be sure, in another context the residual interactions may be
absolutely essential. For example, they produce superconductivity in more than 25
different metals at low temperature.)

Synopsis

For a qualitative summary, we compare an ideal fermion gas at low temperature with a
classical ideal gas. The latter is to have the same number density N/ V and to be at the
same physical temperature T. By ascribing to the classical gas a large particle mass m,
we can ensure that its thermal de Broglie wavelength is small relative to (V/N)1/3 and
hence that the comparison gas behaves classically.

The physical temperature T is to be much less than the Fermi temperature Jp.
Relative to the classical gas, the fermion gas has the following properties.

/ . Large kinetic energy per particle. For the fermions, the energy per particle is
{E)/N = |£p already at absolute zero, a consequence of the Pauli principle. So long as
T <C TV, the T2 contribution displayed in (9.18) is insignificant relative to the ground-
state term. The ratio of energies is therefore

((£)/AQfermions |^F 2 TF

2. Small heat capacity per particle. Only particles near the Fermi energy are
promoted in energy when the temperature rises. Hence the ratio of heat capacities is

( \ k
(CF)fermions 2 \TV) = jf fT
(CV)classical \k 3 \TF

3. High pressure. In section 1.2, kinetic theory showed that P = ^(E)/V for a
classical ideal gas, provided the speeds are non-relativistic. Section 8.5 showed that
the relationship holds quantum mechanically for any non-relativistic ideal gas (pro-
vided that the energy is solely kinetic energy). Now write the pressure as

P
3 V/N

and recall that V/N is the same for the fermion gas and the comparison classical gas.
Thus the ratio of pressures is the same as the ratio of energies per particle [in
relationship (9.21)], and so the ratio is large.

4. Little dependence of pressure on temperature. One last feature is worth noting.
The energy (E) varies little with temperature; after all, that is what a small heat
capacity means. Because the pressure is P — ^(E)/V (when computed non-relativisti-
cally), the fermion pressure is virtually independent of temperature. In contrast, a
classical ideal gas, which is described by the ideal gas law, P = (N/V)kT, has a linear
dependence of pressure on temperature, which is a substantial dependence. In detail,
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192 9 Fermions and Bosons at Low Temperature

the ratio of {dP/dT)y for the two gases is the same as the ratio (d(E)/dT)v; hence,
by equation (9.22), the ratio is very small.

Indeed, the last paragraph is a good prelude to a bit of terminology. At low
temperatures, quantum ideal gases behave very differently from the way a classical
ideal gas behaves. We have just seen that property for fermions, and section 9.4 will
derive, for bosons, another radical departure from the ordinary. The quantum gases are
said to be degenerate at low temperature. That is not a moral judgment. Rather, the
word "degenerate" is used in the sense of departing markedly from the properties of
an "ordinary" classical gas.

9.2 Pauli paramagnetism (optional)

This section and the next describe additional phenomena produced by fermions at low
temperature.

Section 5.3 provided our first encounter with paramagnetism. The "system" con-
sisted of a single spatially fixed atom whose spin is \fi. We estimated the component
of magnetic moment along an external magnetic field B. In a material like cesium
titanium alum, there is one such atom per molecule, but the spatial separation of the
magnetic moments is large enough so that—for many purposes—the moments act
approximately independently of each other. Even vibration about equilibrium sites in
the lattice has little effect. The twin properties of (more or less) fixed location in the
lattice and substantial separation are sufficient for the moments to act independently,
to good approximation. If there are N such atoms in a macroscopic system, the explicit
expression in equation (5.13) need only be multiplied by N. Thus

/ total magnetic moment along B \ Ar + u , D / / ^ m ^
( r Ar ,. ii n- A . ) = NmB tanh(mBivkT). (9.24)
\ for N spatially fixed atoms / v ; J v }

Radically different is the situation with conduction electrons in a metal. Even if
the typical separation (V/N)1/3 is the same as for the spatially fixed moments, the
conduction electrons remain coupled quantum mechanically by the Pauli principle. We
need to consider all of those electrons simultaneously.

For a single electron, the magnetic energy is —me • B. Even in a magnetic field as
large as 2 tesla, the energy is only 10~4 electron volts and hence is much less than a
typical Fermi energy £F. Just as room temperature (= 300 K) leaves the conduction
electrons close to their ground state, similarly the magnetic interaction leaves the
electron system close to its original ground-state configuration. For our purposes-
estimating the total magnetic moment—it suffices to take the context T = 0 and to
examine the full ground-state, first without the field B and then in its presence.

In the absence of a magnetic field, single-particle states with a specified amount of
kinetic energy but with oppositely oriented moments have the same energy. Part (a) of
figure 9.5 indicates that such states will be fully occupied up to the Fermi energy £p.
The number of up moments equals the number of down moments, and so the total
magnetic moment is zero.
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Figure 9.5 Paramagnetism for conduction electrons. The ground state is shown (a) in the absence
of a magnetic field and (b) when the field B is present (a field that points upward). The arrows
represent the magnetic moments. (An electron's spin is anti-parallel to the magnetic moment.)
Note that the abscissa is the single-particle kinetic energy, not the entire single-particle energy.

When the external field (taken to point upward) is applied, the energy of each
single-particle state changes:

As = — mBB for an up moment;
(9.25)

As = -\-mBB for a down moment.

To construct the new ground state (the state of lowest total energy), we need to shift
some electrons from down-moment states to up-moment states. Each such shift
reduces the total energy by —2mBB. The Pauli principle, however, compels the
electrons to populate up-moment states with kinetic energy higher than £F (which
continues to denote the Fermi energy in the absence of the field) because the states of
lower kinetic energy are already occupied. How far in kinetic energy can we go and
still reduce the total energy (in a net sense)?

Near the zero-field Fermi energy, it is a good approximation (1) to take the density
of down-moment states to equal the density of up-moment states and (2) to set each
equal to ^D( £ F ) , w n e r e ^ ( £ F ) is the density function in the absence of the field. Then
we can profitably shift electrons until we are taking them from (kinetic energy) =
£F — WIBB and promoting them to (kinetic energy) = £p + mBB, a gain in kinetic
energy of +2 mBB. Altogether, the process yields

/ number of \ , , . , .
i + u-A A ) =?D(£F) X mvB- (9-26)

y electrons shifted) 2 v 7

Each shift increases the total magnetic moment by +2 mB. Thus the new ground state
has
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194 9 Fermions and Bosons at Low Temperature

/ total magnetic moment along B \
y for N conduction electrons

^ M » B . (9.27)

The step to the second line uses equation (9.13).
To gain an appreciation for this result, let us compare it with the limit T —> 0 of

equation (9.24), the calculation for spatially fixed magnetic moments. The hyperbolic
tangent is a ratio of pairs of exponentials, and its limit is 1. Thus

,. / total magnetic moment along B \ Ar m . o ,
lim( „ Ar *• ii *- J * ) = NmB. (9.28)
T->O \ for N spatially fixed atoms /

All the magnetic moments line up along B. In contrast, for conduction electrons, the
Pauli principle would make such alignment too expensive (in kinetic energy), and so
the value in equation (9.27) is smaller by the factor ^m^B/e^ a small factor indeed.

Wolfgang Pauli worked out the effect of the exclusion principle on electron
paramagnetism [Z. Phys. 41, 81-102 (1927)], and so this phenomenon is called Pauli
paramagnetism.

[Now that the major point has been made, I should note that, as T —> 0 for the
spatially fixed moments, their mutual magnetic and electrostatic interactions may no
longer be neglected. The paramagnetic atoms may develop a ferromagnetic behavior
or even an anti-ferromagnetic behavior, but those are separate topics too far from the
present mainstream for us to go into them here. Some aspects are developed in chapter
16.

Moreover, in the case of conduction electrons, the external magnetic field affects the
translational motion of the electrons, and that induces a (diamagnetic) contribution to
the sample's total magnetic moment. Pauli paramagnetism is only part of the electrons'
response to an external field.]

9.3 White dwarf stars (optional)

Typical white dwarf stars have a surface temperature of 10,000-30,000 K, substan-
tially higher than that of the sun (= 5,800 K), and so they radiate with a bluish white
color. Their luminosity (the total radiant energy output), however, is only 0.1 to 1
percent of the solar value, and so the stars must have a small surface area. Indeed, a
typical radius R is 1 percent of the solar radius and so is approximately equal to the
Earth's radius. The stars are indeed "white" and "dwarf." Yet their mass M ranges
over an interval from = 0.2 M 0 to 1.4 M 0 , where the symbol M 0 denotes the sun's
mass. In order of magnitude, one solar mass of material is compressed into a volume
the size of the Earth, producing an average mass density 106 times that of water.

At such high density and large mass, gravity must be extremely strong. What
supports the material against gravity? The short answer is this: the pressure of a
degenerate electron gas. Except for a thin atmosphere, the material in the star is wholly
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9.3 White dwarf stars (optional) 195

ionized, and so all the electrons are "conduction electrons." Table 9.3 provides
parameters from two well-observed white dwarfs and shows that the Fermi energy
(calculated non-relativistically) is 104 times as large as that for the metals which we
studied in section 9.1. The corresponding Fermi temperature is of order 109 K. The
physical temperature T within the star is of order 107 K, which has two consequences,
as follows.

1. For the electrons, the physical temperature is low relative to the Fermi temperature,
and so our results from section 9.1 are applicable (in part, at least). It is hard to
imagine T = 107 K as being "low" temperature, but T/T¥ ^ 0.01.

2. The ion cores—that is, the nuclei—are not degenerate (because their individual
masses are much larger than that of an electron). The nuclei remain a classical gas
and exert a pressure that is smaller than the electron pressure by roughly the ratio

f, and so their pressure is negligible.

To analyze the star, we need consider—for support against gravity—only the
electron gas. Moreover, temperature is basically irrelevant to the structure of a white
dwarf. Why? Because the pressure of a degenerate electron gas is largely indepen-
dent of temperature. The electrons are good conductors of microscopic kinetic
energy and ensure that the stellar interior has an essentially uniform temperature—
and a negligibly low one. For a good approximation, it suffices to represent the
pressure by that of an electron gas at T = 0. (Because T/T? = 0.01, the physical
temperature is only 1 percent of the way from absolute zero to Tp- Using T = 0

Table 9.3 Parameters for two white dwarf stars. By charge neutrality, the number
density N / V of electrons equals the number density of protons. The stellar mass is
dominated by nuclei, such as 4He, i 2C, and 16O, that have as many neutrons as
protons. Thus the number density of protons is one-half the number density of
nucleons. In short, an adequate approximation for the electrons is
(N/V)avQ — ^(p/ mprotOn), where ~p — M/(4JTR3/3) is the average mass density. The
Fermi energy £p and the Fermi temperature 7p are computed non-relativistically and
are based on (N/ V)aYQ. The Fermi momentum p$ is the electrons' maximum
momentum magnitude; it is shown divided by the electron rest mass times c. The
symbol a? denotes the corresponding speed (calculated from the relativistic relation-
ship that connects momentum, speed, and rest mass).

Name

40Eri
Sirius

B
B

M/MQ

0.447
1.05

R/RQ

0.013
0.0073

(V/N

2.3
0.96

rU/3
/ave
2 m) (104 eV)

6.9
40

(109

0.8
4.6

K) pe/mc

0.52
1.2

v¥/c

0.46
0.78

Source: Kenneth R. Lang, Astrophysical Formulae: A Compendium for the Physicist and
Astrophysicist, 2nd edn (Springer, New York, 1980).
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196 9 Fermions and Bosons at Low Temperature

is not so outrageous as it might seem at first acquaintance.) This simplification en-
ables us to derive a remarkable relation between the stellar radius R and the total
mass M, as follows.

Non-relativistic domain
Hydrostatic equilibrium relates the central pressure to the stellar mass and radius.
Figure 9.6 shows an imaginary column passing from the center to the stellar surface.
The material in that column is supported against gravity by the pressure at its base, the
central pressure PCenter- Thus we write

o A (total mass \
• center ̂  —

/ average gravitational force \
in column J y per unit mass J

(9.29)

We estimate the total columnar mass by the column volume times the average mass
density p, where p = M/(4JIR3 /3). For the average gravitational force per unit mass,
we take half the value at the surface as a reasonable estimate. (Recall that, by
symmetry, the gravitational force per unit mass is zero at the star's center.)

Next, we return to the microscopic theory of section 9.1 According to that section,
the electrons exert a pressure

_ 2 (E) _ 2 N
3~V~~5£¥~V

N
2m \V

5/3

(9.30)

Figure 9.6 A narrow column, of cross-sectional area A, extends from the stellar center to the
surface.
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9.3 White dwarf stars (optional) 197

provided their motion is non-relativistic. [For details, see the "synopsis" subsection
and equations (9.10) and (9.12).] The electron number density N/V is proportional to
the mass density p (of electrons and nuclei taken together). The number density at the
center will be higher than the average number density, but we can incorporate that
effect in a proportionality constant. Thus equation (9.30) implies that PCenter =
const X (M/i?3)5/3.

Now substitute the last expression for Pcenter into (9.29):

fM\5/3 , M M ^^^
constxl—J = const'X — X J?X—, (9.31)

where const and const ' are two constants. This form shows how the central pressure
and the gravitational force that the pressure needs to balance depend on M and R.
Solving for R, we find

' (9.32)

The larger the mass, the smaller the star!
Observations of white dwarfs amply bear out that statement, and table 9.3 gives an

example. (Although some things are known about hundreds of white dwarfs, for only
two are both mass and radius known to within 10 percent.) A more detailed theory
yields an R versus M relationship that is more complicated than a power law, but it can
be reasonably approximated by R oc M~0-57 for masses up to one solar mass. The
difference in exponent does not mean that we made a computational error. If the non-
relativistic expression for the electron pressure were valid throughout the star, then a
detailed calculation, taking into account a density that increases monotonically with
depth, would produce precisely the power law relation in (9.32). Rather, the difference
in exponent arises because the pressure expression in (9.30) must be modified at
extremely high densities (because of relativistic effects); we look into that shortly.

If you glance back to equation (9.31), you can see that the left-hand side grows as
l/R5 as R decreases, but the right-hand side grows only as \/RA. Thus, contraction
enables the electron pressure to grow large enough to support the star against gravity.
This conclusion depends, however, on our using a non-relativistic calculation of the
electron pressure. Table 9.3 shows that an electron gas at the average separation
(V/N)IH has some electrons moving at half the speed of light. Detailed theory
indicates that the central density is roughly 10 times the average density. The
maximum electron speeds will be even higher, and so one must consider relativistic
effects. We turn to them in the next subsection.

Extreme relativistic regime
Kinetic theory provides a good start. A glance back at equations (1.1) and (1.4)
indicates that the pressure of an ideal gas can be expressed as
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198 9 Fermions and Bosons at Low Temperature

N

, N (9.33)

The step to the second line reasons that the averages of products of Cartesian
components must be equal, for example, {pyvy) — (pxvx), and so any one average is
one-third of their sum, which is given by the scalar product of the two vectors.
Equation (9.33) is relativistically exact. Previously we wrote the momentum p in the
non-relativistic form mv, where m denotes the rest mass, thereby taking the low speed
limit. Now, however, we specify an extreme relativistic regime, so that most electrons
have a speed near c. (Only this other limit—the high speed limit—lends itself to back-
of-the-envelope estimates, which suffice for us.) The Fermi momentum pp is the
maximum momentum that the electrons possess (at absolute zero). Because the tips of
the momentum vectors are distributed uniformly within a sphere of radius pp, 49
percent of the electrons have momentum magnitudes that lie within 20 percent of pp.
[The spherical shell between radii 0.8 pp and pp accounts for 49 percent of the
spherical volume: I3 — (0.8)3 — 0.49.] Thus most electrons have a momentum magni-
tude approximately equal to pp, and we estimate the pressure as

p^-pvcj. (9.34)

The speed v saturates at the speed of light c. (An exact evaluation of (p • v), outlined
in problem 17, replaces the 1/3 by (1/4) X [1 -f- order of {me/pp)2].)

To determine the Fermi momentum, we return to section 4.1. Equation (4.4)
indicates that

PF = nmax — , (9.35)

where nmSiX is the maximum value of the magnitude constructed from the triplet
{nx, ny, nz}. For an electron with spin \h, the generalization of equation (4.6) counts
occupied single-particle states as follows:

I ( 2 X - + 1 ) — n3 =N. (9.36)

Combining equations (9.35) and (9.36) gives the Fermi momentum:

(Although we derived this result by considering standing waves, the same result
emerges if we represent the electrons with traveling waves, which are closer to the
spirit of kinetic theory.)
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9.4 Bose-Einstein condensation: theory 199

Now equations (9.34) and (9.37) imply
\ 4/3

(9.38)

in the extreme relativistic regime. Because the electron's speed has c as a limit and no
longer increases with density, the pressure here depends on number density only to the
4/3 power (in contrast to the 5/3 power in the non-relativistic case).

If we use equation (9.38) on the left-hand side of equation (9.29), we find

/M\4^3 M M
const" X f — j = const' X — X i? X — . (9.39)

The powers of R on the two sides are now the same: l/R4. Once the extreme
relativistic regime has been reached, further contraction no longer boosts the pressure
faster than the gravitational attraction. That route to stellar equilibrium is blocked.
Thus, if the mass M does not satisfy equation (9.39) immediately, the star can not
adjust its radius to provide equality.

From table 9.3, note that the higher the stellar mass, the higher p? and the electrons'
speeds. In the 1930s, the Indian astrophysicist Subrahmanyan Chandrasekhar calcu-
lated that stars with a mass up to the limit M = 1.4M© may evolve to the white dwarf
stage. More massive stars can not be supported by the pressure of degenerate electrons
(subject to theoretical provisos such as no stellar rotation etc.). The relativistic speeds
of the electrons in the stellar core produce a high pressure but one that grows too
slowly with increasing density.

Today, another effect is known to limit the mass of a white dwarf. At extremely high
central density, the electrons have such high energy that inverse beta decay occurs
readily. An electron is "squeezed" into a proton: a neutron is formed (and a neutrino is
emitted). The reaction removes electrons, causing the electron pressure to drop, which
leads to further contraction, more inverse beta decay, and so on. The entire process
ceases only when the pressure of a degenerate neutron gas holds gravity at bay. This
sequence establishes another limiting mass, which is approximately 10 percent smaller
than Chandrasekhar's limiting mass.

Our sun is predicted to shine more or less as it does today for another 5 billion years,
then to expand into a red giant phase, next to blow off a substantial fraction of its
material via a superwind, and finally to evolve into a white dwarf. We will not be
around to see the white dwarf stage, but you know enough thermal physics to
understand what will support the sun against further collapse.

9.4 Bose-Einstein condensation: theory

Our attention turns now to bosons, particles with integral spin. Most significant for us
is that the Pauli exclusion principle does not apply to bosons. Rather, any number of
bosons—or any number up to N, if the total number of bosons is fixed—may occupy
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200 9 Fermions and Bosons at Low Temperature

any given single-particle state. The estimated occupation number (na) has the
structure

<*«> = «(«.-,))«• _ i - (9-40>

In this section, the system is specified to contain N bosons, a fixed number, and so the
chemical potential JU is determined by the equation

£ > a > = N. (9.41)
a

Because we will compare our results with experimental properties of the spinless
helium isotope 4He, let me specify at the outset that we investigate bosons whose spin
is zero. Then the algebraic issue of spin orientations drops out of the problem—and
without our losing any significant generality in the results.

As in our study of fermions, we start with the limit T —> 0 and then move on to low
(but nonzero) temperature, where "low" must be specified by comparison with some
characteristic temperature for bosons.

Limit T-+0
As the temperature descends to absolute zero, the system of N bosons settles into its
ground state. To construct the full state of lowest energy, we mentally place all bosons
in the single-particle state of lowest energy, q>\. The total energy is then

£g.s. = Nex (9.42)

where

^ ( 9 - 4 3 )

The estimated occupation number (n\) must approach N as T —» 0:

lim(»i) = l i m - -^—- = N. (9.44)

From this relationship, we can assess the behavior of the chemical potential near
absolute zero. Because (n\) is non-negative and finite, the exponential must be greater
than 1; that requires /u< £\. Yet the exponential must be extremely close to 1, so that
division by the difference between it and 1 yields the large number N. Thus the
exponent itself must be small, and we may expand the exponential, writing

7\r

when T is close to zero. Solving this equation for fi yields

kT
li^ ex- —. (9.45)
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9.4 Bose-Einstein condensation: theory 201

The chemical potential approaches e\ from below as T —•> 0.
The other estimated occupation numbers, (na) for a ^ 2, all vanish as the tempera-

ture descends to zero.

Condensation
How does («i) vary as the temperature rises from absolute zero? The answer lies
hidden in equation (9.41), which we can write as

(ni) +y)T(na) = N. (9.46)

To make progress, we need to replace the summation by an integral with a density of
states D(e). So we write

Because the standard density of states goes to zero as £1//2 when s goes to zero, we
may safely let the lower limit of integration be £ = 0. We do not inadvertently double-
count the state cp\ and the term (n\).

Moreover, that same behavior for the density of states enables us to approximate the
value of the chemical potential. For very low temperature, equation (9.45) told us that
the temperature dependent part of JU is tiny: kT/N = kT/1020, say. For the single-
particle energy e\ that appears in //, return to (9.43) and note that, even if the volume
V is as small as 1 cubic centimeter and if m is the mass of a helium atom, then
£i = 1.5 X 10~18 electron volts. So small an energy is usually insignificant—provided
it does not make the difference between fmiteness and infinity. But the integral in
(9.47) remains finite if we approximate JU by zero, which we proceed to do, as follows:

dx
ex - 1

= C(kT)3/2 X — 2 . 6 1 2 = const X T3/2. (9.48)

The substitution x = e/kT extracts the temperature dependence from the integral. The
definite integral that remains is tabulated in appendix A. Altogether, the integral on the
left-hand side equals a known constant times T3/2.

To tidy things up, we define a characteristic temperature TB for bosons as the
temperature for which the integral in (9.48) equals N. Because C X (kTB)ll2 equals
D(kTB), the density of states evaluated at kTB, the definition of TB is equivalent to the
relationship

D(kTB)kTB X —2.612 = N. (9.49)
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202 9 Fermions and Bosons at Low Temperature

That equation is analogous to equation (9.13) for fermions, which one can write as

D(kT¥)kT¥ XJ = N. (9.50)

Upon referring to equation (9.4) for the detailed factors in D(e), one finds that (9.49)
implies

which provides a more explicit expression for rB.
The characteristic temperatures for bosons and fermions have the same dependence

on number density N/V and particle mass m; the numerical coefficients are compar-
able; and so the two temperatures are very similar, structurally. What the temperatures
signify physically, however, are radically different, as we shall see shortly.

To avoid some algebraic substitutions, let us reason as follows. The characteristic
temperature TB was defined so that the integral in (9.48) equals N when T — TB.
Therefore the constant at the end of equation (9.48) must be expressible as
This observation enables us to write equation (9.47) as

\3 /2

)
Solving for (n\) yields

This relationship indicates that (n\) remains of order TV until T = TB. Clearly, the
expression must lose its validity when T exceeds 7B, but we did specify "low"
temperature in our analysis, and so we find that the stipulation T ^ 0 .997B, say, is a
sufficient criterion for "low." (Steps to justify this criterion and also some subsequent
numerical assertions are offered in problem 21.)

Figure 9.7 shows (n\) as a function of temperature over a substantial range. At a
temperature of 10rB, the bosons act like a nearly classical ideal gas. The first
correction to classical values of pressure or energy is of order 1 percent, and the
numerical value of (n\) is much less than 1. (For confirmation of these claims, recall
the general analysis in sections 8.4 and 8.5.) Imagine decreasing the temperature at
fixed N and V. The value of (n\) grows continuously and reaches order N2^ when
T = rB. The ratio of N2^ to N is N~^3; if N = 1021, say, the ratio is only 10~7. On
the graph, even a value of order TV2/3 appears as virtually zero. When T has dropped to
0.99rB, however, equation (9.52) implies that (n\) is 0.0157V. Such a value deserves
to be called "of order JV" and is barely distinguishable from zero on the graph. The
temperature 7B signals the onset of a marked increase in (n\). In analogy with the
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N

0 0.5 1 1.5 2
T/TB

Figure 9.7 The occupancy of the single-particle ground state as a function of temperature.

condensation of water vapor into liquid water, the marked increase is called the Bose-
Einstein condensation. Note that the bosons "condense" into a specific single-particle
state, the state cp\ of lowest energy. (Because they are particles of an ideal gas, the
bosons do not cohere and form a droplet.)

The characteristic temperature that signals the onset has several names. The notation
rB is intended to abbreviate the name Bose (or Bose-Einstein) temperature. Some-
times the characteristic temperature is called the "condensation temperature." Other
authors call it the "Einstein temperature," for Einstein discovered the "condensation"
implicit in Bose's earlier work.

You may wonder, do other occupation numbers, such as (722), also become of order
TV below TB or below some other characteristic temperature? The answer is no. As the
temperature descends from \0TB to zero, the size of (7*2) grows smoothly to a
maximum of order N2^ and then declines to zero. Only for <pu the single-particle
ground state, does the estimated occupation number ever become of order N.

Energy and heat capacity
The formal expression for the system's energy is

(9.53)

If the temperature is less than TB, we separate out the term e\{n\) and write the
remaining sum as an integral:

1
i * e > < f e - ( 9 - 5 4 )
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204 9 Fermions and Bosons at Low Temperature

For the first term, equation (9.52) gives (n\). For the second term, it suffices to set
JU = 0, to extract the temperature dependence with the substitution x = e/kT, and to
look up the remaining definite integral in appendix A. The outcome is

(E)=elN 1 -
3/2

+ 0.770 ( —
B/

3/2

NkT. (9.55)

Because s\ is so small, the contribution from the integral dominates (except at
extremely low temperature). Thus the energy varies with temperature as T5/2, and the
heat capacity Cy grows as T3/2. Figure 9.8 shows this rise as T —> T& from below.

If the temperature is greater than rB? the term E\(n\) in (9.53) may be ignored as
negligibly small. The value of (E) is dominated by an integral over the other single-
particle states, but the chemical potential may no longer be approximated by zero.
Rather, the chemical potential must be calculated independently from equation (9.41).
Let us skip the details and content ourselves with two observations, as follows.

1. If you read section 8.5 on the nearly classical ideal gas, then you can return to
equation (8.38), differentiate (E) with respect to temperature, and find

Cv=\Nk 1+0.231 (YA /2
(9.56)

valid for a nearly classical boson gas. While this two-term expression will not suffice
all the way down to rB, it suggests that the heat capacity rises as the temperature

Cy
Nk

1 2
T/TB

Figure 9.8 The heat capacity Cy of an ideal boson gas as a function of temperature. [Source:
Fritz London, Superfluids, Vol. 2: Macroscopic Theory of Superfluid Helium (Wiley, New York,
1954).]
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9.5 Bose-Einstein condensation: experiments 205

descends to r B and that Cy exceeds the classical value of \Nk. That is, in fact, the
case.

2. For the second observation, simply look at figure 9.8, which was computed
numerically. The graph of Cv is continuous, has a maximum at TB, but—for all
practical purposes—experiences a discontinuity in slope at the Bose temperature.

This suffices for the theory; now we turn to experiment.

9.5 Bose-Einstein condensation: experiments

Einstein's prediction of a "condensation" appeared in print in 1924. For the next 71
years, only indirect evidence could be found in nature or could be produced in the lab.
Even the most notable example was merely suggestive and certainly not definitive.

The prime example consisted of 4He, the spinless isotope of helium and hence a
boson. Under atmospheric pressure, gaseous 4He forms a liquid when the temperature
is reduced to 4.2 K or below. The liquid and the residual vapor coexist. This con-
densation is unquestionably caused by real attractive forces between the atoms and has
nothing to do with a Bose-Einstein condensation. The two electrons in helium are
tightly bound and form a spherical atom. In consequence, the force between atoms is
weak. Only when the temperature is quite low and hence the typical kinetic energy is
quite small can the weak attractive forces produce a liquid phase. Helium was the last
of the common gases to be liquefied—by the Dutch physicist Heike Kamerlingh Onnes
in 1908—and for good reason.

Our attention focuses now on liquid 4He. Maintain coexistence of liquid and vapor
(at whatever pressure that requires), but slowly reduce the temperature and measure
the liquid's heat capacity as a function of temperature. Figure 9.9 shows a modern
version of what physicists found in the 1920s. At a temperature of 2.17 K, the heat
capacity rises in a sharp spike and then falls again. Below 2.17 K, the liquid behaves
in entirely novel ways. For example, the bulk liquid can flow without viscosity, even
through tiny capillaries. Circular flow through an annular region, once started and left
by itself, will persist indefinitely. Thin films of the liquid can flow up over the lip of a
beaker, defying gravity and emptying the beaker as though a siphon were present. As
the temperature 2.17 K was passed, the liquid became a superfluid.

The shape of the heat capacity curve, reminiscent of the lower case Greek letter
lambda, A, gives the name the lambda transition to the change in behavior (which
is a "phase transition"). The corresponding temperature is the lambda point:
Tx =2 .17K.

In 1938, right after the superfluid behavior was discovered, Fritz London suggested
that the lambda transition in liquid 4He may be a manifestation of a Bose-Einstein
condensation. The heat capacities of helium and of an ideal Bose gas, said London,
have similar shape, at least in a rough qualitative way, as figures 9.8 and 9.9 display.
Moreover, the peaks occur at similar temperatures, as we can readily show. At the
lambda point, the experimental mass density of liquid helium is
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206 9 Fermions and Bosons at Low Temperature

C

Figure 9.9 The experimental heat capacity C of liquid 4He (in coexistence with its vapor),
presented as a function of temperature (in kelvin). [Source: K. R. Atkins, Liquid Helium
(Cambridge University Press, New York, 1959).]

V ' / X point
X l 0 3 k g / m 3 , (9.57)

approximately one-seventh the density of water. The mass density and the mass of a
single 4He atom, m = 6.649 X 10~27 kg, provide all the data that one needs in order to
compute the Bose temperature T# of an ideal gas at the same number density N/ V.
Upon evaluating the factors in equation (9.51), one finds TB = 3.15 K. This tempera-
ture is sufficiently close to Tx to make London's suggestion plausible. Of course, no
one has been under any illusions about a perfect match. The Bose-Einstein condensa-
tion, as derived by Einstein and by us, occurs in an ideal gas—no inter-particle forces
whatsoever—but the atoms in liquid helium certainly exert substantial forces on one
another. Nonetheless, there may be some sense in which a macroscopic number of
helium atoms are "in the same quantum state" and hence act coherently.

A critical test of London's suggestion became possible after the Second World War,
when the isotope 3He became available in quantities sufficient for liquefaction. This
helium isotope has a net spin of \ft (arising from the single, unpaired neutron in the
nucleus) and is a fermion. Under atmospheric pressure, 3He condenses at 3.2 K, close
to the value of 4.2 K for 4He. The lower temperature for 3He is almost certainly a
consequence of the isotope's smaller mass. The crucial question is this: does liquid
3He show a lambda transition? Experiments over the temperature range from 3.2 K
down to 3 X 10~3 K say "no." Despite interatomic forces virtually identical to those
in 4He and despite a comparable mass and a comparable number density in the liquid
phase, 3He shows no evidence of a lambda transition in that great temperature range.
The inference is inescapable: the lambda transition in 4He is a consequence of the
isotope's boson character.

To be sure, the isotope 3He provides surprises of its own, and they are discussed in
section 12.6. Right now, however, we shift our focus from liquids to gases.
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9.5 Bose-Einstein condensation: experiments 207

BEC in a dilute gas
The acronym "BEC" denotes "Bose-Einstein condensation"—the phenomenon—or
"Bose-Einstein condensate"—the atoms in the single-particle ground state, whose
number is estimated by («i). In the physics literature, you will find both meanings in
use. In this subsection, BEC denotes the phenomenon of condensation. The important
point is that, in 1995, Eric Cornell, Carl Wieman, and their colleagues in Colorado
produced BEC in a dilute gas of rubidium atoms. Rubidium is an alkali atom,
following after lithium, sodium, and potassium in the first column of the periodic table.
The element is named after a prominent red line in its emission spectrum. The specific
isotope used by the Colorado group was 87Rb, which has an even number of neutrons
and, of course, equal numbers of electrons and protons. Consequently, the net intrinsic
angular momentum must be an integer (or zero) times h, and so 87Rb is a boson.

For the moment, suppose that the rubidium atoms had zero spin and were confined
in a box, the context that we analyzed in section 9.4. The requirement that must be met
for BEC to occur can be expressed in three equivalent ways, as follows.

First, the requirement can be stated as a temperature inequality:

) ' ( 9 - 5 8 )

J
where the Bose temperature TB was given explicitly in (9.51).

Second, the inequality can be rearranged (and a square root taken) so that it asserts
the requirement

/ F \ 1 / 3

Ath>(2.612)1/3(-J . (9.59)

This form says that the thermal de Broglie wavelength must exceed 1.38 times the
average interatomic separation. In short, the thermal wave packets must overlap
substantially.

Third, raising both sides of (9.59) to the third power and rearranging yields the form

— ^ > 2.612. (9.60)

Here one sees most clearly that increasing the number density N/ V (at fixed tempera-
ture) is another way to meet the requirement for BEC. (The physics is really this:
increasing the number density crowds the particles together, so that their thermal wave
packets overlap and quantum effects become essential.)

Once the atomic species has been chosen and hence the particle mass m has been
fixed, an experimenter can try to achieve BEC by lowering the temperature or
increasing the number density, or both. The first successful production required both.

The Colorado group first cooled rubidium atoms from room temperature to 20
microkelvin by laser cooling. The frequency of the laser beams that passed through the
rubidium vapor was set slightly too low for resonant absorption by atoms at rest. An
atom moving "upstream" in the laser beam (that is, moving toward the laser) sees the
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208 9 Fermions and Bosons at Low Temperature

frequency Doppler-shifted upward, toward resonance. Such a moving atom will absorb
a photon in a "head-on collision" and will be slowed down. Later, the atom will emit a
photon. The angular distribution of such photons is quite symmetric, and so—on
average—emission produces no net vectorial recoil. Thus absorption slows the atoms,
but emission has no effect on the motion; the atom's momentum suffers a net
reduction, on average. The process, repeated many times, slows down the atoms and
cools the gas.

In practice, an atom moves relative to six laser beams, one directed inward along
each of six Cartesian axes: ± i , ±y, and ±z. The beams along which the atom moves
upstream slow the atom down. For the beams along which the atom moves down-
stream, the Doppler shift (now away from resonance) reduces the absorption prob-
ability sufficiently that—in a qualitative assessment—we may just ignore those beams.
The composite result is a slowing force no matter which direction the atom moves.
(The context is sometimes called "optical molasses.")

Magnetic fields are required to confine the atoms while they are being cooled—and
to keep the cool atoms from falling in the Earth's gravitational field. After preliminary
laser cooling, the experimenters increased the field gradients, compressing the cloud
of atoms by a factor of 10 (in number density). Further laser cooling took the atoms'
temperature down to 20 microkelvin.

Finally, the experimenters removed all laser beams, confined the cool atoms in a
different magnetic trap, and began a process of evaporative cooling. The more energe-
tic atoms oscillate farther from the center of the trap. Selectively, the atoms near the
periphery were allowed to escape. The atoms that remain have less energy than the
original average energy. Continually allowing the faster atoms to escape progressively
reduces the average energy of the atoms that remain (because only slow atoms remain)
and hence lowers the temperature. The remaining atoms are confined near the center
of the trap.

In the 1995 Colorado experiment, the condensate first appeared when the tempera-
ture dropped to approximately 170 nanokelvin. Some 2 X 104 atoms remained in the
trap. Further evaporative cooling sent almost all surviving atoms into the single-
particle ground state: some 2,000 atoms in a volume approximately 10~5 meter in
diameter, all occupying the same quantum state.

We return now to the rubidium atoms themselves. The nuclear spin of 87Rb is \h.
The electrons, collectively, have zero orbital angular momentum and a net spin of \h
(contributed by the outermost electron). Thus, in its ground state, 87Rb can have a total
intrinsic angular momentum of \fi or 2h. Before turning off their cooling laser beams,
the Colorado group used a burst of circularly polarized light to pump all atoms into the
2h state and to align all the angular momenta. Therefore only one state of intrinsic
angular momentum was populated. Moreover, if a collision, say, changed the angular
momentum state, then the magnetic force on the atom would change, the atom would
no longer be confined, and it would escape from the trap. Thus only one state of
intrinsic angular momentum was ever relevant, and so the analysis for BEC was the
same as for a spinless boson.

In one significant respect, however, the Colorado experiment differed from our
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9.6 A graphical comparison 209

context in section 9.4. The magnetic fields confined the atoms with forces akin to those
of a harmonic oscillator (acting in three dimensions). The density of single-particle
states D(s) for the three-dimensional harmonic oscillator differs from the density for a
box with confining walls, and that change alters the details of the calculation. In short,
the Colorado criteria for condensation differ somewhat from those displayed in
relations (9.58) to (9.60).

You may wonder, how did the experimenters observe the condensed atoms? Basic-
ally, by letting the atoms cast a shadow. The next two paragraphs provide some detail.

Recall that all laser beams were turned off before evaporative cooling began. The
atoms were confined solely by a magnetic trap and were in the dark. To "see" the cold
atoms, the experimenters (1) turned off the electric currents that produced the trap's
magnetic fields, (2) allowed the now-free atoms to fly apart for 0.06 second (to provide
a wider cloud of atoms), (3) illuminated the expanded cloud with a pulse of laser light
(whose frequency was set—for maximum scattering—at the atoms' resonant fre-
quency), and (4) measured the intensity of the transmitted light as a function of
position on a two-dimensional planar detecting surface. Where the atomic cloud was
dense, much light was scattered from the laser pulse, and thus the high-density regions
cast a strong shadow.

At a temperature of approximately 100 nanokelvin, the shadow has a "darkness"
profile that consists of two distinct regions: a wide, gently rounded hill and a promin-
ent, narrow central spire. The spire is produced by the condensed atoms, which have
small momenta and hence cannot fly far from the center of the former trap in the 0.06
second expansion time. The atoms that were in single-particle states above the ground
state generate the gently rounded hill.

9.6 A graphical comparison

The chapter concludes with a graphical comparison of how fermions and bosons
behave. We examine the fashion in which the particles are distributed in energy at
various temperatures. The essential quantity is this:

/ estimated number of particles \
y per unit energy interval near s J

( 9 6 1 )

where N is the total number of particles. Usually, the numerator is the product of (na),
the estimated number of particles occupying the single-particle state cpa and having
energy £a, times D(e), the number of single-particle states per unit energy interval.
Thus, for fermions,

estimated number of fermions \
per unit energy interval near e J f{e)D(e) D(e)/N

N N ( }
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210 9 Fermions and Bosons at Low Temperature

For bosons, the corresponding expression is

estimated number of bosons
per unit energy interval near e

N
(n)BD(e) D(e)/N

N e(e-fi)/kT _ (9.63)

For bosons, the single-particle ground state, q>\, and its occupation number (n\) must
be treated separately. The reason is the following. At low temperature, the boson
function (n\) differs numerically by a huge amount from {ni) and from other {na)9

where a is a small integer. A plot of (na) as a function of the integer a would show a
spike at a = 1. Using a smooth density of states, D{e) = C X s1/2, to group adjacent
states is permissible if the states all exhibit nearly the same value for (na). That step
may be taken for states with a ^ 2, but the state cp\ shows such different behavior that
it must be treated separately.

Figure 9.10 compares the distributions in the limit of absolute zero. The integral of
the expression in (9.61) over the range 0 ^ e ^ oc must yield 1, and so the area under
the fermion curve is 1. In a pure continuum picture, the condensed bosons would be
represented by a Dirac delta-function at s — e\. Using a dot at the finite height that
corresponds to the fraction of atoms in the condensate is more informative.

(a)

f(e)D(e)
N

1.4
1.2

1
0.8
0.6
0.4
0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

(b)

N

1 -

0.5

e/kTB

Figure 9.10 How fermions and bosons are distributed in energy at T = 0. (a) Fermions; (b)
bosons. The dot on the boson graph represents the condensed particles; all the bosons are in the
single-particle ground state.
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9.6 A graphical comparison 211

Next, figure 9.11 shows how the fermion distribution spreads out as the temperature
is raised. Already at T = 3TF, the distribution is nearly classical, that is, the limiting
expressions in sections 8.4 and 8.5 are becoming valid.

Finally, figure 9.12 displays the boson distribution at temperatures above and below
TB. When T>TB, the distribution has a maximum at some energy substantially
greater than e\, the lowest single-particle energy. The area under those curves equals
1, for only a negligible fraction of the bosons are in the single-particle ground state q>\.
Already when T = 3TB, the distribution is approaching the classical shape.

Figure 9.11 The fermion distribution at four temperatures: T/T$ = 0.1, 0.5, 1, and 3. The higher
the temperature, the more spread out the distribution.

Figure 9.12 The boson distribution at three temperatures: T/TB = 0.8, 1.65, and 3. The dot
represents the fraction of bosons in the single-particle ground state when T = 0 . 87B.
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212 9 Fermions and Bosons at Low Temperature

When the temperature is below TB, the peak in the continuous distribution lies
extremely close to the vertical axis; for all practical purposes, the distribution declines
monotonically with increasing energy. Moreover, the area under the curve is signifi-
cantly less than 1 because a finite fraction of the bosons are in the single-particle
ground state. (Recall that the smooth curve represents the distribution of only those
bosons in states cpa with a ^ 2.) When T = 0.87B, that fraction is already 0.28 and is
represented by the dot at 0.28 on the vertical axis.

The gamut of behavior: low temperature to classical
At various points in previous sections—and again in this section—the terms "low
temperature," "nearly classical," "semi-classical," and "classical" have been used. A
review of what they mean—at least in this book—is in order.

Three items lie at the heart of the distinctions:

1. the presence of Planck's constant h in theoretical expressions;
2. the indistinguishability of identical particles (acknowledged at least in some

measure);
3. a difference in behavior between fermions and bosons.

In a "classical" expression, none of the three items pertains. Examples are the
relations (E) = \NkT and P = (N/V)kT.

Nonetheless, under the same physical circumstances (of temperature and number
density), other expressions may include h or recognize indistinguishability (but
show no difference between fermions and bosons). Such expressions are called
"semi-classical." Examples are the semi-classical partition function, Zsemi-Ciassicai —
(Z\)N/Nl9 the entropy expression in section 5.6, and the chemical potentials in
section 7.4.

As the temperature is reduced or the number density is increased, a difference in
behavior between fermions and bosons arises. When that difference is still small
relative to the behavior that they have in common, the behavior is called "nearly
classical." The prime example (so far in this book) is provided by the calculations of
energy and pressure in section 8.5.

Finally, at "low temperature"—that is, at temperature below the characteristic
temperatures such as TF and TB—all three items pertain and strongly so.

9.7 Essentials

1. The Fermi function,

is the form of («a)p appropriate for a continuous energy spectrum.
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9.7 Essentials 213

The quantitative statements about fermions that follow pertain to fermions whose
spin is ^h and which are free to move in a three-dimensional box.

2. At absolute zero, the Fermi function equals 1 out to the Fermi energy eF, where

, 2 / 3 , ,2

and is zero beyond that energy. The chemical potential has the limiting behavior

The ground-state energy of the entire system of N fermions is proportional to N X £F:

3. The Fermi energy defines a characteristic temperature, the Fermi temperature TF:

kT¥ = sF.

4. In the thermal domain 0 < T <C I F , the chemical potential differs little from its
value at absolute zero:

Some electrons near the Fermi energy are shifted upward in energy by an amount of
order kT. The number of such electrons is proportional to D(eF)kT. Thus the estimated
total energy (E) grows by an amount proportional to (kT)2. In consequence, the heat
capacity varies linearly with temperature:

In comparison with a classical ideal gas at the same temperature and number density,
the fermion gas (1) has a large kinetic energy per particle, (2) has a small heat capacity
per particle, (3) exerts a high pressure, and (4) experiences little dependence of
pressure on temperature.

5. At absolute zero, all bosons are in the single-particle ground state: (» I )B = N.
(Here and hereafter the bosons are taken to be spinless and free to move in a three-
dimensional box.)

6. For bosons, the characteristic temperature 7B is given by

kTB
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214 9 Fermions and Bosons at Low Temperature

and is called the Bose or Bose-Einstein temperature. The dependence on h, m, and
N/ V is the same as for the Fermi temperature; only the numerical coefficient differs
(slightly).

7. As the temperature is lowered below T&, a significant fraction of the bosons
condense into the single-particle ground state. The quantitative relationship is

(ni)=N

provided T<TB.

8. In qualitative terms, condensation into the single-particle ground state commences
when the thermal de Broglie wavelength 2th becomes larger than the average inter-
particle separation.

Further reading

For a more nearly exact evaluation of integrals containing the Fermi function f(e), a
good reference is appendix 5, "Integrals for the Fermi gas," in David S. Betts and Roy
E. Turner, Introductory Statistical Mechanics (Addison-Wesley, Reading, Massachu-
setts, 1992), pp. 278-81.

White dwarf stars are well-described in an elementary way by Frank H. Shu, The
Physical Universe: An Introduction to Astronomy (University Science Books, Mill
Valley, CA, 1982). In general, Shu's book has a ratio of insight to words that is much
higher than in the usual textbook. A more detailed development of white dwarfs is
provided by A. C. Phillips, The Physics of Stars (Wiley, New York, 1994). Phillips's
book is a fine place to see thermal physics at work in astronomy.

J. Wilks and D. S. Betts provide a splendid survey of both 4He and 3He in An
Introduction to Liquid Helium, 2nd edition (Oxford University Press, New York,
1987).

The discovery paper for BEC in a dilute gas is "Observation of Bose-Einstein
condensation in a dilute atomic vapor," by M. H. Anderson, J. R. Ensher, M. R.
Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198-201 (1995). Commen-
tary was provided by Gary Taubes, "Physicists Create New State of Matter," Science
269, 152-3 (1995), and by Graham P. Collins, "Gaseous Bose-Einstein condensate
finally observed," Physics Today 48, 17-20 (1995).

Carl E. Wieman described the discovery and his role in it in the superb paper, "The
Richtmyer memorial lecture: Bose-Einstein condensation in an ultracold gas," Am. J.
Phys. 64, 847-55 (1996).

A fine review article by Keith Burnett, "Bose-Einstein condensation with evapora-
tively cooled atoms," was published in Contemporary Physics 37, 1-14 (1996).
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Quantitative differences arise between BEC in a box and in a trap that is described
by a power-law potential. The issue is explored by V Bagnato, D. E. Pritchard, and
D. Kleppner, "Bose-Einstein condensation in an external potential," Phys. Rev. A, 35,
4354-8 (1987).

Bose-Einstein Condensation, edited by A. Griffin, D. W. Snoke, and S. Stringari
(Cambridge University Press, New York, 1995) collects the papers and insights of a
conference on BEC held in 1993.

Problems

1. The metal zinc provides two conduction electrons per atom. The average separation
of the conduction electrons is (V/N)1/3 = 1.97 X 10~10 meters. Give numerical
values at T = 300 K for the following quantities.

(a) Fermi energy (in eV),
(b) Fermi temperature,
(c) fractional shift in the chemical potential (relative to its value at absolute zero),
(d) Cv/i^Nk) for the conduction electrons, and
(e) the ratio of the heat capacities for the conduction electrons and the lattice

vibrations, Ceiectrons/Ciattice.

2. Use a computer to graph the Fermi function f{e) as a function of energy at five
values of temperature: T/T-p = 0.01, 0.1, 0.5, 1, and 3. You will need to determine the
associated values of the chemical potential. Plot your values of /u(T) as pi(T)/ep versus

FF, for these are the natural dimensionless variables.

3. At fixed volume and zero temperature, the total energy of an ideal fermion gas is
not proportional to the number TV of fermions present. Since, by the specification
"ideal," there are no forces between the fermions, how can this be? Doesn't it indicate
that the entire analysis is rotten at the core?

4. A hypothetical system of TV fermions has a single-particle density of states given by
the linear relation D(e) = £/£Q, where £Q is a positive constant with the dimensions of
energy. The fermions do not interact among themselves. Calculate

(a) the system's Fermi energy,
(b) the chemical potential as a function of T under the conditions 0 ^ T <C TV, and
(c) the total energy (E) and heat capacity under the same conditions.

In parts (b) and (c), it suffices to work through the lowest non-vanishing order in
powers of the temperature, that is, through the first temperature-dependent term.
Express all final answers in terms of N, 8Q, k, and T.
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216 9 Fermions and Bosons at Low Temperature

5. Consider the same system of fermions as in the preceding question, but examine
the semi-classical limit. For T ^> 7p, calculate

(a) the single-particle partition function,
(b) the partition function for all N fermions,
(c) the total energy (E),
(d) the chemical potential, and
(e) the total entropy.

The first non-vanishing term will suffice. Express all final answers in terms of N, £o>
k, and T.

6. In a hypothetical system, the single-particle energy eigenstates are nondegenerate
and have energies given by ea = aeo, where £o = 10~38 J. The index a runs over the
positive integers. The system contains N = 1020 fermions and is at temperature
T = 300 K.

(a) What is the Fermi temperature?
(b) Provide good estimates of the total energy (E) and the heat capacity, expressing

your answers in terms of N, EQ9 k9 and T.

7. Heating by adiabatic expansion. Initially, an ideal gas of TV fermions (of spin \h)
is confined to a volume V\ and has zero temperature. Then a valve is opened, and the
gas expands adiabatically into an evacuated region; the combined spaces have a
volume Vf. When the gas settles to a new thermal equilibrium, its behavior is found
to be that of a classical ideal gas. (Note. The walls are rigid and insulating through-
out.)

(a) What is the final temperature of the gas?
(b) Derive an inequality for the ratio Vf/ V\ and explain your reasoning.
(c) The title of this problem is surely an oxymoron. Explain the sense in which the

title is a contradiction in terms and also the sense in which the title is a legitimate
use of words.

8. Fermions in two dimensions. A total of N fermions (of spin \h and mass m) are
restricted to motion in two dimensions on a plane of area A. There are no mutual
interactions.

(a) For a temperature that satisfies the inequalities 0 < T <C rF, calculate the average
energy (E)/N9 the heat capacity C (at fixed area), and the total entropy S.

(b) Calculate the same three quantities when the temperature is sufficiently high that
the fermions behave like a semi-classical two-dimensional gas.

(Note. All answers are to be given solely in terms of k, T9 m9 h, N9 and A plus
numerical constants.)
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9. Consider TV = 1022 electrons at a number density N/V like that in copper. Place
them in a magnetic field of 2 tesla. Calculate the magnetization of the sample at
T = 0, that is, the net magnetic moment per unit volume. Ignore any contribution from
the motion of the electrons.

10. Pauli paramagnetism revisited. Split the conduction electrons into two sets:
magnetic moment up (|) and moment down (|). At T = 0, the number N^ of up-
moment electrons is

= T
where the density of states for up-moment electrons is
and where the constant C was defined in equation (9.4).

(a) Explain why the offset by —m^B arises in the limit of integration and why the
offset by -{-m^B appears in the function that gives the density of states. Then write
out analogous expressions for the down-moment electrons.

(b) Calculate the difference N^ — N^ to first order in the field B. Make the provisional
assumption that ju = £F, where £F is the zero-field value of the Fermi energy, and
set ju = £F temporarily. Develop an expression for the total magnetic moment
along B and compare it with the result in section 9.2.

(c) Use the requirement iVf + A^ = N to calculate (ji — £ F ) / £F through quadratic
order in the field B. Estimate the relative shift numerically for a field of 2 tesla. In
what way does your result justify the approximations in part (b)?

11. Why is the magnetic behavior of lithium-7 nuclei in a crystal lattice so different
from the magnetic behavior of conduction electrons? After all, both are fermions with
spin jh.

12. Treat a gas of neutrons as an ideal Fermi gas at T — 0 and with number density
N/V. A neutron has spin ^ft, and its magnetic moment has magnitude 1.04 X
10-3mB.

(a) Will the neutrons form a degenerate gas?
(b) What is the largest value of the number density for which the neutrons can be

completely polarized by an external magnetic field of 10 tesla? (Ignore the mutual
magnetic interactions of the neutrons.)

13. Suppose N paramagnetic atoms are confined to one-dimensional motion along the
direction of a uniform external magnetic field B. The length of the region is L, and
each atom (of spin \K) has a magnetic moment of magnitude m^. Pretend that the
atoms do not interact with one another.
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218 9 Fermions and Bosons at Low Temperature

Calculate the density of single-particle states as a function of single-particle energy.
Provide a graph of your result (with axes labeled). Specify any auxiliary assumptions
that you make. Be sure to check your answer by seeing whether it reduces to sensible
results in special circumstances. For example, does it yield the correct single-particle
partition function if... ?

14. Stars with degenerate but non-relativistic electrons throughout. Determine the
proportionality constant in our theoretical relation, R/RQ = const X (M/M©)"1/3,
first algebraically and then numerically. How does the relationship fare when compared
with the radius and mass of the white dwarf star 40 Eri B? (For a sense of scale, note
that observed stellar masses span a wide range: from approximately 0.1 M0, the least
mass that can initiate fusion, to approximately 30 M 0 , for extremely bright but short-
lived stars.)

15. Stars with degenerate and extremely relativistic electrons throughout. Equation
(9.39) defines a characteristic mass: the stellar mass that would be in equilibrium
(admittedly, in unstable equilibrium) if the electron gas were extremely relativistic
throughout the entire star.

(a) Determine that mass in terms of fundamental constants (such as A, c, G, and
^proton)- You will need to return to equation (9.29) for a starting point.

(b) Why does the electron mass not enter?
(c) Compare the characteristic mass numerically with Chandrasekhar's limiting mass:

1.4 M 0 .

16. Relativistic classical ideal gas. This problem uses equations (9.33), (8.18), and
(13.6) to calculate the pressure exerted by a classical ideal gas when the typical
particle speed may have any value between zero and the speed of light c.

(a) Confirm explicitly that the speed v may be written as

pc2 de
e dp'

where e — (p2c2 + m2c4)1/2 is the full relativistic energy of a free particle.
(b) Calculate (pv) as an integral over phase space, using the classical limit of the

quantum occupation numbers. The relation u = de/dp and one integration by parts
will enable you to evaluate (pv) by comparison with the integral that determines
the chemical potential in terms of N and other parameters.

(c) Finally, determine the pressure P. Is the result familiar? Is its range of validity
surprising?

17. Relativistic electron pressure at T = 0. At absolute zero, the Fermi function is 1
out to the relativistic energy that corresponds to the Fermi momentum p? and is zero
beyond. Thus
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Problems 219

1 [* 2VAnp2

The integral employs an expression from equation (13.6) in place of our usual density
of states.

(a) Why is division by Af required?
(b) If you express v in terms of p and the rest mass m, you can cast the integral into a

form that is tabulated, for example, in H. B. Dwight, Tables of Integrals and Other
Mathematical Data, 4th edition (Macmillan, New York, 1961).

(c) What do you find for the leading term in the pressure P when the strong inequality
pp/mc > 1 holds?

(d) Compare your result in (c) with the pressure exerted by a photon gas.

18. The metal beryllium has an especially large Fermi energy. Is special relativity
theory required if one wants to calculate £p correct to 1 percent? As part of your
response, compute the ratio v?/c, where i?p denotes the speed of an electron whose
momentum equals the Fermi momentum p$. Beryllium provides two conduction
electrons per atom, and the average separation of the conduction electrons is

= 1.60 X 10"10 meter.

19. An electron and a proton can react to form a neutron (and a neutrino) provided
sufficient kinetic energy is available (in the center-of-mass coordinate system). The
neutron-proton mass difference is mn — mp = 2.31 X 10~30 kg.

(a) What is the numerical value of the minimum kinetic energy?
(b) Take the proton to be at rest in the lab frame, and ignore the small difference

between the lab and CM reference frames. Specify thermal equilibrium at a
temperature of T = 0. What is the minimum number density N/ V of free electrons
for which the neutron-forming reaction can proceed?

(c) Under the specification that the number of nucleons (protons plus neutrons) equals
the number of electrons, estimate the minimum mass density of a neutron star.
Compare that density with the average mass density of the Earth, which is
5.5 X 103 kg/m3. A supernova explosion often produces a neutron star, a stellar
object of approximately solar mass but composed solely (almost) of neutrons.
Pulsars are believed to be rapidly rotating neutron stars.

20. BEC with sodium. The second experiment to produce BEC in a dilute gas used
sodium atoms. The number density was N/V = 1020 atoms/m3. The mass of a
sodium atom is m = 3.82 X 10~26 kg. As with the rubidium experiment, only one state
of intrinsic angular momentum was populated.
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220 9 Fermions and Bosons at Low Temperature

(a) If the trap that confined the atoms were adequately approximated by a box with
rigid walls, at what temperature would you expect BEC to set in (as one lowered
the temperature)?

(b) How low a temperature would be required for 90 percent of the atoms to be in the
single-particle ground state?

(c) The common, stable isotope of sodium has 12 neutrons and is the isotope referred
to above: 23Na. The unstable isotope 21Na has ten neutrons, the same nuclear spin,
and a half-life of 23 seconds. In the following, suppress the possibility of radio-
active decay.

A box of volume 1 cm3 contains 1014 sodium atoms at a temperature T =
1.3 X 10~6 K. The atoms form a dilute gas, and only one state of intrinsic angular
momentum is populated. Determine whether the heat capacity Cy is an increasing or
decreasing function of temperature if

(i) all atoms are 23Na atoms;
(ii) half are 23Na and half are 21Na.

21. Some details for the Bose—Einstein condensation.

(a) Chemical potential when T ^ 0.99rB. Solve equation (9.52) for the chemical
potential pi when T <TB. Show that the size of pi is consistent with our treatment
of the integral in (9.47) provided T ^ 0.99rB, to give a conservative upper limit.
This calculation provides a self-consistency check.

(b) (^2) relative to (n\). Estimate (^2), in order of magnitude, when T ^ 0.99rB.
For one route, show first that 82 — pi = £1 + (£1 — pi), that s\ = kTB/O(N2^),
and that e\ — pi = kT/O(N). The symbol "O( . . . )" denotes "a number of order

(c) («i) when T = TB. Computing (n\) when T = TB is a delicate business. Start by
introducing shifted energies: £« = 8a — s\ and pi' = pi — 8\. On the shifted scale,
the energy of the lowest single-particle state is zero, but the estimated occupation
numbers remain as before. Equation (9.47) becomes

1 />oo rl/2

The integral is (JT1 / / 2 /2) 2.612 when —pi'/kT = 0. Its value decreases when
—fji'/kT > 0 because the divisor is larger. The integral has an expansion as

-1/2
— [2.612 - IMi-pi'/kT)1'2 + . . . ] ,

as derived by John E. Robinson, Phys. Rev. 83, 678-9 (1951). Use this information
to solve for —fi'/kT and then («i), in order of magnitude, when T = TB.
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22. Energies qualitatively. On one graph, sketch the average energy per particle
(divided by k) versus temperature for three monatomic ideal gases: classical, fermion,
and boson. That is, sketch (E)/Nk versus rover the range from absolute zero to
"high temperature," so high that the quantum gases are in their semi-classical domain.
Where you can, specify the functional form of the curves, that is, their dependence
on T.
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10 The Free Energies
10.1 Generalities about an open system
10.2 Helmholtz free energy
10.3 More on understanding the chemical potential
10.4 Gibbs free energy
10.5 The minimum property
10.6 Why the phrase "free energy"?
10.7 Miscellany
10.8 Essentials

This chapter has several goals. One is to increase your understanding of the chemical
potential. Another is to describe the changes that arise in basic thermodynamic laws
when particles may enter or leave "the system." A third goal is to study additional
properties of the Helmholtz free energy, which first appeared in chapter 7. And a
fourth goal is to introduce another free energy, the Gibbs free energy, and to explore its
properties. Clearly, a lot is going on, but the section structure should enable you to
maintain your bearings.

10.1 Generalities about an open system

In this section, we examine changes that arise in basic thermodynamic laws when
particles may enter (or leave) what one calls "the system." What might be examples of
such entering or leaving? The migration of ions in an aqueous solution provides an
example. So does the motion of electrons from one metal to another at a thermocouple
junction. When one studies the equilibrium between argon in the gaseous phase and
argon adsorbed on glass (as we did in section 7.4), one may take the adsorbed atoms to
constitute "the system." Then atoms may enter the system from the vapor phase and
also leave it. The coexistence of two phases—solid, liquid, or vapor—provides a final
example in which one may take a specific phase as "the system." Atoms or molecules
may enter that phase or leave it.

When particles may enter or leave "the system," one says that the system is open
(to particle transfer). Otherwise, the system is closed.

Next, we recapitulate the First and Second Laws as we have known them. In section
1.3, energy conservation led us to the First Law in the form

q = AE + w, (10.1)

222
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10.1 Generalities about an open system 223

where w denotes a small (or infinitesimal) amount of work done by the system on its
surroundings. The system was presumed closed to transfer of particles across its
boundary.

Sections 2.4 and 2.6 gave us the succinct form of the Second Law:

A S > | , (10.2)

with equality if the process is "slow" and hence reversible. When the equality holds,
equation (10.2) tells us precisely how energy input by heating changes the system's
entropy.

In both equations (10.1) and (10.2), the symbol q denotes "energy input by heating"
and does not represent a state function. To derive a relationship among strictly state
functions, we begin by eliminating q. Multiply (10.2) on both sides by T and then
substitute for q from (10.1), finding

AE + w, (10.3)

with equality if the process is slow. This relationship is quite general, although it does
presuppose a system closed to particle transfer. To be sure, because the work term w is
not a state function, we must certainly go on.

Now we make two stipulations.

1. We specify slow and hence reversible changes, so that the equality sign holds.
2. We specify that only pressure-volume work is done, so that w = PAV.

The upshot is the relationship

TAS = AE + PAV. (10.4)

This equation connects changes in the variables S, E, and V when no particles enter or
leave the system.

Now let us allow particles of one species to enter (or leave) the system; for example,
the particles might be electrons or argon atoms. The number of such particles in the
system is denoted by N, and so AN is positive whenever particles enter the system.
How should we generalize equation (10.4) to accommodate variations in JV? That is,
how should we fill in the blank in the form

TAS = AE + PAV + (something) X AN? (10.5)

A discussion at the end of section 4.2 noted that the entropy is a function of E, V,
and N: S = S(E, V, N). Think of solving this equation for the energy E as a function

E = E(S, V, N). (10.6)
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224 10 The Free Energies

When the independent variables are altered in such a functional relationship, the
change in E takes the form

AE = E(S + AS, V + AV, N + AN) - E(S, V, N)

dNJ S

(If such a Taylor's series is not familiar, consult appendix A, which provides a
discussion of the procedure.)

Both (10.5) and (10.7) are true statements about how AE is related to other
differentials. To learn more, we compare coefficients of corresponding differentials in
the two equations.

When we compare the coefficients of AS in equations (10.5) and (10.7), we infer
that

This equality is just the reciprocal of equation (4.21), namely, the general symbolic
definition of absolute temperature. The proviso that the number N of particles be kept
fixed while we differentiate appears explicitly here.

Comparing the coefficients of AV implies

This relationship is comfortably analogous to what we found in section 5.4: the
pressure in energy eigenstate Wy is given by —dEj/dV.

The remaining term in (10.7) needs a counterpart in equation (10.4), and we
provided a blank for it: the "something" in equation (10.5). Thus we must generalize
(10.4) to read

U ) AN. (10.10)
oNJ s,v

The derivative (dE/dN)s,v gives the change in the system's energy when one particle
is added under the conditions of constant entropy and constant volume. These are
stringent conditions and probably are not at all familiar. Shortly, however, we shall find
that this derivative provides another way to express the chemical potential /*. Then we
shall have full justification for writing the generalization (10.10) as
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10.2 Helmholtz free energy 225

TAS = AE + PAV - pAN. (10.11)

We turn now to the necessary derivation.

10.2 Helmholtz free energy

Equation (10.6) told us that the internal energy is a function of the variables
{S, F, N}. The volume and number of particles are usually easy for an experimenter
to set and to control, but entropy is not. Temperature, however, is relatively easy to set
and to maintain. To devise an energy-like expression that is a function of the variables
{T, F, N}9 subtract S X (dE/dS)v,N from E9 that is, subtract the product ST:

F = E-SX (-|) =E-TS. (10.12)

The subtraction will cancel the term in AS that arises when one forms the differential
of E, and therefore F will not be a function of S. The algebraic expression on the far
right-hand side, E — TS, is precisely the Helmholtz free energy that we met in section
7.1, and so the abbreviation F is appropriate.

To confirm that F indeed depends on the set {7, F, N}, form the differential of
(10.12),

AF = AE- TAS - SAT, (10.13)

and then use (10.10) to eliminate AE on the right-hand side:

AF = -SAT-PAV + (-^) AN. (10.14)
\oNJ s,v

The differences on the right-hand side are solely AT, AF, and AN; thus F is a
function of the variables {T, F, N}, as desired. (In case you wondered, the coefficients
S, P and JU can indeed be expressed in terms of the variables {T, F, N}.) The
technique that we used in (10.12), namely, subtracting a judiciously chosen term, is
called a Legendre transformation. Problem 3 explores the Legendre transformation in
a more geometric fashion.

From equation (10.14), we can read off expressions for £, P, and (dE/dN)s,v in
terms of partial derivatives of F:

y
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226 10 The Free Energies

The first two relations can be filed away for now. We concentrate on the last and note
that we defined the chemical potential pi in (7.13) by (dF/dN)r,v, precisely the
derivative that appears here also. Thus (dE/dN)s,v is indeed the chemical potential,
for which we have two numerically equivalent but superficially distinct expressions:

.'Sf) (10.18a)
/ chemical _

potential u
(10.18b)

The succinct form of the differential relation for F becomes
AF = -SAT - PAV + fiAN. (10.19)

10.3 More on understanding the chemical potential

Section 7.1 introduced the chemical potential and described it as follows: the chemical
potential measures the tendency of particles to diffuse. This characterization focuses
on the chemical potential as a function of spatial location. Particles diffuse from
regions of high chemical potential to those of low chemical potential.

In the present section we focus on the numerical value taken by the chemical
potential. Equation (10.18a), which expresses the chemical potential as a derivative of
the internal energy, will enable us to understand why pt takes on certain numerical
values.

Figure 10.1 displays the chemical potential, separately for fermions and for bosons,
as a function of temperature. In previous chapters, we evaluated ju explicitly in three
domains: absolute zero, nonzero but low temperature (in a sense made more precise in
the context), and the semi-classical domain. Here we examine the first and last of those
domains.

Absolute zero
In the limit as the temperature is reduced to absolute zero, the canonical probability
distribution implies that the system settles into its ground state. (Any degeneracy of
the ground state, if present, would be insignificant, and so the description assumes
none.) Only one quantum state (of the entire system) is associated with the macrostate
of zero absolute temperature. Thus the multiplicity is merely 1. Adding a particle at
constant entropy requires that the multiplicity remain 1. Moreover, after the addition,
the system must again be in thermal equilibrium. Thus the system must be in the
ground state of the new system of (N +1 ) particles. (One could preserve "multiplicity
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Figure 10.1 The chemical potential pi as a function of temperature for (a) fermions and (b)
conserved bosons. When T = 7p, the chemical potential for fermions is close to zero:
ju/e? = —0.0215. As T —> 0, the curve for bosons approaches e\/kTB, where £\ is the energy of
the single-particle ground state. The numerical value of s\ is so small that, on the graph, si/kTB

is indistinguishable from zero.

= 1" by using a single state somewhat above the ground state, but that procedure
would not meet the requirement of thermal equilibrium.)

For a fermion, we construct the new ground state from the old by adding a new
single-particle state at the Fermi level £p and filling it. Thus the additional particle
must bring energy £p with it, and that must be the value of the chemical potential, as
indeed figure 10.1 confirms.

The bosons that we studied in chapters 8 and 9, such as helium atoms, obey a
conservation law: the number of bosons is set initially and remains constant in time

�((%��+++���"�&�����$&���$&��(�&"'���((%����,��$��$&����������������
��	��������
�$+#!$������&$"��((%��+++���"�&�����$&���$&����#�*�&'�(-�$����&+�� ��$#��������������(����	��
���')����(�($�(�����"�&������$&��(�&"'�$��)'����*��!��!���(

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.011
http:/www.cambridge.org/core


228 10 The Free Energies

(unless we explicitly add or subtract particles). For such bosons, we construct the new
ground state by adding a single-particle state at the lowest single-particle energy and
filling it. The chemical potential should equal the lowest single-particle energy, and
that is what we found in chapter 9.

Semi-classical ideal gas
For an ideal gas in the semi-classical domain, the probability that any given single-
particle state is occupied is quite small. Thus an additional atom could go into any one
of a great many different single-particle states. Consequently, it is more productive to
think of the energy change for the entire gas (of N or N + I atoms). Moreover, we
may use classical reasoning about multiplicity and entropy. Adding an atom, which
may be placed virtually anywhere, surely increases the spatial part of the multiplicity
and hence tends to increase the entropy. To maintain the entropy constant, as stipulated
by equation (10.18a), requires that the momentum part of the multiplicity decrease. In
turn, that means less kinetic energy, and so the inequality AE < 0 holds, which implies
that the chemical potential is negative, in agreement with the display in figure 10.1 and
with section 7.4.

Here we find that adding one atom to an ideal gas reduces the system's energy.
Because the atoms of a structureless monatomic ideal gas possess energy only in the
form of kinetic energy, which is inherently positive, the addition must occur under
special circumstances if the system's energy is to decrease. Indeed, the addition does:
conditions of constant volume and constant entropy.

This semi-classical context points out that equation (10.10) is not a mere general-
ization of the First Law of Thermodynamics to encompass transfer of particles to or
from the system. A proper generalization of the First Law would read as follows:

q = AE + w-( energy per particle when \ ^
y particles are outside the system J

An accelerator could shoot particles into the system with any energy one might wish,
and so the coefficient of AN here can have any value one chooses. In contrast,
equation (10.10) requires that the system be in thermal equilibrium both before and
after the small changes in the variables £, E, V, and N. The restriction to maintaining
thermal equilibrium is what gives the coefficient of AN in equations (10.10) and
(10.11) a unique value.

Photon gas
We calculated the properties of a photon gas in chapter 6, well before we developed
the Bose-Einstein occupation number analysis in chapter 8. Nonetheless, the idea of
an estimated occupation number played a role in both chapters. The estimated number
of photons in a mode with frequency v emerged as
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10.3 More on the chemical potential 229

Photons are bosons, for their intrinsic angular momentum—their spin—is ft in magni-
tude and hence is integral. Thus ~n(y) should be an instance of the general Bose-
Einstein expression

< > ( 1 0 2 2 >

A comparison indicates that the chemical potential fi for a photon gas is zero, indeed
is zero at all temperatures. How can we best understand this?

The key insight is that photons are not subject to a conservation law for number.
The atoms in a container wall readily absorb and emit photons. Even if one invoked
energy conservation, an atom could absorb one photon of high energy and emit two
photons, each of lower energy.

When we calculated in chapter 6, we did not fix the number of photons initially or
even specify what the estimate (N) for the total number should become. Rather—
although only implicitly—we considered all conceivable numbers of photons in each
possible mode and weighted the corresponding states by the probability of occurrence
according to the canonical probability distribution. The calculation presumed that we
knew the volume V of the container and the temperature T, a temperature common to
both walls and photon gas. At thermal equilibrium, everything about a photon gas is
determined by T and V.

Given this information, we can readily compute the chemical potential for a photon
gas. In general, for a gas consisting of a single species of particle, the Helmholtz free
energy is a function of the set {I7, F, 7^}. Because everything about a photon gas is
determined by T and F, its Helmholtz free energy must be a function of T and V only:

^photongas^^r, F). (10.23)

(If you want more evidence for this conclusion, problem 6 offers a route.) The
chemical potential pi now follows from (10.18b):

because Fp^oton gas does not depend on N.

Summary
For the most part, section 10.3 can be summarized as follows. The expression
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230 10 The Free Energies

provides a way to understand the numerical value of the chemical potential: JU is the
energy increment when one particle is added at constant entropy and fixed external
parameters. Constant entropy is a stringent requirement and will—in the semi-classical
domain—force the chemical potential to be negative.

10.4 Gibbs free energy

The way in which thermodynamic quantities scale with the system's size becomes vital
now. To recapitulate from section 5.6, imagine two identical macroscopic systems,
each in thermal equilibrium. Two identical blocks of ice provide an example. Put the
two systems together and in contact. Some quantities, such as temperature and density,
will remain the same. Quantities that remain the same when one scales up the system
in this fashion are called intensive. Some other quantities, such as internal energy and
volume, will double (provided that surface effects are negligible). Quantities that
double when one doubles the system are called extensive.

Table 10.1 lists many of the quantities that have appeared so far and their behavior
under scaling.

A glance back at equation (10.6) shows that the internal energy E is a function of
three extensive variables: S, V, and N. (This is true under our prior stipulations:
namely, only pressure-volume work arises, and particles of only one species are
present.) The Legendre transformation to the Helmholtz free energy replaced the
extensive variable S by the intensive variable T. An energy-like expression that
depends solely on intensive variables plus particle numbers has nice features (as we
shall see shortly). How can we construct it?

Another Legendre transformation will replace the extensive variable V by the

Table 10.1 Scaling properties of some common thermodynamic
quantities. In section 5.6, devoted to the semi-classical ideal
gas, we noted the linear scaling of entropy, which makes S an
extensive variable. As the ratio of changes in two extensive
quantities, the chemical potential is an intensive quantity. The
presence of the Gibbs free energy anticipates a bit.

Intensive Extensive

Temperature: T Energy: E
Pressure: P Volume: V
Chemical potential: pi Entropy: S
Number density: N/ V Number of particles: N
Specific heat Heat capacity: Cy or Cp
External magnetic field: Bext Helmholtz free energy: F

Gibbs free energy: G
Log of partition function: In Z
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10.4 Gibbsfree energy 231

intensive variable P. From F9 subtract the product V X (dF/dV)r,N, that is, subtract
V X (-P) :

G = F -

= E-

vx

TS +

\dVj

PV.

T,N
F - V X (-P)

(10.26)

This transformation defines the Gibbsfree energy, denoted by G.
To confirm that G depends on the set {T, P, N}, form the differential of equation

(10.26),

AG = AE- TAS - SAT + PAV + VAP, (10.27)

and then use (10.11) to eliminate AE on the right-hand side:

AG = -SAT + VAP + juAN. (10.28)

Differentials of only T, P, and Â  appear on the right-hand side, and so G is indeed a
function of the set {T, P, N}. Moreover, we can read off expressions for the coeffi-
cients in terms of partial derivatives of G:

( i o 3 o )

At the moment, the noteworthy result is the last: when all intensive variables are held
fixed, the derivative of G with respect to N gives the chemical potential.

In the second line of equation (10.26), each term has one extensive variable, and so
the Gibbs free energy is an extensive quantity. Moreover, G depends on only one
extensive variable, namely, the number TV of particles, and so G must be proportional
to N. A glance back at (10.31) tells us that the proportionality constant is the chemical
potential. Thus the structure must be

G = juN, (10.32)

a charmingly simple outcome.
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232 10 The Free Energies

Generalizations
The relations that we have just worked out, in particular the definition of G in (10.26),
the differential relation in (10.28), and the structure in (10.32), are the most common
ones. At times, however, they may need to be generalized. The need can arise in two
ways, as follows.

1. If magnetic work, say, is possible in addition to pressure-volume work, then the
very definition of G may need to be augmented with magnetic terms. Why?
Because the over-riding goal of the Legendre transformation is to remove all
extensive variables other than particle numbers. The Gibbs free energy is to be a
function of intensive variables plus particle numbers.

2. If more than one species of particle may change in number, then the Gibbs free
energy becomes a sum of terms like that in (10.32):

Ni> (10.33)

where the sum goes over all particle species and each species has its own chemical
potential. [To derive this result, one need only go back to equation (10.6) and
generalize it to read E = E(S, V, N\9 N2, .. .), where N\9 #2, . . . denote particle
numbers for all species. All subsequent steps in the derivation are merely algebraic
extensions of the steps we took.]

Functional dependence of the chemical potential
A last point concerns the functional dependence of the chemical potential. Equation
(10.31) tells us how the chemical potential is to be computed when the independent
variables are the set { J7, P, N}. As the derivative of an extensive variable with respect
to a particle number, the chemical potential itself is an intensive quantity. The
variables on which an intensive quantity depend must be intensive or the ratio of
extensive quantities. Only in this way will the intensive quantity remain unchanged if
two identical systems are combined. (The ratio of two extensive quantities is effec-
tively intensive and hence is admissible.) When the independent variables are the set
{T, P9 N}9 the chemical potential must be a function of the intensive variables T and
P only:

l* = p(T9P). (10.34)

When several particle species are present, the Gibbs free energy takes the form
displayed in (10.33), where each species has its own chemical potential jUf. The
corresponding variables for G are the set {7, P9 N\9 N2, . . . , N#sp}, where #sp
denotes the number of species. Temperature and pressure are, of course, intensive
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10.5 The minimum property 233

variables, but further effectively intensive variables can be formed from the ratios of
the particle numbers. Thus, for example, a full set of intensive variables would be

' 'N'N'"" N I ' U }

Altogether, there are 2 + (#sp — 1) independent intensive variables, and each chemi-
cal potential may depend on all of them. Knowing about this dependence will be vital
in chapter 12, where we follow Willard Gibbs and determine the number of phases that
may coexist at thermal equilibrium.

10.5 The minimum property

In section 7.2, we used the canonical probability distribution to show that the
Helmholtz free energy has a minimum at what thermodynamics calls the equilibrium
state. The great merit of that derivation lay in our being able to see the details. Now we
derive the same conclusion by a more general but also more abstract line of reasoning.

Specify that the system

(a) is in thermal contact with its environment, whose temperature T remains constant
throughout,

(b) does no work on its surroundings (for example, the volume V remains constant),
(c) is closed to entry or exit of particles.

Then equation (10.3) becomes

TAS ^ AE. (10.36)

Subtracting TAS from both sides and invoking the isothermal nature of our context,
we may write the relationship as

0 ^ AE - TAS = A(E - TS) = AF,

that is,

0 ^ AF. (10.37)

Read from right to left, (10.37) says that the change in F is negative or zero.
In a small spontaneous change, the inequality sign holds in equation (10.2):

AS>q/T; our analysis in section 2.6 led to that conclusion. The inequality sign
carries along to (10.37), and so the Helmholtz free energy decreases in a small
spontaneous change. One can follow such small decreases in F until the system settles
down to equilibrium. Then no further spontaneous change in F is possible, and so F
has evolved to a minimum.
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234 10 The Free Energies

[For an example, take the context of figure 7.1, insert a valve in the vertical tube,
shut the valve, and specify equal number densities in the upper and lower volumes to
start with. Keep both volumes in thermal contact with some heat reservoir at a fixed
temperature. Now open the valve for a short time. Because of gravity, more molecules
will diffuse from the upper volume to the lower volume than in the opposite direction;
Ni will increase. Shut the valve, and let the molecules in each volume re-equilibrate
among themselves and with the heat reservoir. As figure 7.4 showed, the composite
Helmholtz free energy will have decreased. Next, repeat the steps until no further
(macroscopic) change occurs. Then you may toss away the valve and say that F has
evolved to a minimum.]

If one imagines a small reversible step away from equilibrium, then the equality sign
holds in equation (10.2): AS = q/T. Again, the sign carries along to (10.37), and so
the equation AF = 0 holds for a small, imagined step away from equilibrium.

An analogous minimum property holds for the Gibbs free energy. The conditions
differ from those for the Helmholtz free energy in only one respect. Item (b) is
replaced by the following stipulation.

(b') The (external) pressure P remains constant, and only pressure-volume work may
be done on the environment.

Then equation (10.3) becomes
TAS^AE + PAV. (10.38)

Under conditions of constant T and P, we may rearrange the terms so that they assert

0 ^ AG. (10.39)

The reasoning for a minimum at equilibrium proceeds as before.
We stipulated no transfer of particles to or from the system. That does not, however,

preclude changes in how the particles are aggregated within the system as the system
evolves to equilibrium. Argon atoms, say, could move from the vapor phase to
adsorption sites. Molecules of H2 and O2 could react to form molecules of H2O, or
water molecules could dissociate. These possibilities are vital when one studies phase
equilibrium or chemical reactions. We will work out the consequences later. The point
of this paragraph is merely to alert you to an easily over-looked aspect of the
conditions for a minimum.

10.6 Why the phrase "free energy''?

You may wonder, why is the function F = E — TS called a "free energy"? To answer
this question, we return to equation (10.3) and subtract AE from both sides, thus
isolating the work terms on the right-hand side:

-AE+TAS^w. (10.40)
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10.6 Why the phrase "free energy"? 235

If the system and its environment are at the same temperature T and if that temperature
remains constant during whatever small changes occur, then we may write the left-
hand side in terms of the Helmholtz free energy:

-AF 2* w (10.41)

for an isothermal process. Note the minus sign. Reading (10.41) from right to left, we
find that the total work done is less than or equal to the decrease in the Helmholtz free
energy. In a slow and hence reversible process, the equal sign applies, and thus the
work done is precisely equal to the decrease in F. Thus the change in F determines
the amount of energy "free" for work under the given conditions.

The German physicist (and physiologist) Hermann von Helmholtz had in mind the
property described above when he coined the phrase "free energy" for E — TS in
1882.

An example
The isothermal expansion that was illustrated in figure 2.6 provides a ready-made
example. Suppose the gas starts at an initial pressure Pi that is well above atmospheric
pressure. The gas expands slowly from initial volume V\ to final volume Vf. What is
the decrease in the Helmholtz free energy? For a semi-classical ideal gas, the internal
energy E depends on temperature but not on volume; hence AE = 0 holds here. For
the entropy change, we can refer to equation (5.41) and find

AS = kN[ln Vf - In V(\ = kN\n(Vf/Vi).

Thus, for this reversible isothermal process,

AF = AE- TAS

= -TkNln(Vf/Vi).

The decrease in the Helmholtz free energy is NkT\n(Vf/V{), and that expression
should give the work done by the system.

The work done can also be calculated directly: evaluate the integral J^f P dV, using
the ideal gas law to express P in terms of V and T. The integral route confirms the
conclusion derived by the free energy route.

Note that all the energy expended as work came from the "warm brick" that
maintained the gas at constant temperature. This highlights the importance of the
context: an isothermal process, guaranteed by some environmental source capable of
delivering energy by heating (or absorbing it by cooling). To be sure, if we acknowl-
edged intermolecular forces in the gas, then the internal energy E would change also.
In the generic situation, both AE and TAS contribute to the isothermal change in
Helmholtz free energy and hence to the work done.
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236 10 The Free Energies

10.7 Miscellany

A few points about this chapter remain to be made or should be emphasized.

Thermodynamic potentials and natural variables
We used Legendre transformations to move our focus from the energy E to the
Helmholtz free energy F and thence to the Gibbs free energy G Table 10.2 displays
the variables upon which we conceived those functions to depend. Also shown are the
functions that one can generate by partial differentiation with respect to the indepen-
dent variables. Looking across the first line, we see that the relevant state functions for
the system are seven in number: E9 S, V, N, T9 P9 and JU. The quantities in every other
line enable one to express those seven state functions in terms of the line's three
independent variables. To be sure, some of the seven quantities may be only implicit.
For example, although E does not appear in the second line, it can be expressed as
E = F + TS.

In mechanics, the potential energy serves as a function from which the force can be
computed by differentiation with respect to position. In an analogous language, one
says that the functions E, F9 and G serve as thermodynamic potentials from which the
remaining state functions can be computed by partial differentiation. For each thermo-
dynamic potential, the variables that enable one to do this are called the natural
variables for the potential.

Focus for a moment on the internal energy E as a thermodynamic potential. Its
natural variables are 5, V9 and N. For a monatomic classical ideal gas, one could
easily write E as a function of T and N: E = \NkT. The variables T and N9 however,
would not enable one to compute the pressure, entropy, or chemical potential by partial
differentiation. Thus, although T and N are permissible as variables to use in express-
ing E9 they are not the most appropriate when the goal is to generate other functions
from E by differentiation. The same judgment holds for the more general set
{T9 V9 N}: permissible, but not most appropriate for E.

In short, a state function like E may be thought of as a function of several different
sets of independent variables, but only one such set is appropriate—and hence

Table 10.2 The natural variables for the thermo-
dynamic potentials, followed by the state func-
tions that partial differentiation produces.

Potential Variables Partial derivatives

E S,V9N T9 -P9 ju
F T9V9N -S, -P9 ix
G T9P,N -S9 V, JU
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10.7 Miscellany 237

"natural"—when the goal is to compute other state functions by partial differen-
tiation.

Extremum principles
There is another sense in which the free energies, F and G, are desirable functions.
Recall our formulations of the Second Law of Thermodynamics in chapter 2. In one
version, the Second Law asserts that the entropy S evolves to a maximum under
conditions of fixed E, V, and N. That is an extremum principle.

The free energies provide extremum principles under different but analogous
conditions. For example, section 10.5 established that the Helmholtz free energy F
achieves a minimum under conditions of fixed T (for the environment), V9 and N. In
an essential sense, the functions F and G carry over the basic extremum principle of
the Second Law to other sets of independent variables. [Because F and G contain the
term — TS, where one should note the minus sign, an entropy maximum is converted to
a free energy minimum (provided that the temperature is positive).]

In summary, because the free energies F and G are functions of convenient
variables (such as N9 T, V, or P) and because they provide extremum principles, they
are sure to be useful theoretically.

Text and context
The notation and conventions in this chapter are the most common ones. In other texts
and other contexts (especially magnetic), differences may arise. The key to keeping
your bearings is this: for each free energy, look to see what its independent (and
natural) variables are. If they are temperature, external parameters, and particle
numbers, then the free energy has the properties of our Helmholtz free energy F. If
they are temperature, other intensive variables, and particle numbers, then the free
energy has the properties of our Gibbs free energy G.

When is juAN needed?
Lastly, we consider the question, when must one include a term like JUAN in an
equation? If particles enter or leave the system, either literally or as an imagined
process, then one must use an equation like (10.11),

TAS = AE + PAV- JUAN, (10.42)

or its analog for one of the other thermodynamic potentials. Equation (10.42) might
need to be generalized for multiple species of particles or for other work done. In
any event, it presupposes that the initial and final situations are states of thermal
equilibrium.
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238 10 The Free Energies

If no particles enter or leave the system, then one may remain with equations (10.1)
and (10.2), statements of the First and Second Laws:

q = AE + w,

where, obviously, no juAN terms appear. Both of these equations hold even if particles
move from one phase to another within the system or engage in chemical reactions that
change the number of particles of various species, increasing some while decreasing
others. Moreover, these two equations suffice for proving that the two free energies, F
and G, attain a minimum at equilibrium. (To be sure, certain environmental conditions
are required for the proof also, as listed in section 10.5. For example, an isothermal
context is required.) Thus, for a small step away from equilibrium in which one
imagines particles to move from one phase to another within the system or to engage
in a chemical reaction, one may indeed invoke the minimum property and assert that
the free energy does not change:

AF = 0 or AG = 0. (10.43)

For us, the minima are easily the most important results of the present chapter. They
lead to relations among chemical potentials at equilibrium, but the way in which those
relations arise is best seen in chapters 11 and 12, to which we now turn.

10.8 Essentials

1. When particles may enter or leave "the system," one says that the system is open
(to particle transfer). Otherwise, the system is closed.

2. Eliminating the energy-input-by-heating term q between the First and Second Laws
yields the relationship

TAS ^ AE + w,

with equality if the process is slow. This relationship is quite general, although it does
presuppose a system closed to particle transfer.

3. If particles enter or leave the system, either literally or as an imagined process, then
the equation

TAS = AE + PAV - JUAN

holds, provided that the initial and final situations are states of thermal equilibrium.
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4. The energy E has the set {S, V, N} as its natural independent variables. The
Helmholtz and Gibbs free energies are introduced because they are energy-like
expressions with different independent variables, variables that correspond to differ-
ent—and more easily attained—physical contexts.

5. The Gibbs free energy is defined by

G = E - TS + PV

in a context where only pressure-volume work may be done. In general, the Gibbs free
energy is to be a function of intensive variables plus particle numbers.

6. When only a single species is present, G depends on the set {T9 P9 N}. Moreover,
G is then proportional to the chemical potential:

7. Equivalent expressions for the chemical potential are the following:

dF\ _ (dE\ _ /<9G\
dNjTtV~ \dN)Sj~ \dN)Ttp

8. The chemical potential for a photon gas is zero: /photon gas = 0.

9. The free energies F and G attain a minimum at thermal equilibrium under the
following conditions: the system

(a) is in thermal contact with its environment, whose temperature T remains constant
throughout,

(b) is closed to entry or exit of particles,
(c) for F, does no work on its surroundings (for example, the volume V remains

constant) or, for G, the (external) pressure P remains constant, and only pressure-
volume work may be done on the environment.

For an imagined step away from the minima (under the stipulated conditions), the free
energies do not change:

AF = 0 or AG = 0.

Further reading

The Legendre transformation is developed in detail by Herbert B. Callen, Thermo-
dynamics and an Introduction to Thermostatistics, 2nd edition (Wiley, New York,
1985), pages 137-51.
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240 10 The Free Energies

Problems

1. The chemical potential from the relation pi — (dE/dN)s,v- Equation (5.41) gives
the entropy S of a monatomic semi-classical ideal gas in terms of V, N, and 2th-

(a) Display the entropy as a function of V, N, and the total energy E.
(b) Compute the chemical potential from the relation /u = (dE/dN)s,v and compare

your result with that in equation (7.20).

2. On F and inZ. In section 5.4, we derived expressions for P and (E) in terms of
derivatives of InZ. Section 7.1 established a connection between the Helmholtz free
energy and In Z. Use the connection and the relations in sections 5.4 and 5.5 to express
P, (is), and S in terms of operations on F. Then compare your results with the
expressions in section 10.2.

3. Legendre transformation, geometrically conceived. Given a functional relation,

y = A*), (i)

with slope or tangent t = dy/dx, how can one replace the original independent
variable x by the tangent t as the new independent variable while retaining all the
information contained in equation (1)? Conceive of the curve y = y(x) as generated by
the envelope of its tangent lines, as illustrated in parts (a) and (b) of figure 10.2. If you
do not have the curve in front of you, then, to construct the set of tangent lines, you
need to know the ^-intercept of each tangent line as a function of the slope. That is,
you need / = I(t), where / denotes the j-intercept. The letter / is a mnemonic for
intercept.

(a) Use part (c) of the figure to determine the intercept / in terms of y, x, and t. How
is / related to the function y — xX (dy/dx), which is the Legendre transform of y
with respect to x?

(b) Next, show that / can indeed be considered a function of t alone. (Forming the
differential dl is a good first step.)

(c) What is the derivative dl/dt in terms of the original variables?
(d) Does there exist a second Legendre transformation that would take one from the

pair / and t back to the pair y and x?

4. Maxwell relations. If a function /(x, y) is sufficiently smooth, then the order of
partial differentiation is irrelevant: d(df/dx)/dy = d(df/dy)/dx. James Clerk Max-
well put this property to use with functions derivable from a thermodynamic potential.

(a) Use the Helmholtz free energy as an intermediary to express the derivative
{dS/dV)r in terms of a derivative of the pressure P. Then specify that the ideal
gas law holds, evaluate your derivative of P9 and finally integrate to determine the
volume dependence of the entropy of a classical ideal gas.
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(a) -

( b ) -

(c)

y-
axis

x-axis

Figure 10.2 Diagrams for the Legendre transformation, conceived geometrically, (a) The curve
y = y(%). (b) The curve defined by the envelope of its tangent lines, (c) One tangent line and its
relation to x, y, t, and I(t).
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242 10 The Free Energies

(b) Use equation (10.19) and Maxwell's idea to relate the derivative {dfji/dV)^j to
another derivative and then determine the volume dependence of the chemical
potential for a classical ideal gas.

5. Enthalpy.

(a) Use a Legendre transformation to construct a new energy-like function
H = E + (product of two variables) such that H is naturally a function of S, P,
and N. The function is called the enthalpy.

(b) Determine the thermodynamic functions that can be gotten by differentiating H
with respect to S, P, and N.

6. Helmholtz free energy for a photon gas. The Helmholtz free energy for a single
electromagnetic mode must have the form — £rinZthat single mode- For many indepen-
dent modes, the system's full partition function is formed multiplicatively, and so the
free energy is formed additively.

(a) Use the reasoning outlined above to derive the result

p̂hoton gas = f DEM(V) X (-kTln

(b) Extract the dependence of photon gas on T and V. An integration by parts will
enable you to cast the remaining dimensionless integral into a form that you have
met. Provide a detailed treatment of the terms at v = 0 and v = oo that arise in the
integration by parts.

(c) Use Fphoton gas to compute P, S, E, and JU. Then compare with previous expressions
in chapter 6 and in this chapter.

7. Because the chemical potential for a photon gas is zero, the Gibbs free energy
should be zero also. Are the results for (is), S, and P in section 6.2 consistent with this
expectation?

8. Information from the Gibbs free energy. You are given the following Gibbs free
energy:

aT5'2

where a is a constant (whose dimensions make the argument of the logarithm
dimensionless). Compute (a) the entropy, (b) the heat capacity at constant pressure C/>,
(c) the connection among V, P, N, and T, which is called the "equation of state," and
(d) the estimated energy (E).
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9. Chemical potential from S. The chemical potential can be expressed as a partial
derivative in many different ways, each useful in some context.

(a) Determine the proportionality constant (really, a proportionality function) in the
relation

is proportional to (dS/dN)E,v-
Rearranging equation (10.11) provides a good route.

(b) Test your relationship in some context where you can work out all factors
explicitly.
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11 Chemical Equilibrium
11.1 The kinetic view
11.2 A consequence of minimum free energy
11.3 The diatomic molecule
11.4 Thermal ionization
11.5 Another facet of chemical equilibrium
11.6 Creation and annihilation
11.7 Essentials

Chemical equilibrium is certainly a topic for chemists. Why does it appear in a book
on thermal physics for physicists and astronomers? For two reasons, at least. First,
chemical reactions play vital roles in astrophysics, in atmospheric studies, and in
batteries, to mention just three topics that physicists and astronomers may find
themselves investigating. Second, chemical equilibrium provides more practice with
the chemical potential, which is truly an indispensable tool for any practitioner of
thermal physics.

The chapter starts with a kinetic view of how chemical equilibrium arises. That will
show us how chemical concentrations are related at equilibrium. Then we will use a
free energy argument to derive the same structure from the Second Law of Thermo-
dynamics. Applications follow.

11.1 The kinetic view

A glass flask is filled, let us suppose, with a dilute gaseous mixture of diatomic
hydrogen (H2) and diatomic chlorine (CI2). Through the electric forces acting during
collisions, a chemical reaction of the form

H2 + Cl2 ^ 2 HC1 (11.1)

is possible. The reaction forms hydrogen chloride (HC1) and, run backward, leads to
the dissociation of HC1. For simplicity's sake, we specify that the reaction (11.1) is the
only reaction that H2, CI2, and HC1 participate in. The number density of HC1 is
written as [HC1] = Nnc\/V, where iVnci denotes the total number of HC1 molecules
and V is the flask's volume. For brevity's sake, I shall occasionally refer to the number
density as the "concentration."

244
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11.1 The kinetic view 245

The concentration of HC1 will be governed by a rate equation with the structure

d[RCl]
dt

= formation rate — dissociation rate. (11.2)

How do these rates depend on the number densities of the various molecular species?
If the concentration of CI2 is held fixed but the concentration of H2 is doubled, we can
expect twice as many collisions per second that form HC1. Thus the formation rate
ought to be proportional to the hydrogen concentration [H2]. By a similar line of
reasoning, the rate ought to be proportional to the concentration of [CI2]. Thus

formation rate = /fonnation(r)[H2] [Cl2], (11.3)

where the proportionality constant /formation^) depends on the electric forces and the
temperature T, for the temperature sets the scale of the kinetic energy with which a
typical collision occurs and also governs the distribution of internal states of the
molecules, that is, their rotation or vibration.

The reasoning for the dissociation rate is only a little more difficult. Two HC1
molecules must come close together in order to react and produce H2 and CI2. The
total number of HC1 molecules is proportional to the concentration [HC1]. The
probability that another HC1 molecule is close enough to react with a specific HC1
molecule is also proportional to the concentration. Thus the dissociation rate ought to
be proportional to the square of the HC1 concentration:

dissociation rate = /dissodationWtHCl]2, (11.4)

where, again, the proportionality constant depends on electric forces and the tem-
perature.

Inserting the rate expressions into equation (11.2), we find

^ S = /formation(r^ (11.5)
at

At thermal equilibrium, the concentration of HC1 does not change with time (when
viewed macroscopically), and so the rates of formation and dissociation are equal.
Setting the derivative in (11.5) to zero and isolating all concentrations on the left-hand
side, we find

[HC1] /formation(^) (\\ f>\
[H2] [CI2] /dissociation^)

No matter how much H2, CI2, and HC1 one starts with, the reaction—running either
forward or backward—will adjust concentrations so that equation (11.6) is satisfied.
The combination of concentrations on the left-hand side will settle to a value that
depends on only the temperature (and, of course, the molecular species). The right-
hand side, regarded as a single function of temperature, is called the equilibrium
constant for the reaction.
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246 11 Chemical Equilibrium

Equation (11.6), taken as a whole, is an instance of the law of mass action. In the
usage here, the word "mass" means "the amounts of chemicals" or the magnitudes of
the concentrations. The word "action" means "the effect on the reaction rate or the
equilibrium." How the current amounts of chemicals affect the reaction is seen most
clearly in a rate equation like (11.5). After equilibrium has been reached, algebraic
steps give equation (11.6). Now the effect of concentrations is not so apparent, but that
equilibrium structure is what today carries the name "the law of mass action."

Two Norwegians, the mathematician Cato Maximilian Guldberg and the chemist
Peter Waage, developed the law of mass action in the 1860s by rate arguments similar
to ours. In the next section, a line of reasoning based on a free energy will lead to a
structure identical to (11.6) but with two salient advantages. (1) A method for
calculating the equilibrium constant from molecular parameters will emerge. (2) The
relationship will be shown to hold, at equilibrium, regardless of what other reactions
the molecular species may engage in. The pathways of chemical reactions are often
extremely complex and depend on species—often ions—that never appear in an
equation of the form "reactants" —> "products," such as (11.1). Our reasoning with
rates of formation and dissociation, with its tentativeness of "ought to," is best
regarded as suggestive, not definitive. The basic idea of balancing rates is valid, but
the details may be more complex than is readily apparent.

11.2 A consequence of minimum free energy

As a preliminary step, we generalize the chemical reaction under study. We can write
the HC1 reaction (11.1) in the algebraic form

- H 2 - Cl2 + 2 HC1 = 0, (11.7)
which expresses—among other things—the conservation of each atomic species (H
and Cl) during the reaction. Adopting this pattern, we write the generic form for a
chemical reaction as

62B2 + ••• + bnBn = 0, (11.8)

where each molecular species is represented by a symbol B; and the corresponding
numerical coefficient in the reaction equation is represented by the symbol bj. Table

Table 11.1 The stoichiometric
coefficients for the reaction
H2 + Cl2 -> 2 HC1, which can be
written - H 2 - Cl2 + 2 HC1 = 0.

Bi:
B2:
By.

H2

Cl2
HC1

b2

= - i
= - i
= +2
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11.2 A consequence of minimum free energy 247

11.1 shows the correspondences for the HC1 reaction. For the products of a reaction,
the coefficients bt are positive; for the reactants, they are negative. Altogether, the set
{bi} gives the number change in each molecular species when the reaction occurs
once. The coefficients {bi} are called stoichiometric coefficients (from the Greek
roots, stoikheion, meaning "element," and metron, meaning "to measure"). The
pronunciation is "stoi' key a met' rik."

We ask now, what consequence for chemical equilibrium does the minimum property
of the free energies entail? Take first the situation where the chemicals are in a glass
flask of fixed volume V. The flask itself is immersed in a water bath at temperature T, so
that the chemical reaction comes to equilibrium under isothermal conditions. The
Helmholtz free energy will attain a minimum. Imagine taking one step away from
equilibrium: the number Nt of molecular species Bz changes by AiV*, which equals the
stoichiometric coefficient bt. Then the change in the Helmholtz free energy is

T, F,other Ns

= ^2^i = 0. (11.9)
i

The partial derivatives are precisely the chemical potentials, and the zero follows
because the imagined step is away from the minimum. Equilibrium for the chemical
reaction implies a connection among the various chemical potentials:

If the chemical reaction had come to equilibrium under conditions of fixed tempera-
ture and pressure, we would have invoked a minimum in the Gibbs free energy. The
analog of equation (11.9) would have had G in place of F, but its second line would
have been the same, and so the relationship (11.10) would have emerged again.

At this point, a remark by the Austrian physicist Ludwig Boltzmann comes to my
mind. In his Lectures on Gas Theory, Boltzmann wrote,

I have once previously treated the problem of the dissociation of gases, on
the basis of the most general possible assumptions, which of course I had
to specialize at the end.

Equation (11.10) is extremely general: it holds for gas phase reactions in a dilute gas
or a dense gas, and it holds for reactions occurring in solution, whether the solvent is
water or an organic liquid. But we shall make rapid progress only if we specialize to
semi-classical ideal gases, which we do now.

Chemical equilibrium in semi-classical ideal gases
Both our derivation in chapter 7 and our confirmation in section 8.4 tell us that the
chemical potential for species Bz will have the form
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248 11 Chemical Equilibrium

(11.11)

The symbol Z\t denotes the single-molecule partition function for species B,.
Next, we ask, what is the structure of the single-molecule partition function?

Dropping the index / for a moment, we write

~£a/kT < 1 L 1 2 )
states (pa of
one molecule

The single-molecule energy ea splits naturally into a term representing the transla-
tional motion of the molecular center of mass (CM) and another portion that reflects
the internal state: rotation, vibration, etc. Thus

ea = ea(CM) + ea(mt). (11.13)

Insert this decomposition into (11.12) and factor the exponential:

states (pa of
one molecule

V ^ e-ea(CM)/kT

es (pa of
molecule

A th internal states
of one molecule

(11.14)

where

Z(int)= (11.15)
internal states

of one molecule

For each specific set of internal quantum numbers, we are to sum over all possible
quantum numbers for the translational motion. That sum we worked out in section 5.6
and found to be V/X\h. The mass m that enters into the definition Am = h/y/27t mkT is
the mass of the entire molecule. The remaining sum goes over all the internal states,
and the symbol Z(int) suffices as an abbreviation. The sum Z(int) is called the internal
partition function.

Now insert the structure (11.14) into the expression for jUf but isolate the concentra-
tion dependence as much as possible:

fii = +kTln(Ni/V) - kTln{X;3Zi(int)}. (11.16)

The ratio Nf/V is the number density [Bz], and Xt denotes the thermal de Broglie
wavelength for species B/.

We return to the connection among chemical potentials at equilibrium, equation
(11.10). Inserting the form (11.16) and splitting the sum into two natural pieces, we
find

(11.17)
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11.2 A consequence of minimum free energy 249

To tidy this up, move the stoichiometric coefficients bt inside the logarithm operation
as exponents. For example, Z?zln [B/] = ln([B,-]fe/)« Then recall that a sum of logarithms
equals the logarithm of the product of the arguments. Thus (11.17) becomes

In \[[Bit = In

The arguments of these two logarithms must be equal, and so

The minimum in the free energy, either F or G, has this relation among concentrations
as its consequence. Equation (11.18) is the generic law of mass action whenever the
participating molecules may be treated as semi-classical ideal gases.

An example will make the result more familiar. Reference to table 11.1 gives us the
stoichiometric coefficients for the HC1 reaction, and thus (11.18) implies

[HC1]2
 = ^ Z n c i g n t ) 2

lz(t)X^Z(t)'=

[H2][C12] X-lzH2(mt)X^2Zch(mt)'
The combination of concentrations on the left-hand side is precisely what the kinetic
reasoning in section 11.1 generated. The combination here on the right-hand side is a
function of temperature and molecular parameters; thus it corresponds well to the
right-hand side of (11.6) and is an equilibrium constant.

Indeed, we define the general equilibrium constant K(T) by the right-hand side of
(11.18):

Then equation (11.18) takes the succinct form

You will sometimes find the law of mass action, (11.18) or (11.21), expressed in
terms of different variables. Problem 2 explores two of these alternatives.

If any of the species B; engages in another chemical reaction, then we can carry
through the same line of reasoning for the other reaction. Each reaction in which the
species engages leads to an equation like (11.10). Moreover, if the molecules behave
like semi-classical ideal gases, then each reaction leads also to an equation like
(11.18). The algebraic complexity grows, of course, and we will not let ourselves
be dragged into it. I mention these possibilities merely to point out that equations
(11.10) and (11.18) hold regardless of whether the molecules engage in other reactions
or not.
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250 11 Chemical Equilibrium

Before we can calculate the equilibrium constant for the HC1 reaction, we need to
know more about diatomic molecules, and so we turn to that topic now.

11-3 The diatomic molecule

Although diatomic molecules are the simplest molecules, their thermal physics is
surprisingly complex. Rest assured that this section has a summary figure—figure
11.2—that displays Z(int) for the most common situation. Understanding how the
factors in that figure arise provides a good foundation for understanding diatomic
molecules in general.

Energies
The atoms in a diatomic molecule are bound together by electric forces. Those forces
are responsible for the attractive portion of the interatomic potential energy that figure
11.1 displays. The strong repulsion at short distance arises from two effects: (1) the
electric repulsion between the positively charged nuclei and (2) the Pauli exclusion
principle as it affects the interaction among the atomic electrons. The potential energy
has a minimum, but one must expect the separation of the nuclei to oscillate about that
minimum. Physically, this means that the two nuclei periodically move toward each
other and then away—although not by much in either direction. The minimum in the

PE
PEat

minimum

1.5

1

0.5

0

-0.5

- I K - • - •
0 0.5 1 1.5 2 2.5 3

r/v • •
"' at minimum

Figure 11.1 The interatomic potential energy (PE) for a typical diatomic molecule. The relative
separation r is the distance between the two nuclei.
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11.3 The diatomic molecule 251

potential well can be approximated as parabolic (for small amplitudes of oscillation),
and so the vibrational motion is approximately that of a harmonic oscillator.

In addition to vibrating, the molecule can rotate in space about its center of mass.
The rotational energy is determined by the molecule's rotational angular momentum
Jfi and by its moment of inertia /, computed about the molecule's center of mass. The
molecular rotation is about an axis perpendicular to the inter-nuclear axis (at least in a
classical view of things), and so the relevant moment of inertia is calculated by adding
two terms of the form " ( n u d e a r mass) X (square of distance from CM)."

The translational motion of the center of mass contributes kinetic energy, but we
focus in this section on energy relative to the center of mass.

The view outlined above enables us to write down expressions for the energy
internal to the molecule:

/ energy when nuclei are \ / .u . 1 \ / . A,. A. / A x ^ • • • I . / vibrational \ , / rotational \£(mt) = at rest at minimum in + +\ . , , . . .. , / I energy I \ energy Iy interatomic potential energy J v oj / \ oj /

= As + (n + hhv + j(j+l) — m (11.22)

The symbol As denotes the change in energy, relative to free atoms, because of the
binding into a diatomic molecule. It consists of the changes in electrostatic potential
energies (among electrons and nuclei) and the change in electronic kinetic energy. The
zero of energy corresponds to free atoms at rest at infinite separation from each other.
Thus the very existence of a bound diatomic molecule means that As is negative. Also,
note that our focus here is on the state of lowest (electronic) energy. Binding into
excited electronic states is often possible, but such states are largely irrelevant at
modest temperatures, and so we ignore them.

The vibrational energy has the familiar harmonic oscillator form, where n is zero or
a positive integer and v is the frequency of vibration.

The rotational energy is governed by the square of the rotational angular momen-
tum, J(J + 1) h2. The possible values of J are restricted to zero or a positive integer.
(But, as we will discuss later, even some of these values may not be permitted for
molecules whose nuclei are identical. For example, odd integral values are excluded if
diatomic oxygen is formed with two atoms of the isotope 16O.) The moment of inertia
/ is taken as a constant, equal to its value when n and J are zero. (For a good first
approximation, we exclude any increase in / due to vibrational motion or due to a
centrifugal effect of rotation.)

The energy of the molecular ground state, £g.s., is given by summing the lowest
value of each term in (11.22). This means

£g.s. = As + \hv, (11.23)

and £g.s. will be negative if the molecule exists stably, a condition that we specify.
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252 11 Chemical Equilibrium

Table 11.2 displays the ground state energies of some common diatomic molecules. In
order of magnitude, the energies range from —2 to —10 electron volts.

Partition function
Equations (11.22) and (11.23) enable us to write the internal partition function as

Z(int) = V^ exp
internal states

of one molecule

, ... . (11.24)

The exponential can be factored into the product of three factors, and so the sums over
n and Jean be split off as separate, independent sums. This step leads to the form

Z(int) = e~Sss/kT X

X E ( S P l n S t o r 3 ^ ) ( 2 J + l)e~J(J+1)A2/2IkT. (11.25)

Of course, this expression needs additional explanation. For each permitted value of J,
the rotational angular momentum may take on various orientations in space. If one
chooses a direction as the "quantization axis," then the projection of the rotational
angular momentum along that axis may take on 2J + 1 different values. Each value
corresponds to a different quantum state for the molecule. Because the partition
function is a sum over distinct states (not merely over distinct energies), we must
include the factor ( 2 / + 1 ) when summing over permitted values of J.

Even after one has chosen the vibrational and rotational quantum numbers, the
quantum state may not be fully specified because the nuclear spins (if nonzero) may
point in various directions. If the nuclear spins are not correlated or otherwise
constrained, then each spin may take on (2 X spin + 1 ) distinct orientations and hence
contributes a factor (2 X spin + 1) to the counting of states. The hydrogen nucleus,
being a single proton, has a spin of \ (in units of ft) and contributes the factor
(2 X i + 1). The predominant isotopes of chlorine have spin \h and hence contribute a
factor (2 X | + 1). The electron spins, taken all together, may also contribute to the
degeneracy factor. In the case of HC1, they do not. Thus the spin degeneracy factor for
common HC1 is the product of the hydrogen and chlorine nuclear factors: (2 X 4), a
constant independent of J. The spin degeneracy factor will be constant whenever the
two nuclei differ. The case of two identical nuclei is deferred a bit.

Vibrational portion of the partition function
Now we turn to evaluating the sums in detail. The vibrational energy changes in
increments of hv. The size of hv relative to &T7 determines which vibrational states will
have substantial probability of being occupied; therefore the size determines which
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11.3 The diatomic molecule 253

states contribute significantly to the sum. To facilitate comparison, define a character-
istic vibrational temperature 6V by the equation

(11.26)

(This definition is analogous to the definition of the Debye temperature in section 6.5.)
Table 11.2 shows that 0V is often several thousand kelvin. If both nuclei are especially
massive (or if the chemical bond is particularly weak), then the vibrational frequency
will drop. In turn, that will cause 6y to drop below 103 K, as it does for the three
relatively massive molecules, chlorine, bromine, and iodine.

In the most common situation, the strong inequality T <C 0v holds, and so the sum
over vibrational states cuts off exponentially fast. In fact, often it suffices to take just
the first term, which is 1. The physical temperature Tis so low (relative to 6Y) that the
vibrational motion is "frozen out."

Rotational portion of the partition function
The situation with rotational motion is quite different. To be sure, again there is a
characteristic temperature, defined now by the equation

6r = h2/2L (11.27)

Table 11.2 indicates that the characteristic rotational temperature 0Y varies over a great
range, from 88 K for H2 to 0.05 K for relatively massive nuclei like those in diatomic

Table 11.2 Parameters for some common diatomic molecules. "Separation" denotes
the inter-nuclear separation in the gound state. The zero of energy corresponds to free
atoms at rest and at infinite separation from each other. The values for all columns
come primarily from spectroscopic data.

H2
N2

O2
CO
NO
HC1
HBr
HI
Cl2
Br2

I2

(K)

6,320
3,390
2,270
3,120
2,740
4,300
3,810
3,320

813
465
309

Or
(K)

87.5
2.89
2.08
2.78
2.45

15.2
12.2
9.42
0.351
0.116
0.054

Separation
(10"10 m)

0.742
1.094
1.207
1.128
1.151
1.275
1.414
1.604
1.988
2.284
2.667

Ground-state energy
(eV)

-4.476
-7.37
-5.08
-9.14
-5.29
-4.43
-3.75
-3.06
-2.48
-1.97
-1.54

Source: Gerhard Herzberg, Molecular Spectra and Molecular Structure, Vol. 1: Spectra of
Diatomic Molecules (Van Nostrand, New York, 1950).
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254 11 Chemical Equilibrium

iodine, a range of three orders of magnitude. The decrease in 8r reflects an increase in
the moment of inertia /. In turn, the moment of inertia increases for two readily
assignable reasons: as one moves through the periodic table, (1) the atoms get larger,
which increases the relative separation in the diatomic molecule, and (2) the nuclei
become more massive. The increase in mass dominates, contributing more than two
orders of magnitude for the molecules in the table, and the increase in size makes up
the rest of the readily assignable variation in 0T. (Although atomic sizes increase by
only a factor of 3 or so, the moment of inertia depends on the square of the inter-
nuclear separation, and so a factor of 10 is attainable. To be sure, atomic sizes typically
decrease as one advances along a row in the periodic table, say from lithium to
fluorine, but the row-average increases as one moves through the periodic table.
Alternatively, if one progresses down a column at either end of the table, atomic size
grows monotonically. Variations in the strength of the chemical bond will also affect
the relative separation and hence 6Y. In short, the factors that determine the relative
separation can become quite complex.)

For a molecule like HC1 and for room temperature, the characteristic rotational
temperature 0T is much less than the physical temperature. The exponential drops off
slowly with increasing J (at least while its magnitude is still significant). Moreover,
the spin degeneracy factor is a constant. Consequently, one may approximate the sum
by an integral:

POO

^ e-AJ+m/T(2j+i)dJ (11.28)
Jo

= T/eT9

where the last line follows because (2J + 1) dJ is the differential of the J(J + 1) in
the exponent. Before being used in equation (11.25), the approximation T/0T is to be
multiplied by the spin degeneracy factor.

A bit of vocabulary will be useful. Molecules whose nuclei differ are called
heteronuclear. Those whose nuclei are identical are called homonuclear. For hetero-
nuclear diatomic molecules in the context 6r <C T <C #v, we have determined the
internal partition function Z(int), and figure 11.2 summarizes the result. Now we go on
to consider a homonuclear molecule.

If the two atoms are identical, as would be true for CI2 formed from two atoms of
the isotope 35C1, then the indistinguishability of identical particles causes the spin
degeneracy factor to depend on J. If the spin of the nuclei is integral, the nuclei are
bosons, and the wave function for the diatomic molecule must be symmetric with
respect to the nuclei. For half-integral spin, the nuclei are fermions, and antisymmetry
is required. The nuclear spins can be combined into quantum states that have definite
symmetry: either symmetric or antisymmetric. Each of these two kinds of spin states
must be paired with certain /values, either even J o r odd J. Figure 11.3 displays the
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11.3 The diatomic molecule 255

Z(int) = e-<-l" X 1 X ("electronic spin \v ; \ degeneracy factor J

X (2 X spin, + 1X2 X spin2 + l ) x g ) x { \_ * heteronuclear 1
OrJ \ 5 if homonuclear J '

Figure 11.2 Summary for Z(int) when the temperature satisfies the strong inequalities
6X <C T <C 0Y. The ground-state energy £gs. must be calculated from the same zero for all atoms
or molecules in the reaction. Usually the zero corresponds to free atoms at rest at infinite
separation. The numbers "spini" and " sphV refer to the nuclear spins of nuclei 1 and 2 (which
may be identical).

State of two
nuclear spins

Symmetric

Antisymmetric

Bosons:
Fermions:

Rotational state

Symmetric: even J

Antisymmetric: odd /

Figure 11.3 When the two nuclei are identical, a specific rotational state is paired with only
certain states of the nuclear spins. Bosons and fermions require different pairings.

Note. The total number of distinct states in the left-hand column is
[2 X (spin of one nucleus) + I]2 .

connections. Thus there are two distinct values for the spin degeneracy factor: one
value equal to the number of symmetric nuclear spin states, the other equal to the
number of antisymmetric spin states. The sum over J i n (11.25) splits, in effect, into
two sums, one over even / , the other over odd J, each with its separate (and constant)
spin degeneracy factor. At temperatures of order 9X and lower, those two sums must be
done in numerical detail. The situation is simpler at temperatures well above 0r.
Because the exponential varies slowly, a sum over all even J is approximately one-half
of the sum over all J, namely \{T:/6r). The same is true for a sum over just the odd
values of J. Thus the pair of sums, even Jand odd /, amounts to \{T/6X) times the sum
of the two nuclear spin degeneracy factors. The latter sum is the total nuclear spin
degeneracy, [2 X (spin of one nucleus) + I]2 . Therefore, in the context T ^> #r, we
find

/ rotational and nuclear spin
I part of Z(int) = [2 X (spin of one nucleus)

(11.29)

when the nuclei are identical. This result completes the homonuclear version of Z(int)
in figure 11.2.
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256 11 Chemical Equilibrium

Application to the HCl reaction
Now we pull everything together for the heteronuclear molecule HCl in the thermal
context 0r <C T <C 6y. Invoking equations (11.25) and (11.28), we emerge with the
expression

Z(int)Hci = e~£^kT X 1 X (2 X 4) X ~. (11.30)

The calculation for the other diatomic molecules in the HCl reaction is similar. For
the homonuclear molecule H2, equations (11.25) and (11.29) give

Z(int)H2 = e~£^kT X 1 X (2)2 X \{~\. (11.31)

The result for the homonuclear molecule CI2 will be similar except that, because the
nuclear spin is \h, the factor (2)2 is replaced by (4)2. Of course, the values of £gtS. and
9r differ among all three molecules, and the notation will soon have to display that.

Finding a single temperature Tthat satisfies the strong inequalities 0r <C T <C 9V for
all three species is not easy, but T — 260 K gives inequalities of a factor of 3 even in
the worst cases, namely 0x = 85 K for H2 and 0Y — 810 K for CI2. One would like a
factor of 10, but—in the spirit of maintaining maximum simplicity—let us suppose
that a factor of 3 is good enough and insert our expressions into the right-hand side of
(11.19):

3/2 3/2 X 2 X
mH2

 mC\2

X exp [(-2£g<s.5Hci + %S.,H2 + % s . , c i 2 ) / ^ ] . (11 -32)

The mass factors come from the thermal de Broglie wavelengths. The factor 22 arises
because H2 and CI2 are homonuclear molecules. The nuclear spin factors cancel
between numerator and denominator. A dependence on temperature survives only in
the exponential, but that would not be true in other temperature regimes for the HCl
reaction. Moreover, if the number of product molecules (here two) differs from the
number of reactant molecules (also two here) for a single step of the reaction, then the
thermal wavelength factors will leave a residual dependence on Tat every temperature.
Nonetheless, the exponential usually carries the dominant temperature dependence. If
the ground-state energies of the products (weighted by the stoichiometric coefficients)
are lower than those of the reactants (again weighted), then the exponent is positive.
One can think of a drop in energy as favoring the products exponentially, but one
should not focus on such a detailed interpretation at the expense of other factors that
influence the equilibrium concentrations. We explore some of the other factors in the
following sections and in the homework problems.
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11.4 Thermal ionization 257

Some practicalities
Figure 11.2 provided a summary for Z(int) in the most common situation. Given a
specific molecule, you may wonder, how do I determine the numerical values of the
nuclear spins? And also the "electronic spin degeneracy factor"? The short answer is
this: by looking them up. There is no easy way to calculate a nuclear spin (when given
merely the number of protons and neutrons). Likewise, there is no easy way to
compute the electronic spin degeneracy factor. For example, in diatomic nitrogen, the
electrons pair up to give a net electronic spin of zero, and so the degeneracy factor is
just 1. In diatomic oxygen, however, the electrons combine to produce a net electronic
spin of \h, and so the factor i s ( 2 X l + l) = 3. The molecules, N2 and O2, are
otherwise quite similar. Only experiment or the details of a quantum mechanical
calculation can reliably determine the electronic spin degeneracy factor.

Another practical item is the zero of energy. Energy differences are what matter in
chemical equilibria, and so any convenient situation may be assigned a value of zero
energy. That assignment, of course, must be used consistently throughout a calculation.
If the chemical reaction consists of rearranging the way that atoms are aggregated into
molecules, the convention is to assign zero energy to free atoms (of all species) when
at rest and at infinite separation from one another. Then the molecules, as bound
aggregates of atoms, have negative potential energy. (This is the scheme that we used
for the HC1 reaction.) If, however, the reaction is the ionization of a free atom, then the
electron and the positive ion are (usually) assigned zero energy when at rest and
infinitely separated. Now the atom, as a bound aggregate of electron and ion, has
negative potential energy. You get to decide which situation is assigned zero energy,
but be explicit and consistent.

Now we leave the complexity of molecules and return to single atoms.

11.4 Thermal ionization

Hot gases at low density occur frequently in astrophysics. Here we consider atomic
hydrogen (H) in thermal equilibrium with its dissociation products, ionized hydrogen
(H+, which is just a free proton) and a free electron. The "chemical reaction" is written

H ^ H + + e. (11.33)

According to equations (11.20) and (11.21), the law of mass action takes the form

(11.34)
[H]

where

A^+A"3 ZH+(int)Ze(int)
X~3 ZH(int)

(11.35)
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258 11 Chemical Equilibrium

In treating H + and the electrons as ideal gases, we are supposing that electrical
interactions are negligible (except during recombination or dissociation). The masses
of H + and H are so nearly identical that, for all practical purposes, the corresponding
thermal wavelengths cancel. The "internal" partition function for a free electron is
merely its spin degeneracy factor, (2 X ^ + 1), which is 2. The same is true for H+.

The partition function for the hydrogen atom is a sum over all electronic and nuclear
states. For now, we take only the electronic ground state and justify that severe
truncation later. Thus we make the approximation

ZH(int) = 2 X 2 X e'e^/kT
9 (11.36)

where the factors 2 X 2 represent the nuclear and electron spin degeneracy factors and
where £gs. = —13.6 electron volts, the ground-state energy of a hydrogen atom, a
negative quantity. The upshot of the numbers and approximation is that the equilibrium
constant becomes

lfeezJkT. (11.37)

The characteristic temperature #H for hydrogen is

OR - |eg.s.|/it= 160,000 K. (11.38)

This temperature is so high that the exponential in K(T) is less than 10~2 whenever T
< 35,000 K. Nonetheless, the electron's thermal wavelength is small and compensates
partially for the small exponential. A surprisingly large degree of ionization can arise
at temperatures well below the characteristic temperature #H-

If all the free electrons come from the reaction (11.33), then the concentrations of
electrons and H + are equal:

[e] = [H+]. (11.39)

In that case, equation (11.34) may be written as

[H+]2

[H]
• = K(T). (11.40)

Furthermore, if the sum [H] + [H+] is known and also the temperature T, then that
information plus equations (11.37) and (11.40) form an algebraically complete set
from which [H] and [H+] can be calculated by solving nothing worse than a quadratic
equation. In any specific astrophysical context, however, one may be able to judge
whether [H] or [H+] dominates and then simplify accordingly.

For example, suppose T = 7,000 K and

[H] + [H+] = 10"6 X (2.5 X 1025) particles per cubic meter,

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	������������
�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
��'�����������&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.012
http:/www.cambridge.org/core


11.4 Thermal ionization 259

that is, 10~6 times the number density of air under typical room conditions. One might
guess that the gas would be overwhelmingly atomic hydrogen. Then one can solve for
the ratio [H+]/[H] by dividing (11.40) on both sides by [H], taking a square root, and
approximating on the right-hand side:

[H+]= (K(T)\l/2

[H] V [H] /

2 - 3 X 1 » " V ' 2 = 0.096.

Approximately 10 percent of the hydrogen is ionized—despite a temperature that is
extremely low relative to #H-

The basic reason for the surprisingly large degree of ionization is this: ionization
increases the number of free particles (here from 1 to 2). More free particles means
more ways to place the particles in space, thus larger multiplicity, and hence larger
entropy. The ionization is driven by an increase in entropy. In the next section, we shall
see this entropic influence as a generic aspect of chemical equilibrium. Before turning
to that, however, we need to consider again the partition function for the hydrogen
atom and our approximation.

The sum over electronic states goes over increasingly higher energies: en =
—13.6/n2, where n denotes the principal quantum number. Thus the Boltzmann factor,

Qxp(-en/kT) = exp(+l3.6/n2kT\

becomes successively smaller and approaches 1 as n goes to infinity. Because the
terms remain finite and because there are infinitely many of them, the formal sum
diverges. How do we extricate ourselves from this embarrassment? The size of the
atom grows with n; the atomic radius is essentially n2 times the Bohr radius. In a
dilute gas, no atom can become larger than the typical separation between atoms and
yet avoid ionization by its neighbors. Interaction with adjacent ions or atoms would
strip off the distant electron, especially because it is bound so weakly. Thus the sum
for the partition function extends only until the atomic size is comparable to the typical
separation. Such a sum is necessarily finite in value. For the conditions of temperature
and density in our example, the realistic sum increases our one-term approximation by
less than 0.01 percent. This result implies, also, that almost all of the hydrogen atoms
are still in the electronic ground state.

Figure 11.4 displays the run of fractional ionization over the temperature range
5,000 K to 12,000 K.

The Indian physicist Megh Nad Saha was the first to investigate such ionization
equilibrium (in 1920), and he applied it to stellar atmospheres, including the solar
chromosphere. Eliminating K(T) between equations (11.34) and (11.37) produces an
instance of the Saha equation:
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1

0.8

I °'6
1 0.4

0.2

0
5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000

Figure 11.4 Fractional ionization of hydrogen. The fraction plotted is the ratio of ionized
hydrogen to "all hydrogen:" [H+]/([H] 4- [H+]). The denominator has the numerical value
already used in the text: 10~6 X (2.5 X 1025) particles per cubic meter. Note that the ionization
fraction rises from virtually zero to almost one over a narrow temperature interval: about
4,000 K, relative to the 160,000 K of the characteristic temperature #H.

[H]

= l e
 3exp(—|ionization energy\/kT). (11.41)

The second line displays explicitly the dependence on the energy that is needed to
ionize atomic hydrogen from its ground state. Invariably, a large ionization energy
inhibits dissociation.

The general name for the effect that we have studied is thermal ionization. Saha
focused especially on thermally ionized calcium but considered hydrogen and a host of
other elements as well. His first paper, "Ionization in the solar chromosphere" {Phil
Mag. 40, 472-88, 1920), is a landmark in stellar astrophysics.

11.5 Another facet of chemical equilibrium

To understand better what "drives" a chemical reaction, we return to two items: (1)
the basic equilibrium condition, equation (11.10), which is

^2^ = 0, (11.42)

and (2) the generic chemical potential for the semi-classical ideal gas, expression
(11.11), which is

jut = -kTln(Zu/Ni). (11.43)
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11.5 Another facet of chemical equilibrium 261

Equation (11.14) showed that Z\i9 the partition function for a single molecule of
species Bz, is proportional to the system's volume V. Consequently, we can write

_ /partition function for a single molecule \
h \ of species Bz in unit volume ) '

We use this factorization in (11.43):

I / T ] CKT iTr\ irr\ (partition function for a single molecule\jut = +kTln(Ni/V) - kTln F ,, . o . . & ,r ' ' \ of species Bz in unit volume J

= +kTln(Ni/V)+{ei) - Tst. (11.45)

Reference to equations (7.9) and (7.10) tells us that the second term in the first line is
the Helmholtz free energy for one molecule when in unit volume. The Helmholtz free
energy is always an energy minus T times an entropy. The symbol (SJ) denotes the
estimated energy of a molecule of species Bz, and st is the entropy that a single
molecule would have if present by itself in unit volume. Substituting the decomposi-
tion (11.45) of the chemical potential into equation (11.42) and rearranging much as
we did before, one finds

= exp (11.46)

This equation is, of course, just another form of the law of mass action. The right-hand
side is not especially suitable for computation—partition functions are better for
that—but it lends itself admirably to interpretation. We proceed in two steps.

(1) The energy sum:

If the products of the reaction, weighted by their stoichiometric coefficients, have a
lower estimated energy than the reactants, again weighted, then the energy sum is
positive, and the exponential will favor the products. The reaction "rolls down hill"
toward the lower energy of the products. The energy sum is akin to the energy terms in
equation (11.32).

(2) The entropy sum:

5,-. (11.48)

If the products of the reaction, weighted by their stoichiometric coefficients, have a
greater entropy than the reactants, again weighted, then the entropy sum is positive,
and the exponential will favor the products. Because entropy is the logarithm of a
multiplicity (times k), we find that larger multiplicity for the products favors them
relative to the reactants.
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262 11 Chemical Equilibrium

For the hydrogen dissociation reaction, the entropy sum is

- 5 H + %+ +se.

Because the masses for H and H+ are nearly identical, their entropy terms cancel (for
all practical purposes). The free electron's entropy term drives the equilibrium toward
substantial ionization despite an unfavorable energy sum and the relatively low
temperature.

In a loose but useful way of speaking, one may say that the energy sum represents
the effect of forces and that the entropy sum represents the effect of multiple
possibilities. The balance between these effects sets the chemical equilibrium.

11.6 Creation and annihilation

In the reactions that we have considered so far, the nuclei have not changed, nor has
the number of electrons changed. Nuclei and electrons have merely been rearranged or
freed. For calculating chemical potentials and partition functions, the zero of energy
could be taken as the energy when the essential constituents are infinitely separated
and at rest. This is both convenient and conventional. It does not, however, cover all
cases.

In the extremely hot interior of stars, gamma rays can form an electron-positron
pair,

y + y ^ e ~ + e + , (11.49)

and the pair can mutually annihilate to form two gamma rays. Moreover, this process
occurred ubiquitously in the early evolution of our universe. The general principles of
section 11.2 apply here, too. If thermal equilibrium prevails, then the sum of the
chemical potentials, weighted by the stoichiometric coefficients, must be zero:

-2juy + JUQ- + JUQ+ =0. (11.50)

The novelty is that some particles are being created and others are being destroyed.
How does the chemical potential acknowledge this?

Among the equivalent expressions for the chemical potential is the statement

i/ S,V,o±er Ns

for species Bz. When particles are being created or destroyed, we need to include the
energy associated with their very existence, that is, the energy associated with their
rest mass: mzc2, where m* denotes the rest mass of species B/. The system's total
energy E will have the form

2 AT . / the usual kinetic and\ , 1 1 M ,iCzNi+[ - . . (11.52)y potential energies J
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11.6 Creation and annihilation 263

The free energies will be augmented by the same sum over rest energies.
If species Bt acts like a semi-classical ideal gas, then the derivative process for

calculating the chemical potential yields

(11.53)

where the second term was derived in section 7.3 and confirmed in section 8.4. In this
context, each Boltzmann factor in the single-particle partition function,

Zi - V e~Ea/kT (11 54^)
states (pa

contains the kinetic and potential energy only, not the energy associated with the rest
mass. To be sure, the rest energy wife2 in equation (11.53) can be tucked inside the
logarithm, so that the equation becomes

,- = - W i n I-^ f, (11.55)

where the exponent now contains the full single-particle energy. This form is good for
showing the continuity with our previous calculations, but it is cumbersome, and so we
use equation (11.53)

Returning now to the reaction in equations (11.49) and (11.50), we note that the
chemical potential for the electron is

(11.56)

provided the electrons form a semi-classical ideal gas. The factor of 2 accounts for the
two possible spin orientations. The chemical potential for the positrons will be the
same except that the number density NQ+/V replaces that for the electrons. The
chemical potential for photons is zero, as we noted in section 10.3. Substitution into
(11.50) and rearrangement yield

(11.57)

The core of a hot, massive star (of mass equal to 12 solar masses, say) may have a
temperature of T = 109 K. The right-hand side of (11.57), which is a function of
temperature only, then has the value 1.65 X 1065 m~6. If [e~] = 3 X 1033 m~3, a
reasonable value for such a star, then [e+] = 5.52 X 1031 m~3 = 0.018 X [e~]. That
is, there is one positron—however fteetingly—for every 50 electrons.
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264 11 Chemical Equilibrium

The chemical potential plays a vital role in astrophysics and cosmology. The major
point of this section is to alert you: in those contexts, the rest energy nifC2 may need to
appear explicitly in the chemical potential.

11.7 Essentials

1. The generic chemical reaction takes the form

b{Bi + b2B2 + • • • + bnB» = 0,

where each molecular species is represented by a symbol B; and where the correspond-
ing numerical coefficient in the reaction equation is represented by the symbol b{. The
coefficients {bf} are called stoichiometric coefficients. For the products of a reaction,
the coefficients bt are positive; for the reactants, they are negative.

2. The minimum property of the free energies implies

when the chemical reaction has come to equilibrium.

3. For semi-classical ideal gases, item 2 implies the relations

JJtB,-]*' = K{T)
i

and

where K(T) is called the equilibrium constant. The symbol [B,-] denotes the concentra-
tion of species Bz. The internal partition function Z(int) is

z(int) = y *-«•(*«)/«•,
internal states

of one molecule

where £a(int) is the full single-molecule energy minus the translational kinetic energy
of the center of mass.
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11.7 Essentials 265

4. The internal energy of a diatomic molecule may be decomposed as

/ energy when nuclei are \ / ., .. t \ / . ,. , \
,. ^ I ,. \ ± • - - \ , / vibrational \ , / rotational \

mnt) = at rest at minimum in + +
I • * . < . • * *• i / V energy / V energy /
Y interatomic potential energy / v 7 x 7

5. A diatomic molecule has two characteristic temperatures:

• vibrational temperature 0Y: kOy = hv,
• rotational temperature 6r: k6Y = h2/2I.

6. When the temperature satisfies the strong inequalities 8r <C T <C 0Y, the internal
partition function takes the form

7(mi\ - p-£EJkT x ] x ( electronic spin \
v 7 y degeneracy factor J

v /o v • , i v i v • i i\ v / ' : ^^ v / 1 i f heteronuclear 1X (2 X spmi + 1)(2 X spin? + 1) X — X < i .« , , >.v F x A F 2 i ^ i ^ i I I if homonuclear [

7. The ideas of chemical equilibrium can be applied to thermal ionization, the
equilibrium of electrons, ions, and neutral atoms or molecules. The fractional ioniza-
tion (at fixed concentration of the nuclei) switches from almost zero to almost one over
a relatively short temperature interval.

8. Just where a chemical reaction reaches equilibrium can be viewed as a consequence
of a competition between reactants and products, a competition with respect to both
energy and entropy.

If the products of the reaction, weighted by their stoichiometric coefficients, have a
lower estimated energy than the reactants, again weighted, then the reaction "rolls
down hill" toward the lower energy of the products.

If the products of the reaction, weighted by their stoichiometric coefficients, have a
greater entropy than the reactants, again weighted, then the larger multiplicity for the
products favors them relative to the reactants.

9. When particles are created or annihilated, one must include the rest energy in the
chemical potential:

[4 = me2 - kThi(Zi/N)9

where the second term on the right is the usual expression (based on the usual kinetic
and potential energies).
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266 11 Chemical Equilibrium

Further reading

A fine discussion of thermal ionization in stellar physics is provided by Richard L.
Bowers and Terry Deeming, Astrophysics I: Stars (Jones and Bartlett, Boston, 1984),
section 6.2.

G. H. Nickel discusses the reasons why thermal ionization occurs and provides an
alternative derivation of the Saha equation in his article, "Elementary derivation of the
Saha equation," Am. I Phys. 48, 448-50 (1980). (In essence, his derivation is based
on a probability maximization like the analysis in our section 7.1. Except for the
language, Nickel's derivation is equivalent to ours, which explicitly uses the notion of
a chemical potential.)

Problems

1. How the equilibrium constant varies. Compute the temperature derivative d In K(T)/
dT of the equilibrium constant K(T), defined in (11.20). Relate your result to the
estimated energy per molecule (st) of the various reactants and products in the
chemical reaction. Describe the relationship in words, too. If the reaction, taken as a
whole, requires an input of energy, does the equilibrium constant increase or decrease
when the ambient temperature increases?

2. Other versions of the law of mass action.

(a) Eliminate the variables [Bz] in terms of the partial pressures Pt = NtkTjV.
Determine the new equilibrium constant in terms of K( T) and kT.

(b) Eliminate the variables [Bt] in terms of the fractional concentrations cu defined by
Cj = [^i]/^2j[Bj], and the total gas pressure P. When the left-hand side of
equation (11.18) is expressed as a function of the set {c,} only, what is the new
equilibrium constant? And on which variables does it depend?

3. Heat capacity of diatomic molecules. Specify that the temperature satisfies the
strong inequalities 0Y <C T <C 0Y. Use partition functions.

(a) Calculate the estimated energy (E), the entropy 5, and the heat capacities Cy and
Cp for a semi-classical ideal gas of N diatomic molecules. Supply additional data
as needed.

(b) Compare the ratio of heat capacities, Cp/Cy, with the corresponding ratio for a
monatomic gas.

4. Rotational energy. For a diatomic molecule formed from two different nuclei, the
rotational contributions to (E) and to Cy come from the "rotational partition func-
tion" Zrot, defined by equation (11.28).
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Problems 267

(a) Compute and plot the dimensionless quantities Zrot, (Erot)/k6r, and Crot/k as
functions of T/6r for the range 0 ^ T/0T ^ 3.

(b) How large must the ratio T/0r become in order that Crot/k be at least 90 percent
of its asymptotic value?

5. The oxygen isotope 16O has a nuclear spin of zero. When a diatomic molecule is
formed with this isotope, which values of the rotational angular momentum J are
permitted? Consequently, in a sum over J like that in (11.25), what are the nuclear spin
degeneracy factors for even / a n d for odd J?

6. For the reaction H2 + h ^ 2 HI, determine the equilibrium constant when a flask
of the gases is immersed in a bath of boiling water. For the common isotope of iodine,
the nuclear spin is \h. Give the equilibrium constant both analytically and numerically.
Specify and justify any approximations that you make.

7. Dissociation of molecular hydrogen. Consider the reaction H2 ^ 2H under the
stipulation that [H] + 2[H2] =A= 10"10 X 2.5 X 1025 particles per cubic meter,
where 2.5 X 1025 is the number density of air under typical room conditions. The
electron spins in molecular hydrogen are anti-parallel, and so the net electronic spin is
zero.

(a) Determine the equilibrium constant K(T) and graph its logarithm (using base 10)
for the temperature range 1,000 ^ T ^ 2,000 K. (A point every 100 K will
suffice.)

(b) Compute the dissociation fraction / = [H]/([H] + [H2]) for the same temperature
range and graph it also. [Doing some algebra by hand may be useful. You can
express / a s a simple function of K(T)/A.]

(c) Compare the temperature that gives / = 0.8 with the characteristic molecular
temperature defined by | dissociation energy |/ k

8. The population distribution in rotational states. An experimenter needs to tune a
laser so that the photons will induce a transition from the most probable rotational
state to some fixed state of much higher energy. (Selecting the most probable state
gives a large signal.) Take the heteronuclear diatomic molecule to be gaseous carbon
monoxide at T = 103 K. Let

/ probability that molecule has
^ > = ^rotational energy J(J + I)h2/2I

(a) Determine the most probable value of the rotational quantum number J.
(b) Plot P( J) for the range 0 ^ J ^ 40.
(c) Estimate the width of the probability distribution P(J).
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268 11 Chemical Equilibrium

9. Equal rotational populations. A gas of the heteronuclear molecule hydrogen
bromide (HBr) is in thermal equilibrium. At what temperature will the population of
molecules with J = 3 equal the population with J = 21 Here J(J + l)h2 specifies the
magnitude of the rotational angular momentum, squared, as described in section 11.3.

10. On the mechanism of thermal ionization. The actual dissociation (or recombina-
tion) process may require the intervention of another atom, as in the reaction

H, (a)

or the intervention of a photon, as in

H + photon ^ H + + e. (b)

In particular, conservation of energy and momentum may require such extra, "silent"
partners.

Why would the more explicit reactions, (a) and (b), lead to the same results as our
more abbreviated reaction? Provide a detailed response for each reaction separately,
but they can be succinct.

11. Saha equation for a generic atom.

(a) Work out the analog of equation (11.41) for a multi-electron atom and its first stage
of ionization:

atom ^ atom+ + e.

Couch your result in terms of two internal partition functions, ZatOm(int) and
Zion(int), and other, familiar quantities. Describe explicitly the situation that you
take for the zero of energy, and describe (relative to that zero) the energies that
enter the two partition functions.

(b) Display the form to which your equation reduces if you approximate each partition
function by its ground-state term.

12. Thermal ionization of helium. The ground state of neutral helium is 79.00 eV
below the state of fully ionized helium: He + + . Already the Bohr theory enables you to
work out the energy of singly ionized helium.

(a) Determine the equilibrium constant algebraically for the ionization of neutral
helium to its one-electron ion: He+. Assume that the temperature is below
15,000 K.

(b) Evaluate both the exponential and the entire equilibrium constant numerically for
T = 104 K.

13. Solar chromosphere. Many elements contribute (by thermal ionization) to the
electron density in the solar chromosphere. Where the chromospheric temperature is
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7,000 K, an approximate value for the total electron density is [e] = 1.5 X 1020

electrons per cubic meter.

(a) Calculate the ionization ratio [H+]/[H] for hydrogen.
(b) The ground state of atomic calcium is 6.113 eV below the ground state of singly

ionized calcium. The electronic ground state of the atom is not degenerate, but the
ion has an electron spin degeneracy factor of 2. Calculate the ionization ratio
[Ca+]/[Ca].

14. Positrons in white dwarfs. In thermal equilibrium, the reaction y + y ^ e~ + e+

produces a steady-state concentration of positrons. Calculate the concentration of
positrons, [e+] = Ne+/V, in a typical white dwarf (one whose electrons are non-
relativistic). Recalling the connection between the electron Fermi energy at T = 0 and
the chemical potential may help you.

15. Electron-positron pairs. If pure blackbody radiation (devoid of any electrons or
other particles) is compressed adiabatically (by an implosion, say), then high tempera-
tures can be achieved, and electron-positron pairs will form spontaneously (from the
interaction of gamma rays). Specify that a temperature of T = 108 K is achieved.
Derive an expression for the number density of electrons; then evaluate it numerically.
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12 Phase Equilibrium
12.1 Phase diagram
12.2 Latent heat
12.3 Conditions for coexistence
12.4 Gibbs-Duhem relation
12.5 Clausius-Clapeyron equation
12.6 Cooling by adiabatic compression (optional)
12.7 Gibbs'phase rule (optional)
12.8 Isotherms
12.9 Van der Waals equation of state
12.10 Essentials

In a loose sense, this chapter is about the coexistence of solids, liquids, and gases,
usually taken two at a time. What physical condition must be met if coexistence is to
occur? What other relations follow? The chapter provides some answers. And in its
last section, it develops a classic equation—the van der Waals equation of state—that
was the first to describe gas and liquid in coexistence.

12.1 Phase diagram

Figure 12.1 displays three phases of water as a function of pressure and temperature.
By the word phase, one means here a system or portion of a system that is spatially
homogenous and has a definite boundary. [In turn, homogeneity means that the
chemical composition (including relative amounts), the crystalline structure (if any),
and the mass density are uniform in space. A continuous variation produced by gravity,
however, is allowed, as in the case of a finite column of air in the Earth's gravitational
field.] The liquid phase is typified by a glass of water; the solid, by an ice cube; and the
vapor, by the "dry" steam (that is, steam without water droplets) in the turbine of a
power plant, as was illustrated in figure 3.1.

Of more interest, however, are the curves in the drawing, locations where two phases
coexist. When a pond freezes over and develops a 20 centimeter layer of ice, the lower
surface of the ice and the top of the remaining liquid water coexist at a temperature
and pressure that lie along the leftward (and upward) tilted curve that emanates from
the triple point. The locus of points where solid and liquid coexist is called the melting
curve (or the fusion curve).

If one were to place a lot of ice in a container, pump out the air, and then seal the
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Figure 12.1 The phase diagram for water: the pressure-temperature version. Pressures are cited
in atmospheres (where 1 atmosphere = 1.013 X 105 N/m2, the standard value for atmospheric
pressure at sea level); temperatures are given in kelvin. The scales, however, are not linear;
rather, they have been compressed or expanded to display the more interesting regions.
Nonetheless, the curves are qualitatively faithful.

Water has at least ten distinct solid phases: various kinds of ice that differ in their crystalline
structure. Only one solid phase—common freezer ice—exists at pressures below 2,000 atmos-
pheres, and only that ice is shown.

vessel, doing all this at any temperature below the triple point, then some water
molecules would escape from the ice's surface and form a gaseous phase in equili-
brium with the remaining ice. This evaporative process, in which no liquid phase
occurs, is called sublimation. The curve running from the origin to the triple point is
the sublimation curve. [By the way, you may have noticed that ice cubes, dumped out
of a tray and lying loose in a bowl in the freezer, slowly diminish in size if left there a
long time. The ice is subliming—but never reaching a coexistence with its vapor
(because too much vapor leaks out of the freezer compartment). The frost on the
backyard lawn can provide another example. If the morning sunshine is intense and if
the air temperature remains below freezing, then the frost disappears by sublimation.]

Along the curve that connects the triple point and the critical point, liquid and vapor
coexist. That curve is called the vaporization curve. The end points are special. At the
triple point, of course, all three phases coexist simultaneously. Only for temperatures
below the critical temperature Tc (the temperature of the critical point) can a
meaningful distinction be made between a vapor phase and a liquid phase. The volume
of a vapor is determined by the size of the container; a gas expands to fill the volume
available to it. Not so a liquid, whose volume is determined by temperature, pressure,
and number of molecules. If one starts at the triple point on the vaporization curve, the
density of the liquid phase (103 kg/m3) greatly exceeds the vapor density (5 X 10~3

kg/m3). Traveling along the vaporization curve, one finds that the liquid density
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272 12 Phase Equilibrium

decreases (as the higher temperature causes the liquid to expand, despite the increasing
pressure). Simultaneously, the vapor density increases (as the higher pressure com-
presses the vapor). As one approaches the critical point, the two densities converge to
a single value: 400 kg/m3. At temperatures higher than the critical temperature, water
exists only as a "fluid" that has the volume-filling character of a gas. The microscopic
kinetic energy is so large that the attractive forces between molecules cannot form
droplets, much less a large-scale cohesive liquid phase.

Indeed, to jump ahead a bit, take a look at figure 12.8, which displays a typical
intermolecular potential energy curve and its attractive potential well. An empirical
rule of thumb is that kTc = (well depth), a relationship good to 20 percent for helium,
hydrogen, and nitrogen. The interpretation is this: if the molecular translational kinetic
energy, jkT, exceeds the well depth, then the molecule will not be bound by the
attractive force exerted by another molecule.

To summarize, the critical point is a limit point along the vaporization curve: below
the temperature of the critical point, liquid and vapor coexist at distinct, unequal
densities; at and above the critical temperature, there is only a single "fluid" phase.

Table 12.1 provides experimental data on the critical point and triple point of some
common substances.

A line drawn horizontally at a pressure of one atmosphere would intersect the
melting curve at 273.15 K, the normal melting point of ice, slightly below the
temperature of the triple point. The same line would intersect the vaporization curve at
373.12 K, the normal boiling point of water. In general, boiling occurs when an
originally cool liquid has been heated sufficiently that its vapor pressure equals the
ambient pressure (so that tiny bubbles can expand and grow). Thus, whenever boiling
occurs, it does so at some point on the vaporization curve. If you have ever camped
and cooked at high altitude, at 3,000 meters, say, you know that there the temperature
of boiling water is sufficiently lower than 373 K that the time required to cook rice is
perceptibly longer than at sea level. An altitude of 3,000 meters corresponds to a

Table 12.1 Data for the critical point and triple point The volume per molecule at the
critical point, (V/N)c, is cited in units of!0~30 m3 (1 cubic angstrom).

Substance

Water
Sulfur dioxide
Carbon dioxide
Oxygen
Argon
Nitrogen
Hydrogen

Tc

(K)

647
431
304
155
151
126
33.2

(atm)

218
77.8
72.9
50.1
48.0
33.5
12.8

(V/N)c
(10-30 m3)

91.8
203
156
130
125
150
108

Ttp.
(K)

273.16
200
217

54.8
83.8
63.4
14.0

Pt.p.
(atm)

0.0060
0.02
5.11
0.0026
0.68
0.127
0.0712

Sources: AIP Handbook, 3rd edn, edited by D. E. Gray (McGraw-Hill, New York, 1972), and
others.
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12.2 Latent heat 273

pressure of approximately 0.7 atmosphere. A line drawn at that pressure intersects the
vaporization curve closer to the triple point, at approximately 363 K, a reduction by
10 K.

12.2 Latent heat

When the tea kettle whistles on the stove, the burner is supplying energy to the water.
That energy enables some molecules in the liquid phase to escape the attractive forces
of their fellow molecules and to enter the vapor phase. The process occurs at constant
temperature (T = 373 K) and constant pressure (P = 1 atm). In short, the process
occurs at a point on the vaporization curve of figure 12.1.

For vaporization in general, the amount of energy that must be supplied by heating
is called the latent heat of vaporization and is denoted by Lvap. For one molecule, we
write

_ / energy input by heating to promote one molecule \
from the liquid to the vapor at constant T and P J'

A significant distinction will become evident if we use the First Law of Thermo-
dynamics to express the latent heat in terms of the energies per molecule in the liquid
and vapor phases, together with whatever other quantities are required. For each phase
separately, let

e = E/N = average energy per molecule,
(12.2)

v = V/N = volume per molecule.

By definition, the latent heat of vaporization is the amount of energy supplied by
heating, and so it corresponds to the variable q in the First Law. Upon referring to
equation (1.13) for the First Law, we find that

= Ae + PAv, (12.3)

where

Ae = £vap - fiiq and Av = yvap - V\iq. (12.4)

Because the volume per molecule is larger in the vapor than in the liquid, the
difference Av is positive. Some of the energy input goes into expanding the entire two-
phase system against the external pressure P. Only a certain fraction of the energy
supplied by heating goes into As, the change in the molecule's energy. Thus Lyap and
As are distinct quantities (although obviously related).
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274 12 Phase Equilibrium

Table 12.2 Latent heats for various substances. For the vaporization data, the ambient
pressure is atmospheric pressure. Carbon dioxide never exists as a liquid at atmos-
pheric pressure (because its triple point lies at a pressure of 5.11 atmospheres). For
CO2, the latent heat of sublimation at atmospheric pressure is 0.26 eV/molecule (and
occurs at T = 195 K). The melting temperatures and corresponding latent heats are
associated with a medley of different pressures.

Substance

Carbon dioxide
Chlorine (Cl2)
Helium (4He)
Iron
Mercury
Nitrogen (N2)
Silver
Tungsten
Water

Melting point
(K)

217
172

1.76
1,810

234
63

1,230
3,650

273

^fusion
(eV/molecule)

0.086
0.067
8.7 X 10-5

0.14
0.024
0.0075
0.12
0.37
0.062

Boiling point
(K)

239
4.2

3,140
630

77
2,440
5,830

373

Vaporization
(eV/molecule)

0.21
0.000 87
3.6
0.61
0.058
2.6
8.5
0.42

Source: AIP Handbook, 3rd edn, edited by D. E. Gray (McGraw-Hill, New York, 1972).

Precisely because vaporization occurs at constant pressure, equation (12.3) may be
rearranged as

Lvap = A(e + Pv). (12.5)

For any phase, the quantity E + PV is called the enthalpy (from the Greek root,
thalpein, "to heat"). Thus one may say that Lvap equals the change in enthalpy per
molecule.

The discussion so far has focused on vaporization. Analogous definitions and
relationships hold (1) for melting, the solid to liquid transition, which occurs at a point
on the melting (or fusion) curve and (2) for sublimation, the solid to vapor transition,
which occurs at a point on the sublimation curve.

Table 12.2 provides values of the latent heat for some common substances.

Latent heat versus heat capacity
Another distinction is worth pointing out: the distinction between latent heat and heat
capacity. To begin with, a latent heat characterizes a process at constant temperature,
but a heat capacity describes a process in which the temperature changes (at least
infinitesimally). To display the latter feature, we recapitulate equation (1.14):

/ energy input by heating \
_ / heat capacity \ _ \ under conditions X J
~ \ under conditions X J ~ (ensuing change in temperature)'

(12.6)
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12.2 Latent heat 275

where Xmay denote constant volume or constant pressure (or, for a magnetic system,
constant external magnetic field). The ratio on the right-hand side presupposes a
change in temperature.

Indeed, the historical origin of the adjective "latent" reflects the thermal distinction.
Under most circumstances, if one supplied energy by heating, the system's temperature
increased. But under certain circumstances, such as melting, the system's temperature
remained the same: the effect of supplying energy remained "latent" (so far as
temperature was concerned). Today, of course, we know that the energy supplied by
heating goes into the subprocesses that we describe with Ae and PAv.

To display the distinction further, we express latent heat and heat capacity in terms
of entropy changes. Taking the processes to occur slowly and hence to be reversible,
we invoke the Second Law as

A5 = | . (12.7)

The definition of latent heat in equation (12.1) implies that jLvap corresponds to q, and
so equation (12.7) implies

^vap — T X (svap — Sliq), (12.8)

where s = S/N for each phase.
[Note that the symbol s, as used here and subsequently in this chapter, denotes a

ratio: (the total entropy of A^molecules)/7V. Thus the symbol s here differs subtly but
significantly from the symbol 5/ used in section 11.5 to denote the entropy that a single
molecule of species / would have if present by itself in unit volume. The lower case
letter s has good mnemonic value, and so it has to do double duty. Indeed, because s is
used also for "spin" (in units ofh), the letter does triple duty.]

For heat capacity, equation (12.6) tells us that CXAT corresponds to q. Then
equation (12.7) implies

(12.9)

where (AS)x is the entropy change under conditions X. Multiply both sides by T/AT
and then take the limit as AT approaches zero:

(.2,0)

Here we see that heat capacity is given by a rate of change with temperature. In
contrast, the latent heat in (12.8) is proportional to a finite change in entropy.

By the way, equation (12.10) does not replace any of our previous expressions for a
heat capacity, such as Cy — (d(E)/dT)v. Rather, the expression for Cx in terms of an
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276 12 Phase Equilibrium

entropy derivative is an alternative form, particularly useful if one happens to know
the system's entropy.

12.3 Conditions for coexistence

The boundaries in the phase diagram, figure 12.1, are intriguing: what determines their
location or slope? The chemical potential provides some answers, as this section and
section 12.5 demonstrate. For a thorough start, however, we return to the Gibbs free
energy and its minimum property at fixed Tand P, developed in section 10.5.

Consider a point in the P-T plane that is on the vaporization curve, that is, a point
where liquid and vapor coexist. The minimum property of the Gibbs free energy
implies that G must not change if we imagine transferring a molecule of water from
the liquid phase to the vapor phase. That is, the equation

SG - 9 G - A * ,

X (1) +/liiq X (-1) = 0 (12.11)

must hold. The partial derivatives are taken at constant values of T, P, and the
numbers of molecules in other phases. Thus, by equation (10.31), the derivatives are
the corresponding chemical potentials. Rearrangement puts equation (12.11) into the
succinct form

piYap(T,P) = pi]iq(T,P). (12.12)

This relationship determines the vaporization curve, but more detail may be welcome
and comes next.

Each phase is formed from water molecules only and hence consists of only one
species of particle. Consequently, the chemical potential for each phase depends on the
intensive variables Tand P only. The functional dependence, however, definitely does
change from one phase to the next, being different for a liquid from what it is for a
vapor. A simple theoretical model will make this clear, as follows.

A model for the vaporization curve
The semi-classical partition function for a structureless ideal gas is

(12.13)
N\
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12.3 Conditions for coexistence 277

ViaFgas = — ATlnZgas, the partition function leads to the chemical potential for the
vapor phase:

d(-kTlnZgas)_ \

jA. (12.14)
V xth /

The last step uses the ideal gas law to eliminate the number density in terms of P and
kT. Of course, water molecules are not structureless—the hydrogen and oxygen atoms
can rotate and vibrate about the molecular center of mass—but a structureless gas
provides a tractable model and captures the essentials. We pursue it.

[Note. The Gibbs free energy G appeared in equation (12.11) because our context is
fixed P and T. Therefore we need to start with the free energy that has a minimum, at
equilibrium, in the context of fixed P and T, namely, the Gibbs free energy. To
calculate the chemical potentials that appear in equation (12.12), however, we may use
whichever energy is most convenient. The partition function readily gives us the
Helmholtz free energy F, and so we use that energy to compute ju. Knowing several
equivalent expressions for the chemical potential is handy; indeed, it is essential.]

Because a liquid is largely incompressible, we model its partition function by
replacing a container volume V with the product Nv$, where Vo is a fixed volume of
molecular size and N is the number of molecules in the liquid phase. An attractive
force (of short range) holds together the molecules of a liquid and establishes a barrier
to escape. We model the effect of that force by a potential well of depth —£o> saying
that a molecule in the liquid has potential energy—so relative to a molecule in the
vapor phase. The parameter SQ is positive. Thus the approximate partition function for
the liquid is

The associated chemical potential follows as

V ^ /
[The isolated factor of e that multiplies Vo arises from the differentiation of N ln(Nvo)
and then a return to logarithmic form.] Manifestly, the chemical potentials for the
vapor and the liquid have different functional forms.

The condition for coexistence, equation (12.12), becomes
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278 12 Phase Equilibrium

The arguments of the logarithms must be equal, and so the relationship

kT
(12.17)

ev0

gives the pressure as a function of temperature along the vaporization curve.
To be sure, equation (12.17) is the outcome of a simple model, but an exponential

dependence on the reciprocal of temperature is characteristic of experimental vapor-
ization curves. Moreover, we shall see a similar result emerge from a more phenomen-
ological approach later, in section 12.5.

Return to generality
Now we return to general expressions, independent of any model. Equation (12.12)
determines the vaporization curve—in the precise sense that it provides one constraint
on the two variables, Tand P, and thus determines a curve in the P-T plane. Similar
reasoning about a minimum in the Gibbs free energy would generate an analogous
equation for the melting curve:

/Aliq(T,P) = [iS0l(T,P). (12.18)

Again the functional dependencies will differ, and the equation will determine a curve
in the P-T plane.

The coexistence of solid, liquid, and vapor requires a minimum in the Gibbs free
energy with respect to all possible imagined transfers of a water molecule: liquid to
vapor, solid to liquid, and solid to vapor. Thus equations (12.12) and (12.18) must
hold—and their validity already ensures the equality of chemical potentials for solid
and vapor. Thus only two independent equations arise, and they constrain two
variables: T and P. The solution will be the intersection of the vaporization curve and
the melting curve: a point. Thus coexistence of the three phases occurs at a triple
point.

To be sure, one would be hard pressed to imagine anything else geometrically. Later,
in section 12.7, we will consider more than three phases, for example, the many phases
of ice as well as the liquid and vapor phases of water. Nonetheless, we will find that no
coexistence greater than a triple point can arise (when only one species of particle
exists in the entire system). Thermodynamics discloses remarkable constraints on the
behavior of real systems.

For a synopsis, let us note that

coexistence of two phases requires that their chemical potentials be equal.

All the rest flows from that succinct statement.
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12.4 Gibbs-Duhem relation 279

Another way to state the situation is this:

at thermal equilibrium, the chemical potential has the same numerical value
everywhere in the system.

Why? Because if it did not, then one could reduce the Gibbs free energy by
transferring molecules from regions of high chemical potential to the region of lowest
chemical potential. But a characteristic of thermal equilibrium is that the Gibbs free
energy has already attained its minimum value (when temperature and pressure are
held fixed). Given the statement in italics, the chemical potential of a phase must be
numerically the same as that of any other coexisting phase.

Here is yet another way to understand the equality of chemical potentials for
coexisting phases, a way that emerges from the very meaning of the chemical
potential. Section 7.1 noted that the chemical potential measures the tendency of
particles to diffuse. Coexistence of phases imples no net diffusion from one phase to
the other, and so—of course—the chemical potentials must be equal.

Before we go on to derive a general equation for the slope of a coexistence curve,
we need a lemma concerning the chemical potential. The next section develops it.

12.4 Gibbs-Duhem relation

When only a single species of molecule is present, the Gibbs free energy has the
structure

(12.19)

and the chemical potential is a function of the intensive variables Tand P only:

li = KT, F). (12.20)

Section 10.4 developed these expressions. In this context, what physical significance
do the derivatives of fi with respect to Tand P have?

To answer that question, we compare two expressions for the total differential of G.
Differentiating (12.19) gives

AG= ( f r A r + fp
Now compare this equation with AG as expressed in equation (10.28). The coefficients
of corresponding differentials (such as AT) must be equal. Thus we find the relations
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280 12 Phase Equilibrium

The lower case letters, s and v, denote the entropy and volume per molecule,
respectively. They provide the physical significance of the derivatives.

Tersely stated, the differential of the chemical potential is

Aft = -sAT + vAP. (12.23)

This equation is called the Gibbs-Duhem relation. The chemical potential is an
intensive variable, and so its derivatives with respect to Tand P must also be intensive.
The entropy and volume per molecule are intensive variables, as befits their role.

12.5 Clausius-Clapeyron equation

Now we are ready to compute the slope of a coexistence curve. For definiteness, take
the vaporization curve, but you will recognize that the method of derivation works for
any other coexistence curve in figure 12.1. Figure 12.2 sets the scene. At point A on
the vaporization curve, the chemical potential of vapor and liquid are equal:

9 PA) = W^TA, P A ) . (12.24)

The two potentials are equal at the adjacent point B also:

/AY8P(TA + AT, PA + AP) = juhq(TA + AT, PA + AP). (12.25)

Both //vap and ftnq may have changed in numerical value, but—if so—then necessarily
they changed by the same amount. Subtract equation (12.24) from (12.25) and use the
Gibbs-Duhem relation, (12.23), to find the equation

Figure 12.2 The vaporization curve and two adjacent points on it. The differences in the
independent variables are defined by the statements TB = TA + AT and PB = PA+ AP.
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12.5 Clausius-Clapeyron equation 281

-swapAT + tf

Solving for the ratio AP/AT and then passing to the limit (as point B approaches
point A), one finds

The ratio on the right-hand side refers to values at the point on the coexistence curve
where the slope dP/dT is to be determined.

The entropy difference in the numerator can be re-expressed in terms of the latent
heat of vaporization, Lvap, and the temperature. Reference to equation (12.8) yields

This equation is called the Clausius-Clapeyron equation. (The French mining engi-
neer Emile Clapeyron derived the equation, in a less explicit form, on the erroneous
basis of the old caloric theory. In 1850, Rudolf Clausius provided the first wholly
legitimate derivation. In the same paper, Clausius gave the earliest statement of the
Second Law of Thermodynamics. At the time, he was 28 years old.)

A simple model again
To see what kind of a coexistence curve the Clausius-Clapeyron equation yields, we
construct again a simple model. The ideal gas law gives the volume per molecule in
the vapor phase as

y v a P = ^ = ^ . (12.28)
N P

The volume per molecule in the liquid is much smaller (except near the critical point);
so we drop Vnq relative to vwap. The latent heat of vaporization (per molecule) should
correspond to the well depth parameter eo of section 12.3 and should be approximately
constant over modest sections of the vaporization curve. So we simplify equation
(12.27) to

df = (krfpjf' (12<29)

where Lyap is taken as constant. This differential equation integrates readily to

where the subscript A indicates values at point A on the vaporization curve. Once
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282 12 Phase Equilibrium

Table 12.3 The slope dP/dT of coexistence curves in the P-T plane. Note that the
experimental melting curve usually tilts rightward and upward from the triple point.
Water is one of a few anomalous substances.

Difference in Expected Difference in Expected Expected Experimental
volumes sign entropies sign slope slope

Vvap - Vliq > 0 Svap - S\{q > 0 > 0 > 0
^vap-^sol >0 Svap-Ssol >0 >0 >0
L?iiq — vso\ usuallya > 0 suq — sso\ usually13 > 0 > 0 (usually) usually0 > 0
aBut ice floats: Vnq — vso\ < 0 for water.
bBut 5iiq — 5soi is negative for 3He below 0.3 K.
cBut dP/dT is negative for water and for 3He below 0.3 K.

again, an exponential dependence on the reciprocal of temperature appears, and we see
the role played by the experimental latent heat per molecule.

Equation (12.30) suggests that In P is a linear function of l/T. Real gases, such as
argon, xenon, N2, O2, CO, and CH4, exhibit nearly linear behavior over a surprisingly
large range of temperatures: from T = 0.98 Tc down to the triple point. In part, this is a
tribute to a good theory. In part, it reflects a cancellation of potential causes of
deviation: (1) the actual variation of Zv a p with temperature, (2) the neglect of tfiiq, and
(3) corrections to the ideal gas law (as used for yv a p) because of high density as the
temperature approaches Tc.

Some expectations
For other coexistence curves, the associated precursor to the Clausius-Clapeyron
equation has the same structure as in (12.26). The slope dP/dT is given by a ratio: the
difference in entropies (per molecule) divided by the difference in volumes (per
molecule). Whichever phase comes first in the numerator comes first in the denomi-
nator; beyond that, order is irrelevant.

Table 12.3 shows the sign that one can expect for the slope of various coexistence
curves in the P-T plane. Ordinary experience suggests the sequence of inequalities
v̂ap > vHq > vso\, but ice floats, and so exceptions arise. To vaporize a liquid or a solid,

one needs to heat it, and so both svap — snq and svap — sso\ should be positive. Melting
usually requires heating, and so ^q — ssoi is usually positive, but 3He below 0.3 K
provides an exception, a topic that we discuss in the next section.

12.6 Cooling by adiabatic compression (optional)

When compressed adiabatically, a classical ideal gas gains energy (because work is
done on the gas), and its temperature increases. Section 1.5 provided an explicit
relationship:
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TV7'1 = constant,

where y is the ratio of heat capacities, Cp/Cy, and is greater than 1. As the volume V
decreases, the temperature I7must increase.

Kinetic theory provides another way to understand the increase in energy. When a
molecule rebounds from a moving piston, its final kinetic energy differs from the
initial value. To establish the sign of the effect, think of a slowly moving molecule
being approached by a fast, inward-moving, and massive piston. After the collision,
the molecule will travel faster than before; it will have gained energy from the piston.

Adiabatic compression always increases the energy of the system that is being
compressed—simply because work is being done on the system. For most physical
systems, the increase in internal energy is accompanied by an increase in temperature,
but no law of physics requires an increase in temperature. Indeed, when 3He is on its
melting curve and when the initial temperature is 0.3 K, say, then adiabatic compres-
sion produces a decrease in temperature. The helium literally becomes colder. Let's
see why.

The Clausius-Clapeyron equation will be the central equation:

(12.31)
dT uU q - vso{

Thus we need to compare the entropies of solid and liquid 3He. Temperatures of 1 K
and below are presumed.

Solid3 He
Picture the solid as a neat crystalline lattice, each helium atom remaining in the
neighborhood of its equilibrium site. An atom of 3He has a spin of |ft, which arises
from the single neutron in the nucleus. The magnetic interaction between neighboring
nuclear magnetic moments is weak; at first, we ignore it. Each nuclear spin has two
quantum states available to it, and those states have equal energy—indeed, zero
energy—in the absence of magnetic interactions. For a single nucleus, the spin
partition function is Zspin = 2 because each Boltzmann factor in the sum for Zspin is
exp(zero). The spin contribution to the entropy per atom follows from equation (5.25)
as

_ ()spin k] ?•*sol,spin — ^ r AC in Z,Spin

= ifcln2. (12.32)

The Debye theory of lattice vibrations enables one to calculate the lattice contribu-
tion to the entropy. When f ^ I K , that contribution is negligible in comparison with
the nuclear spin contribution. Thus the entropy per atom of the solid is

ssol/k = ln2. (12.33)

�((%��+++���"�&�����$&���$&��(�&"'���((%����,��$��$&����������������
��	��������
�$+#!$������&$"��((%��+++���"�&�����$&���$&����#�*�&'�(-�$����&+�� ��$#��������������(����
������')����(�($�(�����"�&������$&��(�&"'�$��)'����*��!��!���(

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.013
http:/www.cambridge.org/core


284 12 Phase Equilibrium

Liquid 3He
When turning to liquid 3He, the first question to ask is this: may we treat the atoms
classically, or must we use quantum theory? Table 5.2 showed that liquid 4He at
T = 4 K has (F/A01/3/Ath = (V/N)l^V2Jtmkf/h = 0.86. A ratio less than 3 or so
indicates that quantum theory is required. An atom of 3He has a smaller mass, and we
are interested in temperatures r ^ IK; hence quantum theory is needed a fortiori.
Indeed, if we treat liquid 3He as an ideal Fermi gas, its Fermi temperature is Tp = 6 K.
This value is based on yliq = V/N = 43 X 10~30 m3/atom at T = 0.3 K and P =
29 atm, a point on the experimental melting curve. At physical temperatures below the
Fermi temperature, quantum theory is mandatory.

The simplest theory regards liquid 3He as a degenerate ideal Fermi gas. Equation
(9.19) gives the heat capacity as

and with it we can calculate the entropy Snq:

{"CAT)
dT

[T'2 T1 \ IT1 T
= T M — X — d T = - M — . (12.34)

Jo 2 yF i 2 yF

In section 10.3, we reasoned that the multiplicity of the ground state is 1, and hence its
entropy is zero. Thus no additive constant need appear in the first line. For the liquid,
the entropy per atom emerges as

YY^' (1235)

Figure 12.3 graphs the two entropies. The solid has the greater entropy,

*liq-*sol<0, (12.36)

when T < (2 ln2/jz2)Tj;. In qualitative terms, the situation is the following. The nuclei
in the solid phase are located at specific lattice sites, and so, in many respects, the
nuclei act independently of each other. Their spins need not be correlated by the Pauli
exclusion principle (because the atoms differ already in which lattice site they inhabit).
Nuclei in the liquid phase do not enjoy this quasi-independence, and so the Pauli
principle causes their spins to be correlated and reduces the spin contribution to the
entropy. Because of the correlations, the spin contribution to the entropy per atom is
less for the liquid than for the solid. At very low temperatures, the spin contribution
dominates over motional and positional contributions. Thus the entropy per atom of
the solid is greater than that of the liquid.
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Figure 12.3 Entropy per atom in the coexisting solid and liquid phases of 3He, based on the
simplest theory. The dashed extension of the curve for solid helium indicates that, at very low
temperatures, the magnetic and electrostatic interactions cease to be negligible, and so sso\/k
drops away from In 2. The dotted line labeled b • • • a corresponds to slow adiabatic compression
from pure liquid to pure solid. [Adapted from I. Pomeranchuk, Zh. Eksp. i Teor. Fiz. 20, 919-24
(1950).]

One last preliminary is needed. When solid 3He melts, the volume per atom
increases, that is,

(12.37)

For example, at T = 0.3 K, experiment gives Vnq - vso\ = 2.1 X 10~30 m3/atom. The
inequality (12.37) holds throughout the entire range of temperatures for which the
volume change has been measured.

Pomeranchuk's prediction
The Russian physicist Isaak Yakovlevich Pomeranchuk developed a graph like figure
12.3 in 1950. At that time, 3He had only recently been liquefied, and its properties at
very low temperature were not yet known. Nonetheless, Pomeranchuk expected the
inequality Vnq — vso\ > 0 to hold, as it does for most substances. Using that inequal-
ity—as well as the inequality (12.36)—in the Clausius-Clapeyron equation, Pomeran-
chuk predicted a negative slope for the melting curve at temperatures below the cross-
over point in figure 12.3. The subsequent experimental findings are displayed in figure
12.4.

Moreover, Pomeranchuk predicted that adiabatic compression of coexisting solid
and liquid would cool the helium. If the initial temperature is below 0.32 K, then an
increase in the external pressure moves the helium along the melting curve up and to
the left: toward higher pressure and lower temperature. This is the basis of the
Pomeranchuk refrigerator, a laboratory device that successfully cooled samples from
0.3 K to approximately 1 millikelvin (abbreviated 1 mK).
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Figure 12.4 The melting curve for 3He between 0.003 K and 1 K. Between 3 millikelvin and the
minimum, the melting curve indeed has a negative slope. The minimum occurs at a temperature
of 0.32 K and a pressure of 29.3 atmospheres. The extension of the curve to temperatures lower
than 3 mK is asymptotically horizontal. [Source: J. Wilks and D. S. Betts, An Introduction to
Liquid Helium, 2nd edn (Oxford University Press, New York, 1987).]

For a more intuitive way to understand the cooling, consider the situation depicted
in figure 12.5. Solid and liquid 3He coexist. If the external pressure is increased
(adiabatically), one expects the total volume to decrease. The inequality (12.37)
suggests that some liquid will turn into solid. Because sso\ is greater than s^ the

Next liquid
layer to
become solid

Figure 12.5 Solidification during slow adiabatic compression. (The geometry has been idea-
lized.)
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entropy increases in the layer that is becoming solid. The increase in entropy requires
energy input by heating: AS = q/T. That energy comes from both the existing solid
and the remaining liquid, and so they become cooler. While this description may help,
it introduces its own paradox: to solidify liquid 3He, heat it!

Energy changes
The issue of energy transfer merits even more attention. By how much does the energy
of a helium atom change when it is promoted from the liquid to the solid? On the
melting curve, solid and liquid coexist in thermal equilibrium. Therefore their
chemical potentials are equal: /JLSO\ = [i\n. For each phase, the chemical potential may
be written as the Gibbs free energy divided by the number of atoms in the phase; that
property was expressed by equation (10.32). Thus

and so

£SO1 - Tss0\ q q q

where s denotes E/N, the average energy per atom. Solving for the energy change of
the average atom, we find

£soi - eiiq = T(ssol - suq) - P(vso{ - Vnq). (12.39)

At T = 0.2 K, the pressure is P = 29.46 atmospheres; the volume decrease is

ŝoi - «>iiq = -2.11 X 10"30 m3/atom;

and the entropy increase is

Ssoi - siiq = 2.02 X 10~24 J/(K • atom).

These experimental numbers imply

T(ssoi - SKq) = 2.52 X 10~6eV/atom and
(12.40)

-P(vSoi - i>iiq) = +39.3 X 10"6 eV/atom.

The energy change that we can associate directly with compressive work done on the
system, —PAv, is 16 times as large as the change associated with heating, TAs. In this
comparison, the heating is relatively insignificant. But the heating must occur—
because only it can produce the entropy increase ssoi — snq (for the promotion of an
atom from the liquid to the solid) that figure 12.3 displays. And only the heating of
some liquid (that becomes solid) cools the remaining liquid and the already existing
solid (because, among other reasons, the system's total entropy remains constant). Just
knowing that £soi — £nq = 41.8 X 10~6 eV/atom would not tell us whether slow
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adiabatic compression lowers the temperature or raises it. The modes of energy change
are crucial. As the Clausius-Clapeyron equation shows, to lower the temperature by
compression, two conditions must hold: (1) there must be an entropy difference,
ŝoi - siiq 7̂  0, and (2) the differences sso\ - siiq and vso\ - Vuq must have opposite

signs.
As a model, a degenerate ideal Fermi gas captures the essential behavior of liquid

3He. For us, that essence is low entropy per atom. Although interatomic forces
influence the behavior significantly, the graph in figure 12.3 is a good first approxima-
tion—provided the cross-over point is set at 0.32 K, the temperature of the minimum
in the empirical melting curve. Magnetic and electrostatic interactions in the solid
cause its entropy to drop away as T heads toward 1 mK. Qualitatively, the interactions
correlate the orientations of the nuclei; that reduces the multiplicity and hence the
entropy. The entropy of the solid drops sharply to sso\/k = 0.15 as T decreases from
4 mK to 1 mK, virtually a vertical line on a graph in which temperature is plotted
linearly from 0 to 350 mK.

Slow adiabatic compression does not change the system's entropy. The adjective
isentropic denotes "at constant entropy," and so a slow adiabatic process is an
isentropic process. The process corresponds to a horizontal line in figure 12.3. The
dotted line labeled with the letters a and b indicates that, in principle, adiabatic
compression can cool from 0.2 K to the order of 2 mK. Other horizontal lines would
give other ranges. In particular, the lower the initial temperature, the lower the
intercept (where sso\/k drops steeply) and hence the lower the final temperature.

Superfluid 3He
In section 9.5, we noted that liquid 4He becomes a superfluid at temperatures below
2.17 K. The conduction electrons in many metals become a superfluid at low tempera-
ture; one calls it superconductivity. In lead, for example, conduction electrons form
pairs when the temperature drops below 7.2 K; each pair of electrons acts like a boson
and gives the characteristic resistance-free flow of electric charge that typifies super-
conductivity. As soon as the basic electron-pair theory of superconductivity had been
developed in the 1950s, physicists wondered whether liquid 3He would form atomic
pairs with boson character and the attributes of a superfluid. Predictions for the
transition temperature were made, and experimental searches were launched. No luck.
By the late 1960s, enthusiasm for the quest had waned, but there was much to study in
3 He anyway, and so the isotope remained a focus of active research.

At Cornell University in 1971, Douglas D. Osheroff, Robert C. Richardson, and
David M. Lee looked for a phase transition in solid 3He, the transition responsible for
the sharp drop in entropy that figure 12.3 displays. To cool the solid, they used a
Pomeranchuk refrigerator. The solid in the coexisting mix of solid and liquid was their
"sample." What they discovered, serendipitously, were two phase transitions in the
liquid. Figure 12.6 shows the pressure-temperature phase diagram for 3He. Cooling
by adiabatic compression from 20 mK, the three physicists found a transition to a
superfluid phase A at T = 2.1 mK and a second transition to a phase B at T = 2 mK.
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Figure 12.6 Phase diagram for 3He at low temperature (and in the absence of an external
magnetic field). The phases A and B are superfluid. Under its own vapor pressure, 3He remains
a liquid to the lowest temperatures at which it has been studied, and it is expected to remain a
liquid all the way to absolute zero. [Source: Dieter Vollhardt and Peter Wolfle, The Superfluid
Phases of Helium 3 (Taylor and Francis, New York, 1990).]

[More recent experiments (in 1994) put the transitions at 2.5 and 1.9 mK, respectively.
And in 1996, Osheroff, Richardson, and Lee received the Nobel Prize in Physics for
their discovery.]

Superfluid 3He shares with superfluid 4He the property of being able to flow without
viscosity. But there is additional richness. When two electrons form a superconducting
pair in lead, their spins are oriented oppositely, and the pair—as a boson—has neither
net spin nor magnetic moment. Not so with 3He. The two atoms are loosely held into a
pair by standard (albeit weak) interatomic forces, and the two nuclear spins are aligned
parallel to each other. Thus the pair—as a boson—has a net spin of Ih and a net
magnetic moment. Moreover, the motion of the atoms relative to their center of mass
generates a nonzero orbital angular momentum. The net spin angular momentum and
the orbital angular momentum can be coupled in various ways, and such different
couplings distinguish the superfluid phases from each other (in too complicated a way
for us to pursue here).

The superfluid phases respond surprisingly strongly to magnetic fields. Moreover,
when the boson-like pairs are partially aligned by an external magnetic field, the
properties of the fluid depend on direction relative to the external field. For example,
the attenuation of a sound wave depends on how the wave propagates relative to the
magnetic field. The fluid's response is anisotropic. Beyond all this, in the presence of
an external magnetic field, yet another superfluid phase makes its appearance, sand-
wiched between the A phase and the more conventional liquid.
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12.7 Gibbs' phase rule (optional)

We return to the theoretical conditions for coexistence of phases. Let the context be set
by figure 12.1. If we require that two phases coexist, we may freely choose one
intensive variable (T or P), but the other is then fixed (because the point must lie on a
coexistence curve). If we require that three phases coexist, no freedom of choice
remains. How does this kind of counting generalize when more than one species of
molecule is present? For example, if the system consists of a mixture of 3He and 4He
atoms, how many phases may coexist? We approach the answers via the following
route.

Let

#sp = number of molecular species and

cp = number of phases that coexist.

Furthermore, stipulate that no chemical reactions occur among the species. After
#sp and cp have been specified, how many intensive variables may we choose
freely?

For each species, the chemical potentials in all cp phases must be equal (because we
may imagine transferring molecules from one phase to any other). Table 12.4 illus-
trates this. In general, there are cp — 1 independent equations per row, and there is one
row for each molecular species. Thus

/ number of \ „ / 1 O / i n
+ • + +• = #SP X((p - 1). (12.41)

y constraint equations J
How many intensive or effectively intensive variables are there? Equation (10.35)

tells us that there are (#sp — 1) relative concentrations in each phase. Multipli-
cation by the number of phases cp gives cp X (#sp — 1) relative concentrations. To
this we add temperature and pressure (which are uniform throughout the system)
and find

Table 12.4 An example. Suppose the species are 3He and 4He, whence
#sp = 2, and suppose that the phases are the familiar vapor, liquid,
and solid, whence cp = 3. Coexistence requires a minimum in the Gibbs
free energy with respect to all possible transfers of an atom of each
species. Hence the sequences of equalities displayed below must hold.
Each chemical potential depends on three intensive variables: T, P, and
the ratio of concentrations, 7V3He/./V4He, in the given phase.
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/ n u m b e r of \ = x _ + 2

y intensive variables J

The number of intensive variables that one may choose freely is the difference of
the numbers in equations (12.41) and (12.42):

/ number of variables that \ _ ( number of \ / number of \
y one may choose freely / ~ ~ \ intensive variables J y constraint equations J

= [cpX (#sp - 1) + 2] - #sp X (cp - 1)

2-<p. (12.43)

Freedom to choose grows with the number of molecular species (#sp) and declines
with the number of phases (cp) that are required to coexist. Equation (12.43) is Gibbs'
phase rule.

The maximum number of phases coexist when the freedom of choice has been
reduced to zero. Thus

/maximum number of ^ = 2

y coexisting phases '

In the case of pure water, where #sp — 1, the maximum is 1 + 2 — 3, a triple point.
At least ten kinds of ice exist—they differ in crystal structure—but it is not possible to
have two kinds of ice coexisting with liquid and vapor. To be sure, nothing prevents
two or three kinds of ice from coexisting; they just cannot coexist with liquid and
vapor as well. Percy Bridgman's classic experiments found several triple points in
which three kinds of ice coexist.

If 3He and 4He are mixed, then #sp = 2, and the maximum number of coexisting
phases is four.

The preceding analysis took as intensive variables the relative concentrations plus
temperature and pressure. Additional intensive variables sometimes exist, such as a
"spreading pressure" in an adsorbed film. If so, then the counting must be augmented
to include them.

Moreover, if chemical reactions are possible, then each reaction imposes another
constraint on the chemical potentials (as chapter 11 demonstrated), and the counting
must include those constraints.

12.8 Isotherms

The pressure-temperature phase diagram of figure 12.1 displays the phase state of
water as a function of two intensive variables, P and T. Precisely because the variables
are intensive, there is no need to say how much water is being discussed, and there is
no need even to hold constant the amount of water under discussion. (Doubling the
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amount of water at fixed P and T does not alter the phase in which water exists at that
P and T.) Some other aspects of how water behaves are displayed more clearly if
pressure and volume are used as the independent variables. Because the volume V is
an extensive variable and depends, in part, on how much water is present, one
stipulates that the total number of water molecules is held fixed and is the same at
all points in the P-V plane. Figure 12.7 shows a portion of the phase diagram that
ensues.

The curves are curves of constant temperature: isotherms. In the P-T plane of
figure 12.1, isotherms are vertical straight lines; in the P-V plane, they are curved
(except in special circumstances). To understand the isotherms qualitatively, we begin
at temperatures well above the critical temperature, where the ideal gas law—valid for
a dilute gas—is a good approximation. That law asserts

P = — kT, (12.45)

and so, as the volume V decreases along an isotherm, the pressure P rises along the
arm of a hyperbola. The curve in the upper right portion of figure 12.7 is qualitatively
of this shape.

Consider now an isotherm that lies below the critical temperature, at T = 600 K,
say. Start in figure 12.1 at low pressure, well below the vaporization curve, and then
move up along the vertical isotherm. (You will have to draw in the isotherm mentally.)
As you increase the pressure, the vapor volume decreases, and you can see that

P
(atm)

218.3

Fluid

Liquid

Liquid and vapor

T=TC

T<TC

V/Vc

Figure 12.7 The phase diagram for water: the pressure-volume version. The volume is given
relative to the volume at the critical point, Fc (because the ratio V/ Vc provides an intensive
variable). The curves are isotherms. The displayed isotherms all have temperatures higher than
the temperature of the triple point, and so no solid phase appears. Within the region outlined by
dashes, liquid and vapor coexist.
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behavior displayed in figure 12.7. When the system hits the vaporization curve, you
can continue to compress it; as you do so, vapor condenses—drop by drop—into
liquid. Both temperature and pressure remain constant, and so the process appears as a
horizontal line in the P- V plane. (Note, by the way, that the chemical potential is
constant along the line segment, for the segment corresponds to a single point on the
vaporization curve. Later, that property will be essential.) After compression has
squeezed all the vapor into the liquid state, the system moves off the vaporization
curve (in the P-Tplane) and into the pure liquid phase. Because liquids are relatively
incompressible, the pressure (in the P- V plane) shoots up almost vertically as you
decrease the volume further.

In the P-T plane, the critical point marks the termination of the vaporization curve.
When the number of water molecules has been specified, the volume of water at the
critical point is uniquely determined by the critical temperature Tc and the critical
pressure Pc. That is to say, there is a unique value for the intensive variable (V/N)C9

the volume per molecule at the critical point. Thus the critical point of the P-T plane
maps into a critical point in the P- V plane. The isotherm that passes through the
critical point is called the critical isotherm. In figure 12.7, the critical point marks the
end (in the pressure dimension) of the two-dimensional region where liquid and vapor
coexist.

On the horizontal line segments in the region of liquid-vapor coexistence, the
derivative dP/dV is obviously zero. One may think of the critical point as the limit as
the horizontal segments shrink to zero length. Thus the equation dP/dV = 0 holds at
the critical point. In different words, the critical isotherm has dP/dV = 0 at one, but
only one, point.

Moreover, there is good evidence, both experimental and theoretical, that the second
derivative, d2P/dV2, is also zero at the critical point. That makes the critical point a
point of inflection on the critical isotherm.

Having finished this prelude, we turn to a classic equation that seeks to describe
behavior in the P-T and P- Vplanes.

12.9 Van der Waals equation of state

The ideal gas law, displayed most recently in equation (12.45), provides an example of
an equation of state: a relationship that connects P, T, and the number density N/V,
so that knowledge of any two variables enables one to calculate the third. (One could,
of course, use mass density in place of number density, and that was the custom in the
nineteenth century.) The ideal gas law works well for a dilute gas, but it is not capable
of describing a liquid or even a dense gas. More comprehensive equations of state have
been proposed, literally dozens of them, ranging from curve fitting of experimental
data to elaborate theoretical expressions. In this wealth of proposals, the van der Waals
equation of state remains a standard as well as an excellent introduction to the topic.
The van der Waals relationship works fairly well in the vapor and liquid regions of
figure 12.7 and also in the fluid region somewhat above the critical isotherm. In the
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294 12 Phase Equilibrium

region of liquid-vapor coexistence, it predicts nonsense, but that failing can be
patched up.

Several distinct routes lead to the van der Waals equation of state, each with
individual merits. Our route starts with the partition function for a semi-classical ideal
gas and then introduces two modifications: one for the repulsion between molecules at
very short range; the other for the attraction between molecules at intermediate range.
Thus our starting point is

(12.46)
N\

(Because pressure is determined primarily by the center-of-mass motion of molecules,
we may suppress aspects of molecular structure such as rotation and vibration about
the molecular center of mass.)

Figure 12.8 shows a typical intermolecular potential energy curve. With this curve
in mind, we introduce the two modifications, as follows.

1. Repulsion. When two molecules come into "contact," a strong repulsive force
arises. Each molecule excludes the other from the volume of space that it occupies.
In the partition function, we represent this effect by replacing the volume V with
V — Nb, where the constant b denotes a volume of molecular size, in order of

- 1
0.8

Figure 12.8 A typical intermolecular potential energy (PE) curve. The mutual potential energy
of two molecules is shown as a function of the distance r between their centers. Where the slope
is positive, the force is attractive; there the potential energy varies as 1/r6 (except near the
bottom of the potential well). Where the slope is negative, the force is repulsive. There the slope
is so steep that virtually any value of r in the repulsive region may be regarded as corresponding
to two molecules "in contact" and hence as a separation of "two molecular radii." Strictly
speaking, a mutual potential energy that depends on only separation presupposes spherical
molecules (before they interact). The form displayed here is qualitatively correct for monatomic
gases like argon and helium and is quite adequate for small diatomic molecules such as H2 and
N2.
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12.9 Van der Waals equation of state 295

magnitude. For example, if the molecules exert repulsive forces as though they were
hard spheres of radius ro, then the minimum center-to-center separation would be 2TQ.
One molecule would exclude the center of another from the volume b = 4jr(2ro)3/3
= 8 X 4jtrl/3, that is, eight times the volume of a single molecule. Do not take this
expression as a definitive result; it is merely suggestive and indicates the order of
magnitude. The coefficient b is best determined empirically. The product Nb repre-
sents the volume from which any one molecule is excluded by all the other molecules.

2. Attraction. The attractive force at intermediate distances will decrease the
system's total energy (at given temperature T) relative to the energy of an ideal gas.
For any given molecule, the reduction in energy will depend on how many other
molecules are within intermediate range of it. Perhaps the simplest form for the
reduction is —a X (N/ F), where a is a positive constant with the units of energy times
volume. Then the total energy would be

N
E = \NkT -NXa — . (12.47)

According to equation (5.16), the partition function provides an energy estimate via

(E) = kT2p2dlnZ
dT

To generate the term — aN2/V that appears in (12.47), the logarithm of Z must have a
term aN2/VkT. Thus, to incorporate both repulsion and attraction, we write the
partition function Zvdw as

(The last term could be tucked inside the logarithm and would then look like the
familiar Boltzmann factor.)

According to equation (5.19), the pressure follows as

This is the van der Waals equation of state, derived by Johannes Diderik van der Waals
in his Ph. D. thesis, written in 1873 in Leiden, the Netherlands. Our route to the result
is reasonably short and also provides a function, the partition function Zvdw> that can
be used to calculate all other equilibrium thermodynamic properties, such as entropy
and chemical potential, in a mutually consistent fashion.
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296 12 Phase Equilibrium

Appendix D offers further qualitative understanding of how the attractive and
repulsive intermolecular forces affect the pressure.

Isotherms
Figure 12.9 shows some isotherms computed with the van der Waals equation. Outside
the area outlined by dashes, the isotherms agree qualitatively with the experimental
isotherms in figure 12.7. Within the outlined area, however, the dip on the isotherm is
not physically sensible. Where the slope dP/dV is positive, the system would be
unstable.

To see why, imagine that the material—liquid, gas, or mixture—is in a vertical
cylinder, as was sketched in figure 1.4. The cylinder's sides are maintained at constant
temperature by contact with a water bath, say, and so any evolution of the material is
isothermal. Initially, the confined material is at equilibrium (however unstable) under
an external pressure produced by a weight sitting on the piston. By specification, this
situation corresponds to a point in figure 12.9 where the slope dP/dV is positive. Now
add the weight of a postage stamp to the piston. The additional external pressure
compresses the material slightly. According to figure 12.9 and the slope, the material's
pressure drops. So the weighted piston compresses the material further; the material's
pressure drops again, and so on. This is instability.

An analogously unstable behavior occurs if a tiny weight is removed from the
piston. In the real world and its incessant perturbations, no material can exist for any
length of time on an isotherm where dP/dV is positive.

1.5

0.5

Fluid

Liquid

0.5 1 1.5 2.5

Figure 12.9 Isotherms of the van der Waals equation of state. The pressure and volume are given
relative to their values at the critical point, Pc and Vc. Within the area outlined by dashes, the
literal curve must be replaced by the horizontal line, as explained in the text.
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12.9 Van der Waals equation of state 297

On isotherms below (27/32) Tc, the dip is so large that the pressure goes negative.
That is not wholly absurd. The sap in tall trees is believed to be pulled to the tree tops,
not pushed. Moving in tiny tubes, the sap is under tension and may be said to have a
negative pressure. In the lab, liquids have been put under tensions that correspond to
negative pressures of order —500 atmospheres. Nonetheless, a negative pressure is not
acceptable in a region where liquid and gas are to coexist.

The oscillatory portion of an isotherm must be replaced by a horizontal line that
connects a 100 percent vapor point with a 100 percent liquid point that has the same
numerical value for the chemical potential. (Recall that each horizontal line in figure
12.7 corresponds to a point on the vaporization curve of figure 12.1, and hence the
chemical potential has the same numerical value all along the line segment.) Figure
12.10 and the Gibbs-Duhem relation provide a construction for the line, as follows.

Even though the van der Waals equation fails as a description of nature within the
area outlined by dashes, the thermodynamic functions (like P and JU) satisfy all the
usual equations because we derive them from a partition function. Thus the Gibbs-
Duhem equation holds (at least in a mathematical sense). Along an isotherm, that
equation reduces to

^AP. (12.50)
N

Think of integrating an infinitesimal version of this relation, dpi = (V/N)dP, along
the isothermal curve ABCDE in figure 12.10. From point A to point B, the differential
dP is positive, and so pi increases. From B to C, the differential dP is negative, and so
ju decreases. The net change in pt is given by the dashed area that is bounded by the
curve ABC and the horizontal line. Perhaps you can see this most clearly by rotating
the figure 90°, so that the P axis takes the usual position of the integration axis in an
integral of the form §(V/N)dP. (Beware, however, because then leftward is the

VIN

Figure 12.10 Selecting the correct horizontal line segment. To facilitate using the Gibbs-Duhem
equation, the pressure P is plotted as a function of V/N, where TV is the total number of
molecules.
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298 12 Phase Equilibrium

direction of increasing P.) For the integration from point C to D and thence to E, the
reasoning is similar. Now the change in JU is given by (—1) times the dashed area
bounded below by curve CDE. To ensure that pi at the low-volume end E equals // at
the high-volume end A, the horizontal line must be chosen so that the two dashed areas
are equal.

The coefficients a and b
In the simplest version of the van der Waals equation, the coefficients a and b are
constants. Certainly we treated them as constants in constructing Zvdw a n d then in
differentiating that function. Continuing in this spirit, we ask, how can one determine
a and b empirically? Data at the critical point suffice, as follows.

In section 12.8, we noted that one may think of the critical point as the limit as
isothermal line segments (in the coexistence region) shrink to zero length. Because
dP/dV = 0 on the line segments, that derivative is zero at the critical point also. In the
case of the van der Waals equation, we can establish another property of the critical
point by studying the non-physical undulation of the isotherm. The dip is a local
minimum and has zero slope at the bottom; the adjacent local maximum (at larger
V/ Vc) has zero slope at the top. As one shifts attention to isotherms of successively
higher temperature, those points of zero slope converge toward each other. In the limit,
they give a zero value to d2P/dV2 at the critical point. Analytically, one may think of
it this way:

d2P v dP/dVU^dP/dV^^
lim — — = 0

dV2
 c p

Both terms in the numerator are always zero, and so the limit is zero.
For an easy way to determine the coefficients a and b, impose the two derivative

conditions at the critical point. The equations are these:

dP_
dV

d2P

-NkTc ^ N2

•2a—r = <
cp. (Vc-Nb)2

2NkTc , N2N
— 6a—T = 0.

c.p.
(Vc - Nbf V\

(The switch to partial derivative signs is just a notational precaution. A derivative like
dP/dV along an isotherm requires that we hold T constant when differentiating P as
the latter is given in terms of Fand Thy the van der Waals equation.) The solutions
are

(12-52)
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12.9 Van der Waals equation of state 299

An additional relationship follows from the van der Waals equation itself. Substitute
into (12.49) the expressions for (V/N)c and kTc in terms of a and b; one finds

* = — • 02.53)

Table 12.5 displays some values for the coefficients a and b. Both the coefficient b
and the volume over which the potential energy is negative will grow with the
"volume" of a molecule; hence the trend in the depth of the attractive well is more
clearly revealed by the ratio a/b, cited in electron volts, than by a alone.

Equation (12.52) tells us that the critical temperature is proportional to a/b and
hence to the well depth (more or less). This echoes a remark made in section 12.1:
empirically, the critical temperature is proportional to the well depth: kTc = (well
depth). For this relationship, there was a ready interpretation: if the molecular
translational kinetic energy, \kT, exceeds the well depth, then the molecule will not be
bound by the attractive force exerted by another molecule. A distinct, high-density
liquid state will not be possible.

The simple structure of the van der Waals equation provides yet another relation-
ship. We found three conditions that relate the three intensive variables {Tc, Pc,
(V/N)c} and the two coefficients a and b. It should be possible to solve for a and b
(as we did) and to have left over one condition that relates the intensive variables
among themselves. That is indeed so. Consider the dimensionless combination
(N/V)c(kTc/Pc). Equations (12.51) to (12.53) imply

N \ kTc = - = 2.67. (12.54)
vdW ^

Regardless of how the coefficients a and b are chosen, either empirically or by
theoretical computation, equation (12.54) is a prediction by the van der Waals

Table 12.5 Empirical constants for the van der Waals equation.
The coefficient b is given in units o/10~30 m3 (1 cubic angstrom).
The data in table 12.1 provide a and b via the expressions a =
(27/64)(kTc)2/Pc andb = (\/S)kTc/Pc.

Substance

Water
Sulfur dioxide
Carbon dioxide
Oxygen
Argon
Nitrogen
Hydrogen
Helium-4

b
(10-30 m3)

50.7
94.7
71.3
52.9
53.8
64.3
44.3
39.4

a
(eV X 10-30 m3)

9.55
11.9
6.30
2.38
2.36
2.36
0.428
0.0597

a/b
(eV)

0.188
0.125
0.0884
0.0451
0.0439
0.0367
0.009 66
0.001 52
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300 12 Phase Equilibrium

equation. Empirical values of (N/V)c(kTc/Pc) for the gases in table 12.5 range from
3.3 for hydrogen to 4.4 for water. The van der Waals equation does a lot better than the
ideal gas law would do if applied at the critical point, for it would give the value 1. Of
course, such use would not be fair, for the ideal gas law claims validity only for dilute
gases. Nonetheless, the van der Waals equation falls short of high accuracy.

Van der Waals himself never intended that the coefficients a and b be taken as literal
constants. The title of his dissertation was "On the continuity of the gaseous and liquid
states," and that title displays the focus of his effort: to show that the gaseous and
liquid states have much more in common than had been thought. Perhaps the greatest
triumph of his thesis was to exhibit, in one equation, the continuity along a path (in the
P- F plane of figure 12.7) from the vapor phase up to the fluid phase and then down to
the liquid phase. Van der Waals devoted his career to the equation of state, broadly
construed; for his many insights, he received the Nobel Prize for Physics in 1910. In
his acceptance speech, he complained that people repeatedly attributed to him the
opinion that the coefficients a and b are constants. Not so. Rather, from the time of his
thesis research onward, he sought to find the way in which they slowly varied. For us,
however, there is little benefit in pursuing that investigation. Today, the van der Waals
equation is best taken with constant a and b, used for semi-quantitative work, and
studied as a good example of an equation of state.

12.10 Essentials

1. Coexistence of two phases requires that their chemical potentials be equal.

2. The vaporization curve—the curve along which liquid and vapor coexist—termi-
nates at the critical point. At temperatures higher than Tc, the system is a single-phase
"fluid" with the volume-filling character of a gas.

3. For one molecule, the latent heat of vaporization, denoted by Lvap, is

_ / energy input by heating to promote one molecule \
p ~~ y from the liquid to the vapor at constant T and P ) '

The latent heat can be expressed as

Lvap = Ae + PAv = A(e + Pv),

where lower case e and v denote the average energy per molecule and the volume per
molecule, respectively. Analogous definitions and expressions apply to melting and to
sublimation.

4. The Gibbs-Duhem relation describes (in part) how the chemical potential depends
on the intensive variables 7" and P:

A/u = -sAT + vAP,
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Problems 301

where s is the entropy per molecule.

5. The Clausius—Clapeyron equation gives the slope of the vaporization curve (in the
P-T plane):

#* ^vap ^liq
dT ~ yvap - vhq ~ (tfvap - vhq)T'

Analogous expressions hold for the melting and sublimation curves.

6. Along the vaporization curve, the pressure is described—approximately but well—
by the equation

f

provided that Lyap is taken as a constant (equal to a suitable typical value of the latent
heat).

7. The van der Waals equation of state is the relationship

NkT fNx 2

The positive constants b and a represent the effects of strong repulsion at short
distance and mild attraction at intermediate distance, respectively.

Further reading

A wealth of information about phases is packed into D. Tabor's Gases, Liquids, and
Solids, second edition (Cambridge University Press, New York, 1979). The derivations
are elementary; the data are copious; and the insights are wonderful. Tabor's develop-
ment of the van der Waals equation is well worth reading, and so is his discussion of
negative pressure in liquids.

J. Wilks and D. S. Betts provide a splendid survey of both 3He and 4He in An
Introduction to Liquid Helium, 2nd edition (Oxford University Press, New York,
1987). Another good source is E. R. Dobbs, Solid Helium Three (Oxford University
Press, New York, 1994).

Problems

1. The temperature outside is —5 °C, and the pond is frozen. Yet children skate on a
thin, evanescent layer of liquid water (which provides a virtually frictionless glide).
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302 12 Phase Equilibrium

Use figure 12.1 to explain how the liquid film arises. [The conventional wisdom in this
problem is questioned by S. C. Colbeck, "Pressure melting and ice skating," Am. J.
Phys. 63, 888-90 (1995) and by S. C. Colbeck et al., "Sliding temperatures of ice
skates," Am. J. Phys. 65, 488-92 (1997).]

2. Solid-vapor equilibrium: little boxes. For a simple model of a solid, suppose that
each atom is restricted to the immediate vicinity of a lattice site. Such an atom may
move only within a little box of volume vso\, the volume per atom of the solid.
Interatomic forces bind the atoms to the solid by an energy — so (per atom) relative to
the gas phase, where £o is a positive constant. Note: the energy difference £o compares
an atom in its single-particle ground state in its box with an atom at rest in the gas
phase. Take £o to be of order 1 electron volt.

(a) Select one of the following two contexts:

Provide physical data and numerical justification for the reasonableness of your
choice. (Each context can be justified.)

(b) Calculate the chemical potential for the atoms in the solid.
(c) Derive an equation for the vapor pressure above the solid.
(d) Should the vapor pressure be an intensive or an extensive variable? Does your

theoretical expression conform to your expectation?

3. Solid-vapor equilibrium: Einstein model. For a more sophisticated model of a
solid, suppose that each atom may oscillate about its equilibrium location in the lattice;
the atom behaves like a harmonic oscillator that is free to vibrate in three dimensions.
All atoms vibrate with the same frequency vo. Thus each atom is restricted to the
immediate vicinity of a lattice site—but by a linear restoring force, not by the walls of
a tiny box. The interatomic forces play another role, too. They bind the atoms to the
solid by an energy — £Q (per atom) relative to the gas phase, where £o is a positive
constant. (Note. The energy difference £o compares an atom in its ground state at its
equilibrium site with an atom at rest in the gas phase.)

(a) Calculate the chemical potential for an atom in the solid.
(b) Derive an equation for the vapor pressure above the solid.
(c) What form for the vapor pressure emerges when kT ^> hv0?

4. The system consists of N = 1024 molecules of water. The initial state is pure vapor
at T = 373 K and atmospheric pressure. The water is heated at constant pressure to
T = 700 K, subsequently compressed isothermally to a pressure of 230 atmospheres,
next cooled to 373 K at constant pressure, and finally allowed to expand isothermally
to atmospheric pressure. The final state is pure liquid.
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(a) What is the net change in the system's energy?
(b) And in its chemical potential?

5. The top of Mt. Everest is 8,854 meters above sea level. Calculate the temperature at
which water boils there.

6. Here are some data for ammonia (NH3).

Vapor pressure of solid ammonia: inP = 16.27 — 3,729/T.

Vapor pressure of liquid ammonia: InP = 12.79 — 3,049/J7.

The pressure is in atmospheres; the temperature, in kelvin.

(a) What is the temperature of ammonia's triple point? And its pressure?
(b) Determine the latent heat of vaporization, Lvap, at the triple point (in eV/molecule).

Explain any approximations.
(c) At the triple point, the latent heat of sublimation is Z,subiimation = 0.3214

eV/molecule. What is the value of lesion (in eV/molecule)?

7. In figure 12.1, the coexistence curve that separates the vapor phase from the other
phases has a cusp at the triple point: a discontinuous change of slope. Develop an
explanation for why such a discontinuity is to be expected.

At the triple point, the volume per water molecule has the following set of ratios:
^vaporMiq = 2.06 X 105 and vso\/v\iq = 1.09. The latent heats of vaporization, sub-
limation, and fusion are the following: 0.47, 0.53, and 0.062 eV/molecule.

8. Liquid water—in a sealed but flexible container—is vaporized by heating at
atmospheric pressure and a temperature of 373 K. Under these conditions, the volume
per molecule in the liquid phase is Vnq = 31.2 X 10~30 m3, that is, 31.2 cubic ang-
stroms. The volume per molecule in the vapor is much larger: yVap/^iiq = 1,600. In the
following, "water" refers to the liquid and vapor together.

When one molecule is promoted from the liquid to the vapor, what will be

(a) the work done by the water (in electron volts)?
(b) the change in entropy of the water?
(c) the change in the internal energy of the water (in eV)?
(d) the change in the Gibbs free energy of the water?

9. For liquid 3He, the temperature and associated vapor pressure are given by the
following pairs of numbers:

( r , P): (0.2, 1.21 X 10"5), (0.3, 1.88 X 10~3), (0.4, 2.81 X 10"2), (0.5, 1.59 X 10"1).

The temperature is in kelvin; the pressure is in millimeters of mercury. Atmospheric
pressure corresponds to 760 millimeters of mercury (in an old fashioned mercury
manometer).
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304 12 Phase Equilibrium

(a) What is the latent heat of vaporization, Lvap, in the temperature range 0.2 ^
T ^ 0.5 K?

(b) Determine the vapor pressure at T = 0.1 K.

10. For solid 3He, calculate the entropy per atom that the lattice vibrations contribute
at temperatures below 1 K. The Debye temperature is #D = 16 K. Compare this
contribution to sso\ with that from the nuclear spin.

11. Cp — Cy in greater generality.

(a) Take the energy to be a function of both temperature and volume: E = E(T, V).
Derive the following connection between the heat capacities at constant pressure
and at constant volume:

(b) Check that the relation reduces properly when you apply it to a classical ideal gas.
(c) Apply the relation to the van der Waals gas.
(d) In which ways does the ratio Cp/Cy for a (monatomic) van der Waals gas differ

from the corresponding ratio for a monatomic classical ideal gas?
(e) Evaluate the ratio of heat capacities under the conditions V/N = 5 X b and

kT = 5 Xa(N/V).

12. Comparing the van der Waals and classical ideal gas laws.

(a) Rearrange the factors in the van der Waals equation so that each term on the right-
hand side of equation (12.49) is proportional to (N/V)kT. What conditions on
N/ V and kT (relative to the coefficients a and b) will yield individual corrections
of order 1 percent to the pressure as given by the ideal gas law?

(b) Use data from table 12.5 to determine the size of the corrections for air under
typical room conditions. What is the net correction?

13. Compare the entropy change of a van der Waals gas with that of a classical ideal
gas in the following contexts:

(a) heating from temperature Tx to Tf at constant volume;
(b) isothermal expansion from volume V{ to Vf;
(c) slow adiabatic expansion from volume V\ to Vf.

14. The critical point for the noble gas neon lies at Tc = 44.4 K and Pc = 26.9
atmospheres. Predict the volume per atom (V/N)c at the critical point. Explain your
reasoning, too.
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Problems 305

15. Investigate the Dieterici equation of state:

Mr f-aN^

For example, does it predict a critical isotherm? Is which regions of the P- V plane
does it differ significantly from the van der Waals equation of state? How does its
prediction for the combination (N/V)c(kTc/Pc) compare with experiment?
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13 The Classical Limit
13.1 Classical phase space
13.2 The Maxwellian gas
13.3 The equipartition theorem
13.4 Heat capacity of diatomic molecules
13.5 Essentials

This chapter adapts the quantum results of chapter 5 to the language of classical
physics. The chapter can be read any time after you have studied chapter 5. Of all the
other chapters, only chapters 14 and 15 make essential use of the material developed
here.

13.1 Classical phase space

Classical physics describes a collection of particles in terms of their positions and
momenta. For a single particle restricted to one-dimensional motion, the variables are
x and px. To provide a graphical representation of the particle's classical state, one uses
an x—px plane, as illustrated in figure 13.1, and plots a point in the plane. The x—px

plane is called the particle's two-dimensional phase space.

Px

Classical point
specification

Region of area (dx) X (dpx)
with the point (x, px)
enclosed

306

jt-axis

Figure 13.1 The two-dimensional phase space for a particle constrained to one-dimensional
motion.
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13.1 Classical phase space 307

The Heisenberg uncertainty principle puts a bound, however, on our simultaneous
knowledge of position and momentum. The principle asserts that

AxApx^-^-, (13.1)

provided Ax and A/?* are the root mean square estimates of the uncertainties in
position and momentum. Moreover, in quantum theory, one cannot construct a wave
function that ascribes a definite position to a particle and, simultaneously, a definite
momentum. The optimal wave function leads to uncertainties Ax and Apx that meet
the lower bound implied by (13.1). This suggests that a single quantum state corre-
sponds (at best) to a region in the two-dimensional phase space whose "area" is
approximately h in size.

The preceding paragraph has two immediate implications.

1. We can afford to frame statements about probabilities in terms of ranges of the
continuous variables x and p x , using differentials such as dx and dpX9 rather than
using a literal point in phase space: (x, px).

2. When we convert a sum over quantum states to an integral over the classical two-
dimensional phase space, we need to reason that

/ the number of states in the \ __ dxX dpx
\ rectangular region dxX dpx) ~ h '

where # is a dimensionless number of order 1 and whose precise value remains to
be determined.

Indeed, let us establish the numerical value of the constant # right now. Equation
(5.32) gave us the partition function for a single particle free to move in a three-
dimensional cubical box:

The classical analog must be

Zsemi-classical = j exp (~ ^ / ^ ] # ' ^ ^ , (13.4)

where the energy is the classical kinetic energy, p2/2m, and where

d3x d3p = dx dy dz X dpx dpy dpz

in terms of Cartesian coordinates. One factor of #//* arises for each pair of position
and momentum variables. [Because Planck's constant remains in a multiplicative
fashion (although not in the energy expression), the integral in (13.4) is best called the
"semi-classical" partition function.] The spatial integration goes over the box volume
V. Hold the momentum variables fixed and integrate with respect to position; that
integration will produce a factor of V. Because the energy depends on the momentum
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308 13 The Classical Limit

magnitude only, the momentum integration is done most easily with spherical polar
coordinates. One replaces d3p by 4jtp2 dp, as sketched in figure 13.2. Thus

^semi-classical —
# 3 VAn (°°

J . e x p r
V.

kT p2dp

h3 (13.5)

Appendix A provides the value of the definite integral. Upon comparing equations
(13.3) and (13.5), we find that the dimensionless constant # is precisely 1.

The generalization of equation (13.2) to three-dimensions is the statement,

the number of states in the \ _ d3xd3p
six-dimensional region d3xd3pj ~ h3 (13.6)

The full phase space for a single particle has six dimensions; fortunately, there is no
need to visualize that. It suffices to visualize a three-dimensional "position" space (or
"configuration" space) and, separately, a three-dimensional "momentum" space.

Generalization to 2, 3, or 1020 particles is not difficult, but the chapter will not need
that generalization in any detail, and so we skip the extra algebra.

Figure 13.2 A thin shell in momentum space. Its "volume" is the surface area, Ajip2, times the
radial thickness dp, that is, 4jtp2dp.
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13.2 The Maxwellian gas 309

13.2 The Maxwellian gas

Now we turn to the classical probabilities. Consider a dilute gas, so dilute that we may
ignore intermolecular forces and may treat the gas as a classical ideal gas. Classical
physics usually fails when it tries to cope with molecular structure, and so we take the
gas molecules to be structureless. Classical physics does, however, allow us to focus
on a specific molecule and to ask for the probability that its position lies in the small
volume element (fix around position x and that its momentum lies in the "volume"
cfi p around p in the momentum portion of phase space. Then we write

/ probability that the molecule has \
I position in (fix around x and = ^ ( x , p)d3xd3p. (13.7)
\ momentum in d3 p around p /

The function ^ ( x , p) is called a probability density, and we work it out next.
The gas is in thermal equilibrium at temperature T9 and so we may apply the

canonical probability distribution. The full quantum version of the canonical distribu-
tion, from equation (5.10), is

(13.8)

The symbol JP(*P/) and the right-hand side refer to the probability for a single
quantum state Wj. In going to a classical version, we need to multiply by the number
of quantum states that correspond to a given small region in the classical phase space.
Thus, for one particle, the classical analog of equation (13.8) is

^ ( x , v)d3xd3p = ( P r o b a b i l i t y f o r ) x (number of quantum\
y one quantum state J \ states in d*xd*p J

(13.9)
^semi-classical

Here £(x, p) is the molecule's energy as a function of position (in the Earth's
gravitational field, say) and of momentum. By our analysis in section 13.1, the
denominator Zsemi-ciassicai is equal to the integral of the other factors over all phase space:

That value for Zsemi-ciassicai ensures that the integral of ^ ( x , p) over all phase space
yields one, for the molecule is certain to be found somewhere in its total phase space.

The probability on the left-hand side of equation (13.9) is intended to be entirely
classical, as befits the definition in equation (13.7). There is to be no h and no notion
of quantum states or uncertainty principle. On the right-hand side in equation (13.9),
the explicit factor of \/h3 cancels with the \/h3 that is implicit in Zsemi-ciassicab and so
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310 13 The Classical Limit

^ (x , p) is indeed independent of Planck's constant. In that sense especially, equation
(13.9) is a classical limit.

If the energy £(x, p) does not depend on x, then appeal to equation (13.5) for the
Value Of Zsemi-dassical gives

-p2/2mkT

For one molecule of the classical ideal gas (in the absence offerees other than those of
the confining walls), this is the basic and correctly normalized probability distribution.

A note about terminology. In classical physics, most variables may take on a
continuous range of values. A probability like that described on the left-hand side of
equation (13.7) is proportional to one or more differentials. The function that multi-
plies the differentials is called the probability density (as noted above), and we will
call the product as a whole the probability distribution.

Two kinds of conversions are useful. Here is a statement of the procedures;
illustrations follow.

1. Reduction. To specialize the probability distribution, integrate over variables that
you no longer care to retain. (The procedure is based on the last theorem in
appendix C.)

2. Transformation. To transform to other independent variables, (a) compare differ-
entials and (b) equate probabilities.

To illustrate reduction, suppose we no longer care about where the molecule may
be, but we do want a probability distribution for momentum. Integration of (13.11)
with respect to position gives a probability distribution for momentum alone:

= I
volume V

-P
2/2mkT

To illustrate transformation, suppose we want a probability distribution for velocity,
that is, / (v) d3v is to give the probability that the molecule has velocity in the region
d3v around the point v in a velocity space. [The notation shifts from & to / for two
reasons: (1) to avoid depending on the argument alone to distinguish one probability
density from another; (2) for historical reasons.] Momentum and velocity are related
by the equation p — mv, where m is the molecule's rest mass. To each region d3v in
velocity space, there corresponds a unique region d3p in momentum space. Figure
13.3 illustrates this fact. The volumes are related by

d3p = (mdvx)(mdvy)(mdvz) = m3 d3v. (13.13)
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13.2 The Maxweilian gas 311

Py

Figure 13.3 Corresponding regions in momentum and velocity space (displayed in two dimen-
sions). The mass m was taken to have the value m = 2 kg, an unrealistic but convenient value.

Moreover, the probability that the molecule is to be found with velocity in the region
d3v around v must be the same as the probability that the molecule be found in the
uniquely corresponding region d3p around p. Thus

/ (v) d3v = &>{p) d3p (13.14)

for the corresponding regions. Using equation (13.13) to express d3 p in terms of d3v,
we find

3/2
(13.15)

James Clerk Maxwell arrived at this functional form in 1860 (by a different route and
with a slightly different significance). We will call the expression in (13.15) the
Maxwell velocity distribution (which is short for a "probability distribution for a
molecule's velocity"). It deserves a separate display:

/'probability that molecule has^ _
velocity in d3v around v

(13.16)

Note that the right-hand side depends on the magnitude of the velocity v but not on the
direction. Thus all directions (at fixed magnitude) are equally likely. One says that the
probability distribution is isotropic.

If the direction of molecular motion is irrelevant, then the reduction procedure will
generate a probability distribution for the magnitude only of the velocity: the speed.
Integration over direction at fixed speed amounts to asking for the probability that the
velocity vector falls in a thin spherical shell of radius v and thickness dv in velocity
space. The picture is akin to figure 13.2. Thus we write
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312 13 The Classical Limit

/ probability that molecule has \ ^ - = f 3 y

V speed in the range v to v + dv J J t h i n shell
J

2jtkT

Figure 13.4 illustrates the probability density, f(v\ for the speed distribution. The
initial rise is approximately proportional to v2 and corresponds to the increasing
volume of thin shells (of fixed radial thickness Av) as the radius increases; the volume
grows as 4JT V2AV. Ultimately, the exponential takes over, and the probability density
approaches zero asymptotically.

The probability distribution for speed, f(v) dv, depends on molecular parameters
and the temperature through the combination kT /m only. That combination has the
dimensions of (length)2/(time)2, that is, the dimensions of (speed)2. [You can see this
quickly by recalling that the exponent in equation (13.17) must be dimensionless.]
Any characteristic speed that the probability distribution provides will necessarily be
proportional to y/kfjm. Only the dimensionless numerical coefficient may vary.
Three characteristic speeds come to mind, as follows.

1. Most probable speed. The most probable speed corresponds to the maximum in
figure 13.4, where the slope is zero. Thus one solves the algebraic equation

df(v) = /2/ , -mv

/ ' \
v/(v)

Figure 13.4 The probability density for the Maxwell speed distribution. The abscissa is marked
in the dimensionless ratio v/(v).
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13.2 The Maxwellian gas 313

The most probable speed, denoted i>m.p>, emerges as

/ -I rri

(13.18)

2. Mean speed. An average or mean speed (v) is computed by weighting the speed v
with its probability of occurrence f(v) dv and then integrating:

upon appeal to appendix A for the definite integral.

3. Root mean square speed. A calculation of (v2) proceeds as

=
Jo

^-, (13.20)
m

again upon appeal to appendix A for the explicit integral. Of course, this result is
equivalent to none other than the equation

\m{v2) = \KT9

a relation familiar from section 1.2, but it is a nice check. Taking the square root of
(13.20) yields the root mean square speed, *Ws.-

The three speeds are closely similar. The mean speed (v) is 13 percent larger than
^m.p.? and tfr.m.s. is 22 percent larger. The common proportionality to ^kT/m has two
immediate implications: higher temperature implies higher speed, and larger mass
implies lower speed.

For diatomic nitrogen (m = 4.65 X 10"26 kg) at room temperature (T= 293 K), the
root mean square speed is

r̂.m.s. = 5 1 1 m/s.

(The length of a football field is approximately 100 meters, and so you can visualize
r̂.m.s. as approximately five football fields per second.) The speed of sound in air at

room temperature is = 340 m/s. Thus it is comparable to tfr.m.s.> as one would expect,
because sound waves should propagate at roughly the speed of typical molecular
motions.

�((%��+++���"�&�����$&���$&��(�&"'���((%����,��$��$&����������������
��	�������	
�$+#!$������&$"��((%��+++���"�&�����$&���$&����#�*�&'�(-�$����&+�� ��$#��������������(����
�����')����(�($�(�����"�&������$&��(�&"'�$��)'����*��!��!���(

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.014
http:/www.cambridge.org/core


314 13 The Classical Limit

The root mean square speed is easily measured—albeit indirectly—with a scale, a
vacuum pump, and a barometer. Equation (1.6), derived from kinetic theory, can be
written as

P = \~(J). (13.22)

The combination Nm/ V is the mass density. For air, that density can be measured by
weighing a stoppered one-liter flask both before and after it is evacuated. (The
dominant constituents of air, diatomic nitrogen and oxygen, differ little in molecular
mass, and so—to 15 percent accuracy—one may lump all the molecules in air together
as a single species: "air molecules" of a single mass m.) A mercury barometer
provides the current value of atmospheric pressure. Standard values are Nm/ V = 1.2
kg/m3 (at T = 293 K and atmospheric pressure) and âtmospheric = 1.01 X 105 N/m2.
Those values yield

.s. = 500 m/s.

(The literal numerical result is 502 m/s, but our lumping all molecular constituents
into one average gas precludes anything beyond two-figure accuracy, at most.)

Normalization
The probability distributions in this section are all correctly normalized, that is, the
integral of the probability density over the relevant domain equals 1. The probability
distribution ^ ( x , p) d3xd3p in (13.9) and (13.10) was constructed to have that
property. Reduction and transformation preserve the normalization. Algebraic errors
can creep in, however, and so always check that your probability distribution is
correctly normalized.

If you need to construct a probability distribution from scratch, you can sometimes
split the work into two pieces:

1. write down the essential variable part, perhaps as a Boltzmann factor times an
appropriate differential expression;

2. determine an unknown multiplicative constant by requiring that the probability
distribution be correctly normalized.

In part 1, you will need to be careful to insert the correct analog of d3x d3p, especially
if you are using coordinates other than Cartesian.

13.3 The equipartition theorem

The kinetic energy of a particle depends quadratically on the momentum components:
(PI + P2

y + P2z)/^m' Sometimes a potential energy is quadratic in the position variable
x: 5&spx2, where ksp denotes the spring constant. Or a potential energy can be expanded
around the minimum of a more complicated potential well, and then ^kspx2 is the first
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13.3 The equipartition theorem 315

term of interest in the expansion. In short, energy expressions that have a quadratic
structure arise often. The equipartition theorem provides a short route to determining
the associated energy as a function of temperature—provided that two assumptions are
fulfilled.

Assumption h The classical version of the canonical probability distribution is
applicable and adequate.

Assumption 2. The classical expression for the total energy splits additively into
two parts: one part depends quadratically on a single variable (x9 say), and the other
part is entirely independent of that variable. Thus

E = ax2 + Mother- (13.23)

Here a is a positive constant (but is otherwise arbitrary), and Mother depends on other
variables (such as y9 z, and p) but not on x. The range of the variable x must be
—oo ^ x ̂  oo or must stretch from zero to either positive or negative infinity.

Equipartition theorem. Given assumptions 1 and 2, the equipartition
theorem states that the estimated value of the energy ax2 is always \kT,
regardless of the numerical value of the constant a and independent of the
details Of Mother ̂

(ax2) = \hT. (13.24)

The proof is short. Assumption 1 entitles us to write

\ax2e-ElkTdxd(others)
(ax2) = •

\e-E/kTdxd(others)

where ^(others) denotes differentials of the other classical variables. Assumption 2
enables us to factor the exponentials and then the integrals:

\ax2e-ax2/kTdx X
(ax2) = J

\e-a*'kT
dxX L"Withers)

The integrals with the other variables cancel, and so those variables and Mother are
indeed irrelevant. The substitution q2 — ax2 jkT will extract the dependence on kT
from the remaining integrals. One finds

= \kT.
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316 13 The Classical Limit

Already the first line tells us that the result is independent of the constant a and is
proportional to kT. The integrals in appendix A lead to the factor of 1/2.

The outcome of the proof is appropriately called an "equipartition" theorem
because energy is doled out equally to every variable whose classical energy expres-
sion is quadratic.

Note how extensive the "other" variables may be. They may include the variables
for other particles or other aspects of the physical system. So long as assumptions 1
and 2 are fulfilled, the coordinate x and the energy ax2 may be a tiny aspect of a large
and complex system.

For example, one could choose the center-of-mass momentum component px of a
molecule in a dense gas or a liquid. Intermolecular forces certainly are exerted on the
molecule, but they are not coupled to px in the classical energy expression. Hence the
equipartition theorem asserts that (p2

x/2m) = \kT. In classical theory, the intermol-
ecular forces do not affect the estimated molecular kinetic energy.

Harmonic oscillator
The harmonic oscillator provides a good model for the vibration of the two atoms in a
diatomic molecule. The general form of the vibrational energy would be

spx2. (13.25)
2meff

 2 sp

The mass /weff is the effective mass (or reduced mass) for the model, and ksp

represents the curvature at the bottom of the attractive potential well, displayed in
figure 11.1. The variable x represents the separation of the two atoms minus their
separation at minimum potential energy. Thus x is zero when the separation corre-
sponds to the bottom of the potential well. Although x cannot meaningfully range from
—oo to +00, that is not a serious difficulty. Unless the temperature is so high that the
molecule is close to dissociation, the distant behavior of the potential energy curve is
inconsequential. One may use the harmonic oscillator form as though the true potential
extended parabolically from —00 to +00, In using the model to estimate the vibra-
tional energy as a function of temperature, the pressing question is whether classical
physics is adequate. Let us see.

The classical calculation of the total vibrational energy goes quickly. Appeal to the
equipartition theorem yields

/ 2 \
\£/classical = \ ^ ~ / + \y

\ \ k T . (13.26)

For the quantum estimate of the vibrational energy, we can take the result from
equation (6.5) and restore to it the constant \hv that corresponds to the energy scale
implicit in equation (13.25):

�((%��+++���"�&�����$&���$&��(�&"'���((%����,��$��$&����������������
��	�������	
�$+#!$������&$"��((%��+++���"�&�����$&���$&����#�*�&'�(-�$����&+�� ��$#��������������(����
�����')����(�($�(�����"�&������$&��(�&"'�$��)'����*��!��!���(

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.014
http:/www.cambridge.org/core


13.3 The equipartition theorem 317

(̂ quantum = \hv + g W J _ t • (13-27)

Here v is the frequency of oscillation, which is given in terms of the parameters by
2nv = y^sp/meff. As T —> 0, more specifically, when kT <C hv, the quantum esti-
mate goes to the value \hv, called the zero point energy. Already the Heisenberg
uncertainty principle ensures that the quantum estimate cannot vanish as T —> 0
because zero energy would require that both x2 and p2 be zero. Indeed, minimizing the
right-hand side of equation (13.25) subject to \x\ X \p\ = Ch, where C is a dimension-
less constant of order unity, leads to a minimum energy of order hv. (In chapter 6, we
chose a zero of energy so that the oscillator energy would be zero in the limit T —> 0.
That choice is sensible for electromagnetic radiation and is practical for sound waves.
Now, however, we retain the zero point energy, which does have empirical conse-
quences in molecular physics and elsewhere.)

Consider next the high temperature limit: kT ^> hv. The exponent in (13.27) is then
small, and one can expand the exponential:

(^quantum = 5*V + j +

= \hv+kT + ••• ^ kT. (13.28)

The last step follows already because of the strong inequality, kT ^> hvt In this limit,
one recovers the classical value. [Moreover, if one takes four terms in the expansion of
the exponential, the term in \hv is canceled exactly. One finds

X M + • • • .

The first correction term is quite small.]
Figure 13.5 compares the classical and quantum energies as a function of tempera-

ture.
Does the classical result apply to diatomic nitrogen at room temperature? Spectro-

scopic data give v = 7.07 X 1013 Hz, and so hv = 0.292 eV. For room temperature,
kT £ 0.025 eV. Thus

and the molecule is in the low temperature regime, not in the high temperature limit.
No, classical physics is not adequate.

When kT/hv = 1/10 precisely, equation (13.27) yields

(̂ quantum = (\ + 4.5 X 10~ 5 )^ = 0.146 eV,

relative to the bottom of the potential well. The well depth for nitrogen is —7.37 eV,
relative to zero at infinite separation. Thus the estimated energy, (£)quantum? leaves the
vibrational system both close to its ground state and close to the bottom of the
potential well. Approximating the well by a parabola that extends from —oo to +00 is
entirely adequate because the vibrational motion is confined to the region near the
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318 13 The Classical Limit

(e)lhv

0 1 2
kTlhv

Figure 13.5 The energy of a harmonic oscillator as a function of temperature: classical and
quantum estimates. In the units used for the two axes, the slope of each curve is d(e)/dT
divided by k. Thus the vibrational contribution to the molecular heat capacity, d{e)/dT9 is
proportional to the slope. When kT/hv ^ 1/3, the quantum (and true) heat capacity will be
much less than the classical value.

minimum. The harmonic oscillator model is perfectly fine, but one has to use the
correct physics in applying it.

13.4 Heat capacity of diatomic molecules

The heat capacity of typical diatomic molecules—at room temperature and in a dilute
gas—belongs in every physicist's store of readily accessible knowledge. We can now
determine the contributions to that heat capacity expeditiously. Translation, vibration,
and rotation need to be considered, as follows.

1. Translation. Classical physics certainly applies to the translational motion, and
the translational kinetic energy depends quadratically on the three components of
momentum. Thus the equipartition theorem implies

(̂ translation) = 3 X \kT (13.29)

for a single molecule.
2. Vibration. Our exploration of the harmonic oscillator and diatomic nitrogen in

the previous section suggests that room temperature is a very low temperature as far as
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13.4 Heat capacity of diatomic molecules 319

vibrational motion is concerned. One can expect the vibrational energy to be merely
the zero point energy (to good approximation):

(̂ vibration) & \hv. (13.30)

A characteristic vibrational temperature, 0V, was defined in section 11.3 by the
relationship k6v = hv. So long as the physical temperature T is much less than 0V,
equation (13.30) will hold. Moreover, when the inequality T <C 6Y holds, the slope of
the quantum curve in figure 13.5 is so nearly horizontal that vibration makes essen-
tially no contribution to the heat capacity.

3. Rotation. A diatomic molecule has rotational symmetry about the axis joining
the two nuclei. Call that axis the z-axis. Also, denote by / the moment of inertia for
rotation about an axis passing through the center of mass and oriented perpendicular to
the symmetry axis. Then, for our purposes, the kinetic energy of rotation has the
structure

J2 J2

^rotation = TZ~j ~f~ 1Z~j ? ( 1 3 . 3 1 )

where the rotational angular momentum is denoted by J. Why is there no term for
"rotation" about the symmetry axis? Because such "rotation" really would be excited
electronic motion and is separated from the molecular ground state by such a large
energy step that the possibility is negligible at room temperature.

Quantum theory assigns to the numerators in equation (13.31) characteristic values
of order h2. Section 11.3 defined a characteristic rotational temperature, 0r, by the
relationship k0r = h2/2I. When the physical temperature is much greater than 0r,
classical physics applies. Table 11.2 indicates that room temperature exceeds 9T by a
wide margin for typical diatomic molecules, and so we may apply the equipartition
theorem to the rotational energy:

(dotation) = 2 X \kT. (13.32)

(The rotational partition function, ZroU evaluated in section 11.3 in the context
T ^> 0r, yields the same estimated energy. Thus it corroborates the claim that, when
the thermal inequality holds, then classical physics applies.)

Table 13.1 summarizes the contributions to the total molecular energy and to the
heat capacity at constant volume, Cy. (Recall the context: a dilute gas, in which
intermolecular forces are negligible and do not contribute to Cy.) Thus, at room
temperature, Cy typically has the value

Cv = \Nk. (13.33)

By equation (1.18) and the preceding result, the theoretical ratio of heat capacities is
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320 13 The Classical Limit

Table 13.1 Energies and contributions to the
heat capacity for a diatomic molecule. The
thermal domain 0x « T <C 0V is specified,
and room temperature usually satisfies both
strong inequalities.

Translation
Vibration
Rotation

Sum

(*)
\kT
\hv
kT

ikT + lhv

d(e)/dT

0
k

jk

How well do theory and experiment agree? Taking N2, O2, CO, and HC1 as typical
diatomic molecules, one finds agreement to within 0.3 percent.

13.5 Essentials

1. In classical physics, a particle's state is represented by a point in its phase space, a
space whose axes are position variables and momentum variables.

2. The correspondence between a region in phase space and quantum states is the
following:

the number of states in the \ _ d3xd3p
six-dimensional region d3xd3p J h3

3. Specify a structureless classical ideal gas in thermal equilibrium. Then the basic
probability relations are these:

/probabil i ty that the molecule has \ e-e(x,P)/kT d3xd3
j position in d3x around x and I = ^ ( x , p)d3x d3 p = — X ———,
\ momentum in d3 p around p / Aemi-ciassicai h

where

7 . , . , - L-e(x,p)/kT
^semi-classical — I &

d3xd3p
h3 '

4. Other probabilities follow by two kinds of conversions:

1. Reduction. To specialize the probability distribution, integrate over variables that
you want to eliminate.
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13.5 Essentials 321

2. Transformation. To transform to other independent variables, (a) compare differ-
entials and (b) equate probabilities.

5. The Maxwell velocity distribution (which is short for a "probability distribution for
a molecule's velocity") follows from item 3 as

/probability that molecule h a s \ ^ f(y)(J3v = ( m V/2
c-mv2/2kTd3v

\ velocity in d3v around v J \2jtkTJ

6. The speed distribution follows from item 5 as

/ probability that molecule has \ >, x , f m \ ' -mlp-/2kTA i *
( J • xiT , J = f(P)dv = (̂ —7—1 e 4jtvzdv.
\ speed in the range v to v + dv J J v ' \2jtkTJ

7. Alone for dimensional reasons, all characteristic speeds derived from item 6 are
proportional to ^/kfjm. The three common characteristic speeds are the following.

fkT
Most probable speed: um.p. = V2\/—.

V iti

fs fkT
Mean speed: (v) = \ — \ —.

V Jt V m

Root mean square speed: tfr.m.s. = V

8. Equipartition theorem. Given

1. that the classical version of the canonical probability distribution is applicable and
adequate and

2. that the classical expression for the total energy splits additively into two parts, one
part dependent quadratically on a single variable (x, say) that has an infinite range
and the other part entirely independent of that variable,

then the equipartition theorem states that the estimated value of the energy ax2 is
always \kT, regardless of the numerical value of the constant a and independent of the
details of the other part of the energy:

(ax2)=\kT.

The weakness in this theorem is the first assumption.

9. For diatomic molecules in the thermal domain 0T <C T <^ 0V> translation and
rotation contribute classical values to the energy, but vibrational motion is frozen into
merely the zero point energy. Thus, when present as a dilute gas, such molecules have
a heat capacity at constant volume given by

Cv = \Nk.
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322 13 The Classical Limit

The ensuing ratio of heat capacities is y = | = 1.4. For typical diatomic molecules,
room temperature satisfies both strong inequalities.

Further reading

Maxwell's derivation appeared in J. C. Maxwell, "Illustrations of the dynamical theory
of gases.—Part I. On the motions and collisions of perfectly elastic spheres," Phil.
Mag. 19, 19-23 (1860), a portion of a series of papers.

Problems

1. The single-particle density of states. A semi-classical expression like equation
(13.6) provides a convenient route to the single-particle density of states.

(a) Integrate over space (of volume V) and over the direction of the momentum p to
determine D(p)dp, where D(p) denotes the number of states per unit interval of
momentum magnitude.

(b) Adopt the non-relativistic relationship between kinetic energy and momentum,
e = p2/2m, and determine the number of states per unit energy interval, D{e). Do
you find agreement with our previous result?

(c) Consider the relativistic relationship between total energy and momentum, £rei =
(p2c2 + rn2c4)1/2. Determine the number of states per unit interval of total energy,

2. Probability distribution for a velocity component. Reduce the Maxwell velocity
distribution to a probability distribution for the velocity component vx only. Sketch
your probability density and confirm that your probability distribution is correctly
normalized (to 1). Calculate (vx) and {v2

x).

3. Use the Maxwell velocity distribution to calculate {\vz\), the mean of the absolute
value of the z-component of velocity. Compare this with (v).

4. Calculate the probability that a gas molecule has velocity in the following range:

^JkT/m ^vz^ im^/kT/m and Jv2 + v2^ y/kT/m.

The temperature and number density are such that the gas acts like a classical ideal
gas. Give a numerical answer.

5. Probability distribution for energy. Transform the Maxwell speed distribution to a
probability distribution for the kinetic energy e. Provide a qualitatively faithful sketch
of the probability density. What value do you find for (e)? What is the most probable
value of the kinetic energy? Compare the latter with \m(vm.v)2. Comments?
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6. Doppler shift. If an atom is moving when it emits light, the frequency v that
is observed in the lab will be Doppler shifted relative to the frequency v0 in the
atom's rest frame. For light that travels along the jc-axis, the lab frequency is given
by

v = vox i+ri

correct to first order in inverse powers of the speed of light c. Here vx is the atom's x-
component of velocity.

Take the light source to be sodium vapor at T = 103 K, and take v0 = 5.09
X 1014 Hz. The mass of a sodium atom is 3.82 X 10~26 kg. Imagine that a spectro-
scope is oriented along the x-axis.

(a) Determine the probability distribution &(y)dv for receiving a photon in the
frequency range v to v + dv. The probability distribution is to be normalized to
unity. (For convenience, allow \vx\ to exceed the speed of light, but provide
justification for that mathematical approximation.)

(b) What is the root mean square spread of lab frequencies? That is, what is
((v — VQ)2)1/2! HOW large is that spread in comparison with the natural frequency
v0?

7. Relative motion. The probability that two atoms will react when they collide
(perhaps to form a diatomic molecule) depends on their energy in their center-of-
mass reference frame. In the following, take the two atoms to have the same
mass.

(a) Express the energy in the lab frame in terms of the velocity of the center of mass,
VCMJ and the relative velocity, Av = vi — V2.

(b) Take the probability distribution for the two atoms to be the product of two
Maxwell velocity distributions. Transform that probability distribution to a prob-
ability distribution for VCM and Av.

(c) Reduce your answer in part (b) to a probability distribution for Av alone. What is
the most probable value for the magnitude of the relative velocity? How does that
value compare with the most probable value of a single atom's speed?

(d) Calculate the mean value of the relative speed, (|Ai?|). By what numerical factor
does this differ from the mean speed of one atom, (v)!

(e) By transformation and reduction, convert your probability distribution for Av to a
probability distribution for the energy £rei.motion in the CM frame. (Here £rei.motion
denotes the energy of the relative motion, which is the energy in the CM frame.)
What value do you find for (£rei.motion)?

8. Sound waves in air. A sound wave consists of correlated variations in the pressure
P, the mass density p, and the bulk motion of gas molecules. The characteristic speed
Vch is determined by the relation
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324 13 The Classical Limit

adiabatic

The subscript indicates that the partial derivative corresponds to an adiabatic change,
not an isothermal change.

(a) Compute V& for a classical ideal gas (which may be diatomic) in terms of kT9 the
molecular rest mass m, and the heat capacities.

(b) Evaluate V& for diatomic nitrogen at room temperature and then compare with the
measured speed of sound in air.

9. Heat capacities of diatomic molecules. Determine y, the ratio of heat capacities,
for a dilute gas in the following cases.

(a) Carbon monoxide when T = 300 K.
(b) Iodine when T = 500 K.
(c) Hydrogen when T = 10 K.

10. Classical solid. Consider a solid whose atoms form a cubical lattice; common
sodium chloride will do nicely. An individual atom may vibrate independently in the x,
y, and z directions of Cartesian axes.

(a) If the N atoms of the solid are considered as N independent harmonic oscillators,
what does classical physics predict for C/N, the heat capacity per atom?

The classical value of C/N is known as the Dulong and Petit value. In 1819, P. L.
Dulong and A. T. Petit found experimentally that C/N is approximately the same for
many metals at the relatively high temperatures they used. (Dulong and Petit expressed
their experimental results in the units of that era, different from our units, but the
essential content was the same. They determined heat capacities by measuring cooling
rates from initial temperatures of order 300 to 500 K.)

(b) If you have read section 6.5, would you expect Dulong and Petit to have found the
classical value for C/N when they studied the metals silver, gold, copper, and
iron?

11. For a particle constrained to one-dimensional motion (on — oo ^ JC ̂  oo), suppose
the energy expression is

where b is a positive constant and n is a positive integer. Compute the estimated values
of the kinetic and potential energies as functions of the temperature T and constants.
You will need to consider some integrals, but aim to calculate the estimates without
evaluating any integral explicitly.
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12. Intramolecular speed. For diatomic nitrogen at room temperature, estimate the
speed with which each atom moves with respect to the molecular center of mass.
Estimate also the percentage uncertainty in your estimate of the speed.

13. Rotating dust grain. Consider an interstellar dust grain whose shape is like a cigar.
The diameter is 10~7 meter, and the length is 10 times as long. The grain is electrically
neutral and is in thermal equilibrium with dilute gaseous hydrogen. Typically, the grain
will have some angular momentum relative to its center of mass. Would you expect the
angular momentum to lie primarily parallel to the long axis or perpendicular to it? Be
at least semi-quantitative in your response, please.

14. Paramagnetism classically. Treat the spatially fixed paramagnetic particle of
section 5.3 classically, allowing the magnetic moment me to take on any orientation
relative to the fixed external magnetic field B. The orientational energy is

- m s • B = —m^B cos 6

where 6 is the angle between the magnetic moment and the field.

(a) Determine the classical probability distribution d^{0)d9 that the orientation angle
0 lies in the range d6 around 0. Recall that the expression for an infinitesimal solid
angle in spherical polar coordinates is sin OdOdcp, where cp is the azimuthal angle.
Confirm the normalization.

(b) Calculate the estimate (component of mB along B) as a function of temperature T
and field magnitude B. The result is called the Langevin expression (after the
French physicist Paul Langevin).

(c) Plot your result from (b) as a function of m^B/kT and compare it with the
quantum result (for spin jh)9 displayed in section 5.3. For a good comparison,
superimpose the two graphs, classical and quantum.

15. Isothermal atmosphere revisited. A monatomic classical gas is held in a vertical
cylinder of height H in the Earth's gravitational field g. There are N atoms, each of
mass m, in thermal equilibrium at temperature T.

(a) Determine the probability density ^ ( x , p) for a single atom of the gas. Be sure
that the integral of ^ ( x , p)J3x d3p over the relevant domain equals one.

(b) Calculate the average energy (E)/N.
(c) Graph the quotient (E)/NmgH as a function of kT/mgH. (Both of these variables

are dimensionless and hence advantageous.)
(d) By inspection, for which value of kT/mgH is the heat capacity largest?
(e) What is (E)/N in the limits of small and large values of kT/mgH (relative to 1)?

16. Effusion. Air leaks into an evacuated chamber through a pin-hole of area A.

(a) Adapt the analysis of section 1.2 to calculate the rate at which molecules enter the
chamber (in terms of A, T, N/V, and the mass m of an "air molecule"). Take the
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326 13 The Classical Limit

wall to be infinitesimally thin so that transit through the hole is not a complication.
Moreover, ignore the hole's effect on the local conditions in the air.

(b) If the pin-hole has the extent A = 10~12 m2 and if the air is under typical room
conditions, what is the entry rate (in molecules per second)?

(c) Consider the molecules that leak through the hole in one second. Qualitatively,
how does their average kinetic energy compare with \kTl Explain your reasoning.

(d) Calculate in detail the average kinetic energy discussed in part (c). Express it as a
multiple of kT.

17. A sobering thought in this day of energy awareness. Suppose you turn on the
furnace to raise the temperature of the air in a room from 19 °C to 22 °C. The furnace
consumes energy in achieving this increment. Does the energy in the room increase?
Why? (Here I am thinking strictly of the energy of the air in the room.) If your answer
is no, where has the energy gone? (Recall that, in a realistic house, the pressure in the
room remains atmospheric pressure, that is, remains equal to the pressure outdoors.)
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14 Approaching Zero
14.1 Entropy and probability
14.2 Entropy in paramagnetism
14.3 Cooling by adiabatic demagnetization
14.4 The Third Law of Thermodynamics
14.5 Some other consequences of the Third Law
14.6 Negative absolute temperatures
14.7 Temperature recapitulated
14.8 Why heating increases the entropy. Or does it?
14.9 Essentials

This chapter explores in greater depth the connections among entropy, temperature,
and energy transfer by heating (or cooling). The sections are diverse but related, albeit
loosely. The first section develops a general expression for entropy in terms of
probabilities. The next section provides an example and also prepares the ground for
section 14.3, which discusses a classic method of reaching low temperatures. The
section entitled "The Third Law of Thermodynamics" explores the constraints on
methods for approaching absolute zero. In section 14.6, we discover that temperatures
numerically below absolute zero have been produced in the lab, and we explore that
context. Finally, the last three sections reflect on the notions of temperature, heating,
and entropy.

In short, the chapter's title, "Approaching zero," highlights the central four sections,
sections 14.3 to 14.6. The sections that precede and follow those sections are loosely
related to the central sections and are also valuable in their own right.

14.1 Entropy and probability

Chapter 2 used the idea of multiplicity and its evolution to state the Second Law of
Thermodynamics. A quantitative study of how multiplicity changes during a slow
isothermal expansion led to entropy, defined as S = k In (multiplicity). In chapter 5,
we used the entropy concept to derive the canonical probability distribution; thereby
we introduced an explicit expression for probabilities at thermal equilibrium. Now we
complete the loop by learning how the probabilities can be used to calculate the
entropy.

First we marshal the essential equations. Equation (5.10) gave the canonical
probability distribution as

327
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328 14 Approaching Zero

and (5.15) gave the energy estimate (E) as

(14.2)

Finally, equation (5.25) gave the entropy as

S = — + klnZ (14.3)

in the context of the canonical probability distribution.
To write the entropy in terms of the probabilities, eliminate Ej and (E) among the

three equations. First take the logarithm of equation (14.1) and then rearrange terms as

Ej = -kT [In PQ¥j) + In Z].

Insert this expression for Ej into the right-hand side of (14.2):

(E) = -k

= ~kT

Because the probabilities sum to 1, the term in In Z reduces to merely —kT In Z. Now
use this expression for (E) in (14.3), finding

The entropy emerges as a sum of —PQ¥j)ln POPy); each logarithm is weighted by the
probability that the state Wj is the correct state to use. Because the probability POP/)
is less than 1 (or equal to 1), In POP/) is negative (or zero), and the entropy is a
positive quantity (or zero).

What happens when W7 corresponds to a state of high energy Ej and consequently
small probability? Mathematically, as Pj —> 0, the limit of the function Pj In Pj is zero
(as you can confirm with PHopitaPs rule). Thus states of vanishing probability do not
contribute to the entropy. That makes sense, for such states do not contribute to the
multiplicity.

The structure of equation (14.4),

sum of 1
-probability X In (probability) J '

is the uniquely correct way to assess the logarithm of a "multiplicity" in a general
sense of that notion. When Claude Shannon invented the field of Information Theory
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14.2 Entropy in paramagnetism 329

(in 1948), he found himself led to the structure in (14.5). Working for Bell Telephone
Laboratories, he asked himself, how can one encode messages most efficiently? In
turn, that led him to the question, how uncertain is one about a message when one
knows merely its length? For example, in a message of eight characters written in
correct English, the number of possibilities is not (26 + 2)8, where 26 is the number of
letters in the alphabet and where the " + 2 " accounts for "space" and "period." (The
distinction between capital and lower case letters is ignored here, as it is in telegraph
messages, which are sent in all caps.) No English word has four q's in a row: qqqq.
There are many other exclusions. Moreover, certain combinations are more probable
than others; for example, the pair "ab" is more probable than "bb." If the first seven
characters spell out "St Loui," the probability is high that the last letter is "s."
Shannon set up three general criteria that any reasonable measure of uncertainty about
a message ought to satisfy. Then he found that only a structure like (14.5) would meet
the criteria.

To pursue the example further, let n = (26 + 2)8. If all n sequences of 8 characters
were equally probable as a message, then each sequence would have a probability of
\/n. According to (14.5), the equation

sum of 1 ( 1 t \\ -
u wi'4. v / t / u u - n \ = / l X — X l n " = l n / I ( 1 4 . 6 )

—probability X In (probability) \ \ n nj
would hold. The uncertainty would be \nn. The form is like the logarithm of a
multiplicity as we developed that idea in chapter 2. The structure in (14.5) and in
(14.4) generalizes from a situation in which the microstates are equally probable to a
situation in which the microstates differ in probability among themselves. In short, we
are not replacing the old idea that "entropy is the logarithm of the multiplicity (times
Boltzmann's constant)." Rather, we are retaining that idea but are generalizing the
notion of multiplicity. Microstates that differ in probability contribute differently to the
multiplicity.

Section 5.5 was devoted to choosing the energy range 6E in the quantum form of
multiplicity, which we had expressed in section 4.2 in terms of the density of states
D(E) for the entire system: S = k In [D(E)dE], I characterized the choice as "plau-
sible and even natural" and promised evidence that the selection is also "uniquely
correct." Although more details could be filled in, the correspondence between entropy
as expressed in equation (14.4) and Shannon's uncertainty measure is evidence that
section 5.5 selected dE correctly.

A physical example of how to use equation (14.4) may be welcome; the next section
provides it.

14.2 Entropy in paramagnetism

We return to the single paramagnetic atom of section 5.3. Its spin is \h, and its location
is absolutely fixed in some crystal lattice. The system has two energy eigenstates:
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magnetic moment parallel (||) or anti-parallel (anti-||) to an external magnetic field B.
Section 5.3 gave the probabilities as

P\\ =2cosh(mBB/kTY

antl"l! 2 cosh (mBB/kT)'

Equation (14.4) gives the entropy (divided by k) as

S/k= - (P| In P|| + Panti.|| In Panti-||),

and so substitution yields

S/k = --
kT

tanh(mB B/kT) + In [2 cosh(mB B/kT)].

(14.7)

(14.8)

(14.9)

(14.10)

[This result is, of course, derivable also from equation (14.3) and the partition function
Z = 2cosh(mB B/kT).] Figure 14.1 displays the entropy as a function of temperature
at fixed external field.

In this ideal situation—no interaction with neighboring magnetic moments—the
entropy depends on B and T through the ratio B/T only. In the limit T —> oo at fixed
field B, the probabilities (14.7) and (14.8) become equal. Their limiting value is j , and
so equation (14.9) implies

T->oo
(14.11)

at fixed field B. At temperatures such that kT > mBB, the energy difference between

Slk

0.6

0.5

0.4

0.3

0.2

0.1

0
5

kT/mBB

Figure 14.1 The entropy of an ideal spin jh paramagnet. The high temperature asymptote is
S/k -* In 2, which equals 0.693.
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14.3 Cooling by adiabatic demagnetization 331

the two orientations is insignificant; the two orientations are equally probable; and the
multiplicity has the simple value 2.

For the opposite limit, T —> 0 at fixed field, one can first factor the large exponential
in P| out of the numerator and denominator and then expand:

A, — I a* 1 _ e-2mBB/kT /14 19)

The sum of the probabilities remains equal to 1, and so

Anti-H = e~2m^kT. (14.13)

At low temperature, the magnetic moment is overwhelmingly more likely to point
parallel to the external field, the orientation of low energy, than anti-parallel.

Substitution of the probabilities (14.12) and (14.13) into equation (14.9), expansion
of the first logarithm, comparison of the several terms, and retention of only the largest
term yield

^ (14.14)

when kT <C m^B. In the limit as T —» 0 at fixed field, the exponential dominates over
any mere inverse power of T, and so one finds

0, (14.15)

as figure 14.1 illustrated. The system settles into its ground state; the multiplicity
becomes 1; and the entropy goes to zero.

While we are on the subject of entropy, an adjective that will be useful later should
be defined: isentropic means "at constant entropy."

14.3 Cooling by adiabatic demagnetization

In 1926, William Francis Giauque and (independently) Peter Debye suggested that
adiabatic demagnetization would provide a practical way to reach extremely low
temperatures. Seven years later, having overcome immense technical problems,
Giauque cooled gadolinium sulfate to 0.25 K, a new record for low temperature. For
understanding the process, figure 14.2 displays the essential information: the graphs of
entropy versus temperature for low and high values of magnetic field, graphs based on
figure 14.1 and equation (14.10). The entropy expression in (14.10) is a function of the
dimensionless ratio m&B/kT. Consequently, for a given value of the entropy, lower
field B requires lower temperature T, and so the low field curve lies to the left of the
high field curve.

The system consists of N paramagnetic particles together with other particles in a
crystalline solid. To see how the cooling arises, start with the system at point a: in low
magnetic field and at initial temperature T\. (Note. Think of Tx as 1 K or less. Then the
initial temperature is so low that the entropy associated with the lattice vibrations is
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0

Low field

High field

Figure 14.2 Entropy versus temperature for two values of the magnetic field. The path a to t
describes an isothermal increase in the magnetic field; the path b to c, an adiabatic (and
reversible) decrease in the field.

negligible in comparison with the orientational entropy of the paramagnetic particles,
both initially and throughout the steps.) Increase the field isothermally to the higher
value, taking the system to point b. Now isolate the system thermally, so that no energy
transfer by conduction or radiation can occur; this provides the environment for an
adiabatic process. Slowly reduce the field to its original low value. The adiabatic and
reversible process holds the entropy constant. The isentropic process from point b to
point c leaves the system with a final temperature Tf that is substantially lower than
the initial temperature. The paramagnetic sample has been cooled.

What is the quantitative relationship for the amount of cooling? Recall that the
entropy expression in (14.10) depends on B and T through the ratio m^B/kT only.
The ratio must be preserved during the isentropic demagnetization: Tf/B\oyf fieid =

high field- Consequently, the final temperature is

field
#high field

(14.16)

[Bear in mind that—so far—we have neglected the mutual magnetic interactions of
the N paramagnets. When i?iow field becomes as small as the magnetic field that the
paramagnets themselves produce, the relationship in (14.16) needs to be augmented.
More about that comes shortly.]

Cooling from another point of view
You may wonder, where is the microscopic kinetic energy whose change I can use as a
touchstone for a change in temperature? There is no need to grasp for microscopic
kinetic energy. Figure 14.3 shows graphs of entropy versus energy for low and high
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14.3 Cooling by adiabatic demagnetization 333

High field

Figure 14.3 Entropy versus energy for low and high magnetic field.

magnetic fields. The construction is as follows. The energy (as a function of Tand E)
can be computed from the partition function as

(E) = kT 2 <9 In Z
dT

= -rnBBNtznh(mBB/kT), (14.17)

where lnZ = Nln[2cosh(mBB/kT)]9 that is, N times the logarithm of the partition
function for a single paramagnet of spin \h. Given T > 0, large field implies a large
but negative value for (E). The maximum negative value is —mBBN and corresponds
to all magnetic moments being aligned parallel to the field. This physical situation
corresponds to the system's ground state and hence to a multiplicity of 1 and an
entropy of zero. Equation (14.10) gave the entropy for a single paramagnet; multi-
plication by TV gives the entropy for the present system. One can solve equation
(14.17) for T in terms of (E) and then substitute for T in the entropy expression
(14.10). These steps provide S as a function of (E), which is written here as merely E.
The value B of the magnetic field remains in the relationship as a parameter. The graph
for high field will extend farther along the energy axis than the curve for low field.

The isentropic demagnetization corresponds to the line b to c in figure 14.3. Recall
now the general quantitative definition of temperature,

fixed external parameters
(14.18)

In section 4.3, we derived this relationship in a context where the volume Fwas the
sole external parameter. In the present situation, the external magnetic field B is the
external parameter. To the eye, the slope (dS/dE)s is larger at point c than at point b.
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334 14 Approaching Zero

The general definition says that larger slope means lower temperature; the system has
been cooled.

Indeed, the graphs for low and high field have the same analytic form; the low field
curve is merely narrower by the ratio i?iow fieid/Aiigh field- Thus we infer that the slope
at point c is larger by the ratio i?high fieid/Aow field- By keeping track of all the ratios
and reciprocals, one finds that the final temperature is given by the expression already
derived in equation (14.16). The graphical analysis, however, has the merit of taking
us back to the general definition of temperature. Recall, from section 1.1, that
temperature is "hotness measured on some definite scale." In turn, "hotness" means
readiness to transfer energy by conduction or radiation. For that, the rate of change of
entropy with energy provides the crucial measure. In situation c, the system is colder
because its entropy grows more rapidly with an increase in its energy. The system
absorbs energy more readily, a sure sign of coldness.

It is hard to divorce oneself from the notion that temperature is invariably and
inextricably bound up with microscopic kinetic energy. In reality, temperature is a
deeper notion than any such connection with irregular microscopic motion. The
reasoning from "hotness measured on some definite scale" to the general calculational
prescription in (14.18) is a much better view to take.

Further illustration
Figure 14.4 illustrates the situations a, b, and c of figure 14.2 by displaying typical
distributions of magnetic moments. The estimated magnetic moment along B is

(magnetic moment along B) = Nm& tanh
kT

(a) Low B,T{: 1 { i i

\ II i

r

(b) High 5, 7-: 1Ik i i i i k i i i

1i

f

k i i

f

i i i 1

(c)LowB,Tf:

Figure 14.4 Illustrations of the stages in cooling by adiabatic demagnetization. The arrows
represent individual magnetic moments; the external magnetic field B points up the page. What
matters is the fraction of arrows pointed upward, not which arrows point upward.
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14.3 Cooling by adiabatic demagnetization 335

a result derived in section 5.3. Like the entropy, the estimated total moment depends
on the ratio m^B/kT. Therefore processes in the S- T plane in figure 14.2 can be
readily illustrated with the average alignment of the moments.

Experiments again
We return now to the experiments. Figure 14.5 sketches the apparatus of the 1930s.
Liquid helium provides the initial temperature Tx. By pumping away helium vapor, one
can cool the liquid—by evaporation—to 1 K. The paramagnetic sample is suspended
in a chamber immersed in the liquid helium. Initially, the chamber contains dilute
gaseous helium also; the gas provides thermal contact between the paramagnetic
sample and the liquid helium while the external magnetic field is raised to the value
^high field- Thus the gas ensures an isothermal magnetization, the process a to b of
figure 14.2. Next, the gaseous helium is pumped out, leaving the paramagnetic sample
thermally isolated. Slow, adiabatic demagnetization takes the sample isentropically
from point b to point c in figure 14.2. Apparatus of this nature enabled Giauque to cool
to 0.25 K. Lower values for the initial temperature and other choices of paramagnetic
salt dropped the final temperature by two orders of magnitude. The salt cerium
magnesium nitrate yields 7> = 3 millikelvin (3 mK).

To pumps

Liquid helium Paramagnetic
sample

Figure 14.5 The essentials for cooling by adiabatic demagnetization. The pole faces of an
external magnet are labeled N and S,
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336 14 Approaching Zero

The lower limit
What sets the limit to the temperature that isentropic demagnetization can achieve?
The mutual interactions of the magnetic moments are central to the answer. The
separation of neighboring magnetic moments is typically 5 X 10~10 m or so. At that
distance, a single electronic magnetic moment makes a field of 0.01 tesla (within a
factor of 2). In comparison with the high external field i?high field? which may be 8 tesla,
the field from a neighboring paramagnet is truly insignificant. When the external field
is reduced to zero, however, the mutual interactions come into their own. The
interactions correlate the orientations of adjacent magnetic moments and thus reduce
the multiplicity and entropy below the values that they would have in the absence of
all interactions. If the moments are associated with angular momenta of Jh, then each
moment has 2J + 1 possible orientations relative to a fixed axis. The maximum
orientational entropy would be Nkln(2J + 1). The mutual interactions ensure that
S/Nk never gets as large as ln(2J +1) . (An exception is the limit T —> oo, but we are
far more interested in low temperatures.)

Equation (14.10) gave the entropy of an ideal spin \h paramagnet, and we noted that
S/Nk is a function of B/T only. To include the mutual interactions in an approximate
way, we may use the same functional form but replace B/T by the quotient

\ 0 4 . . 9 ,

where B\oc is a "local" field that arises from the mutual interactions and has a
magnitude of order 0.01 tesla. No direction is associated with the "field" B\oc. Rather,
the square B\oc represents the correlating effects of the local mutual interactions in a
scalar fashion. [A fully quantum calculation when kT is large relative to all magnetic
energies does generate the combination displayed in (14.19); so the expression has a
theoretical basis as well as being a natural interpolating form.] Isentropic demagnetiza-
tion preserves the numerical value of the ratio in (14.19). Demagnetization from
^high field to a zero value for the external field yields a final temperature

In the initial, high field situation, one may omit B\oc, and so the denominator simplifies
to merely Bhigh field-

In short, isentropic demagnetization reduces the temperature by the factor B\oc/
i?high fieid. The mutual interactions, represented by B\oc, ensure that the factor is greater
than zero.

By the way, you may have wondered why cooling by adiabatic demagnetization
employs such esoteric compounds: gadolinium sulfate, cesium titanium alum, cerium
magnesium nitrate, and iron ammonium alum, to name just four. In each such
compound, one metallic ion produces the magnetic moment; in the short list, the
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14.4 The Third Law of Thermodynamics 337

relevant ions are gadolinium, titanium, cerium, and iron. The remainder of each
compound serves to separate adjacent magnetic ions so that their mutual interactions
are relatively small. The large spatial separation translates into a small value for B\oc

and, as equation (14.20) displays, leads to a low final temperature.
In order of magnitude, nuclear magnetic moments are smaller by a factor of 10~3

than electronic or orbital moments (because the proton and neutron masses are roughly
2,000 times the electron's mass). Thus B\oc is smaller by the same factor, and so
isentropic demagnetization of nuclei should reach temperatures of order 10~3 times
the electronic limit.

One can also repeat the process of adiabatic demagnetization (as described more
fixlly in the next section). Repeated adiabatic demagnetization has cooled the conduc-
tion electrons in copper to 10~5 K. (Here the conduction electrons and the nuclei are at
the same temperature.) In the metal rhodium, the nuclear spins—considered as a
system themselves—have been cooled to 3 X 10~10 K.

14.4 The Third Law of Thermodynamics

According to the preceding section, a single stage of isothermal magnetization and
subsequent isentropic demagnetization will not cool a sample to absolute zero. The
mutual interactions of the paramagnets impose a nonzero lower limit to the tempera-
ture attained.

Could a sequence of such stages reach absolute zero? The first stage reaches a low
temperature and is used to cool the (thermally smaller) sample of the second stage,
which reaches a lower temperature and is used to cool the (still smaller) sample of the
third stage, and so on. Equation (14.20) implies that each stage reduces the tempera-
ture by some nonzero fraction; no finite number of such reductions will drive the
temperature to zero. Figure 14.6 attempts to show the futility of such a sequence.

The paramagnetic example illustrates one of three alternative formulations of the
Third Law of Thermodynamics. The three versions are the following.

1. Unattainability form. No process can lead to T = 0 in a finite number of
steps.

2. Absolute entropy form. The entropy goes to zero as T —•> 0.
3. Entropy change form. The entropy change in any isothermal process goes

to zero as T —> 0.

In stating the three versions, I have presumed that the physical system is in complete
thermal equilibrium, so that thermodynamics may properly be applied to the entire
system.
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338 14 Approaching Zero

Figure 14.6 Successive stages of isothermal magnetization and isentropic demagnetization.
Each decrement in temperature is less than the previous decrement. Even more importantly,
each decrement is the same fraction of the current stage's starting temperature. Thus repeated
stages fail to take the system to absolute zero.

Figure 14.6 illustrates each of these formulations. First, the unattainability form is a
statement that we have already noted. Second, each entropy curve goes to zero as
T —> 0. For paramagnetism, an analytic statement, S/k —> 0 as T -> 0, was derived
earlier as equations (14.14) and (14.15). Third, the vertical distance between the two
curves represents the entropy change during the isothermal magnetization. That
distance goes to zero as T —> 0 and so the entropy difference in the isothermal process
goes to zero. For an analytic expression, one can differentiate S(T, B), as given by
equation (14.14), with respect to B. Then one finds that (AS)T = (dS/dB)TAB -> 0
as T -> 0 at fixed B and AB.

Historically, the entropy change form came first. The German physical chemist
Walther Nernst introduced it in 1906, having boldly inferred it from the behavior of
certain chemical reactions at low temperatures. Controversy about the formulation led
him (in 1912) to offer the unattainability form as an alternative. Once the appropriate
route has been pointed out, a little effort suffices to show that these two forms imply
each other and thus are equivalent. In the interval between Nernst's two announce-
ments, Max Planck proposed the absolute antropy form. Planck's form is stronger. It
implies the other two forms, but they imply only that the entropy must approach a
constant value, independent of external parameters and phase (such as liquid versus
solid phase). For example, if the graphs in figure 14.6 were shifted upward by a
constant amount, they would still illustrate the unattainability and entropy change
forms but not Planck's absolute entropy form.

To be sure, a few physicists question the equivalence of the unattainability and the
entropy change forms. References to their views appear in the further reading section
at the end of the chapter.
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14.4 The Third Law of Thermodynamics 339

"Deriving" the Third Law
In a sense, Planck's form follows readily from the canonical probability distribution
and the expression (14.4) for entropy in terms of those probabilities. The canonical
probability distribution,

implies that the system settles into its ground state as T -* 0. The probability for any
and all states of higher energy vanishes. If the ground state is unique, then its
probability approaches 1, and equation (14.4) implies that the entropy goes to zero. If
the ground state is «-fold degenerate, then the probability for each of the degenerate
states approaches \/n> and S —» klnn. Comparison must be made with the typical
entropy at much higher temperatures, which is of order Nk in its dependence on the
number of particles N. Even if the degeneracy integer n were of order N, the ratio of
entropies would be of order (In N)/N, which is virtually zero when Nis of order 1020.
For all practical purposes, the entropy would approach zero.

This kind of reasoning, although technically correct, fails to provide an adequate
foundation for the Third Law. To see why, let us take as our system the conduction
electrons in 10 cubic centimeters of copper. According to section 9.1, the ground state
has all single-particle states filled out to the Fermi energy £F- The total energy is
E%#St = jNe?. To construct the first excited state, we promote one electron from energy
£F to a single-particle state just beyond the Fermi energy. To determine the increment
Ae in energy, we reason that

D(e¥)Ae=l, (14.21)

that is, the density of single-particle states times Ae gives one new single-particle
state. Taking D(e?) from (9.13), we find

( 1 4 2 2 )

Thus the first excited state has energy

Efte excited = £g.s. + A£ = £g.s. + ~ . (14.23)

The Boltzmann factors in P(Wy) imply that the ratio of probabilities is

^first excited _ exp(~^first excited/^D _ -As/kT /14 JA\

If this ratio of probabilities is to be small, then one needs a temperature low enough
that Ae/kT is much greater than 1:

1 < * 3 M 3 AT' U 4 - Z 5 )
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340 14 Approaching Zero

For copper, the experimental Fermi temperature is Jp = 6.0 X 104 K. Ten cubic
centimeters of copper contain N = 8.5 X 1023 atoms, and so the requirement is

r « 4 . 7 X 10~20 K. (14.26)

Yet when Nernst proposed his first version of the Third Law, attempts to liquefy helium
still failed (because the critical temperature of 4He, 5.2 K, could not yet be reached),
and 20 K was considered a low temperature. The Third Law, as a part of empirical
physics, applies already at temperatures regularly attained in the twentieth century.
The law does not require the outrageously low temperatures, like that displayed in
(14.26), that are needed if one is to make the first excited state of a macroscopic
system improbable. In the next paragraphs, we find a more satisfactory perspective.

Table 14.1 displays the entropy at "low" temperature of several systems that we
have studied. The entropies were calculated as

S(T) = f ^ P dT' <1 4-2 7)
Jo 1

In turn, the heat capacities were calculated from the relation Cy = (d{E)/dT)y and
from expressions for (E) derived in sections 6.5, 9.1, and 9.4. Each system has a
characteristic temperature: the Debye temperature #D> the Fermi temperature T$9 or
the Bose temperature T#. For all three systems, the entropy at high temperature is of
order Nk. Perhaps equation (5.41) provides the most convincing evidence for that
claim: in the semi-classical limit, the entropy of an ideal gas is Nk times a logarithm,
and "all logarithms are of order 1" is a rule of thumb in physics. The fourth column in
table 14.1 gives a ratio of entropies: the numerator is the entropy at a temperature of
one-hundredth of the characteristic temperature; the denominator is Nk, which is the
value of the entropy at high temperature, in order of magnitude. The entropy has
already become small. At T = 10~4 rchar? the entropy is much smaller still.

For copper, the characteristic temperatures are #D = 343 K and T? = 6.0 X 104 K.
The Bose temperature for 4He, if it were an ideal gas at the temperature and number
density where it becomes a superfluid, would be TB — 3.1 K. These are reasonable,
laboratory-scale temperatures. In part, the empirical content of the Third Law is this:

Table 14.1 Examples of how entropy and heat capacity approach zero.

S/Nk when
System Cv Entropy r = 0.0irchar r = K r 4 r c h a ]

Lattice ^Nk(L\ ^ N k ( I \ 7 .8 x 10-5 7.8 X 10"11

vibrations 5 W 5 v V
Conduction %rNk— ^rNk— 4.9 X 1(T2 4.9 X 10~4

electrons 2 r p 2 r p

5 / T \3/2 5 / T \3/2

Bose gas: 0.770 X - M — 0.770 X - M — 1.3 X 10"3 1.3 X 10"6

T<TB \TB' 3 ^rB^
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14.5 Other consequences of the Third Law 341

physical systems have characteristic temperatures (that depend on intensive variables
like N/V but not on the system's size); those temperatures have reasonable, labora-
tory-scale size; and when T ^ 0 . 0 1 7 ^ or so, the entropy is already small and
approaches zero rapidly (relative to its value at high temperature).

14.5 Some other consequences of the Third Law

A glance at the heat capacities Cy in table 14.1 shows that they, too, go to zero as
71 —» 0. That is true of heat capacities in general. [If heat capacities did not go to zero,
integrals like that in equation (14.27) would fail to converge, but the entropy is finite
near absolute zero.] Moreover, many other quantities in thermal physics go to zero, or
their slopes go to zero, as T —» 0. Two additional examples will suffice.

1. {dP/dT)coexiStence. The helium isotopes are unique in that the liquid phase—as
well as the solid phase—persists in the limit of absolute zero. Indeed, the solid forms
only under relatively high pressure: approximately 25 atmospheres for 4He. Figure
12.6 shows the solid-liquid coexistence curve for 3He.

Along a coexistence curve that joins two phases, such as a melting curve, the
Clausius-Clapeyron equation asserts that

dP _ As
dT~"Kv*

The symbol As denotes the change in entropy per particle between the two phases, and
Av is the change in volume per particle. Now specialize to helium on its melting
curve. The quantity As is an "entropy change in an isothermal process," here the
transfer of an atom from the solid to the liquid. According to the entropy change form
of the Third Law, As —» 0 as T —» 0. The volume change Av remains nonzero, and so

as T^0. (14.28)

Along the melting curve for 4He, measurements by Sir Francis Simon and C. A.
Swenson show that (dP/^r)coexistence goes to zero as T1 in the interval 1.0 ^ T
^ 1.4 K, a remarkably swift decline. The melting curve flattens out as it approaches
absolute zero.

2. Coefficient of thermal expansion. The combination of derivative and division by
volume,

V\dTjp

describes the rate of expansion with temperature (at constant pressure) in a fashion
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342 14 Approaching Zero

that is independent of the system's size. The combination is called the coefficient of
thermal expansion:

( coefficient of \ = J_ fdV\
^thermal expansionJ ~~ V \dT)P' (14.29)

Although there is no obvious connection with entropy, we can derive one. Equations
(10.29) and (10.30) give the volume V and entropy S as partial derivatives of the
Gibbs free energy:

dP) T,N

dTj
P>N

Differentiate the first of these equations with respect to T; the second, with respect to
P. The mixed second derivatives of G are equal, and so

dTjP~ \dP)T
(14.30)

The derivative on the right is again an entropy change in an isothermal process and
must go to zero as T —> 0. Consequently, the coefficient of thermal expansion must go
to zero as T goes to zero. Figure 14.7 provides an example from research on solid
helium.

\_(dV_
v(dTJp

1.5

1

0.5

0L
0 10 12 14

Figure 14.7 The coefficient of thermal expansion versus temperature for solid 4He. The coeffi-
cient is given in units of 10~3 per kelvin; the temperature, in kelvin. The points descend toward
zero approximately as T3. Data were taken at a number density corresponding to 6 X 1023 atoms
(one mole) per 12 cm3 (under high pressure, of order 103 atmospheres). [Source: J. S. Dugdale
and J. P. Franck, Phil. Trans. R. Soc. 257, 1-29 (1964).]
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14.6 Negative absolute temperatures 343

14.6 Negative absolute temperatures

We return now to paramagnetism. Figure 14.8 shows a graph of entropy versus energy
for a system of N ideal spin \h paramagnets; thus it reproduces a curve from figure
14.3. Below the S versus E curve is the temperature Tthat follows from the general
quantitative definition of temperature, which takes here the form

1

r (14.31)

When the energy is greater than zero, the slope of the entropy graph is negative, and
so the absolute temperature is negative. That may be all well and good as far as

(a)

(b)

Figure 14.8 (a) Entropy versus energy for a system of //ideal spin \h paramagnets. The energy
£min arises when all magnetic moments point parallel to the magnetic field B. In contrast, £max
arises when all moments point anti-parallel to B. (b) The corresponding absolute temperature,
calculated from the slope of the curve in part (a) according to the relationship
\/T — {dS/dE)B. As E approaches its extreme values in graph (a), the slopes become infinite,
and so Tapproaches zero. The difference in the sign of the slopes implies an approach to
absolute zero from opposite sides. [Note. The slope steepens toward infinity in an extraordinarily
narrow interval at the extremes of E: an interval of less than one part in 1014 of the entire energy
range. That interval is less than the width of the line used to draw the curve, and so the approach
to an infinite slope is not visible (in this mathematically faithful drawing).]
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344 14 Approaching Zero

mathematics goes, but is a negative absolute temperature physically realizable? The
answer is a resounding "yes." In 1950, Edward M. Purcell and Robert V Pound
produced such a temperature in the lab. In the intervening decades, their technique has
become routine.

For Purcell and Pound, the paramagnetic system was the assembly of nuclei in a
crystal of lithium fluoride. (The fluorine isotope 19F has a nuclear spin of \h\ the
lithium isotope 7Li has a nuclear spin of \h. The entropy versus energy curve for the
composite system is qualitatively like that in figure 14.8.) The experiment commenced
at room temperature, where the lattice vibrations remain significant, both as an energy
source and as a contributor to the overall entropy. The exchange of energy between the
magnetic moments and the lattice vibrations, however, was so slow that, for short times
(of order 10 seconds), the crystal acts as though the orientational and magnetic aspects
of the nuclei were entirely decoupled from the vibrational aspects of the same nuclei.
One can meaningfully speak of a system of nuclear paramagnets "isolated" from the
lattice vibrations. The trick, then, is to promote the nuclear paramagnets to a macro-
state where they have positive energy: the right-hand side of figure 14.8.

The essence of the technique used by Purcell and Pound is a sudden reversal of an
external field. Initially, the paramagnets are at thermal equilibrium at a positive
temperature in a field of 0.01 tesla. The magnetic moments point predominantly
parallel to the external field and have negative potential energy. Then the field is
reversed extremely quickly, in a time of order 2 X 10~7 second. The reversal is so fast
that the spins cannot change their orientation during the reversal. They find themselves
pointed predominantly anti-parallel to the new field, an orientation of positive potential
energy. In a very short time, they come to a new thermal equilibrium, both with respect
to the new external field and also with respect to their own mutual interactions. The
paramagnets now have a negative absolute temperature.

After the sudden reversal, all subsequent changes in external magnetic field occur
relatively slowly. To good approximation, the paramagnets can follow the changes,
continuously and isentropically. Their temperature may change continuously in
magnitude but remains negative in sign. This conclusion follows from our analysis in
section 14.3; in an isentropic process, the combination

loc +

remains constant even as the external field B changes slowly.
To test for a negative temperature, Purcell and Pound removed their crystal from the

0.01 tesla field and placed it in a much larger field: 0.64 tesla. No matter how the
crystal was carried from one magnet to the other and no matter how it was oriented in
the larger field, the paramagnetic system exhibited a large amount of energy, char-
acteristic of moments lining up anti-parallel to the large external field, the orientation
of positive potential energy. Purcell and Pound applied electromagnetic radiation at a
frequency chosen so that 7Li nuclei could flip from an orientation of low potential
energy to an orientation of high energy by absorbing a photon. In earlier experiments,
when both lattice and spins were at room temperature, such radiation was invariably
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14.6 Negative absolute temperatures 345

absorbed. Now, instead of absorption (and as they had hoped), Purcell and Pound
found stimulated emission of radiation at that frequency. The spin system had so much
energy that spins predominantly flipped to low-energy orientations and simultaneously
emitted a photon. From the direct observation of stimulated emission of radiation one
infers that the moments are predominantly anti-parallel to the field and that the nuclear
spin system is at a negative temperature.

Hotter and colder
When the crystal was placed in the large external field and stimulated with radio
waves, the crystal radiated as would be expected for a paramagnetic system at
T = —350 K. At any positive temperature, the paramagnets would have absorbed the
radio waves. Precisely because the paramagnets emitted energy (rather than absorbed
it), they were hotter than paramagnets at any positive temperature. We conclude that a
temperature of T = —350 K is hotter than any positive temperature. Indeed, all
negative temperatures are hotter than all positive temperatures.

For an analytic way to see this conclusion, return to equation (14.31) and figure
14.8. Where the slope of the S versus E curve is negative (and hence where T is
negative), a decrease in energy produces an increase in entropy. In contrast, at positive
temperatures, an increase in energy is required to produce an increase in entropy. If
two systems, one at a negative temperature and the other at a positive temperature,
interact thermally, then the growth of entropy (at fixed total energy) will be largest if
the system at negative temperature gives up energy and the system at positive tempera-
ture accepts energy. According to the Second Law, this is the route to a new thermal
equilibrium. The energy donor is, by definition, the hotter system, and so the system at
negative temperature is the hotter system.

Purcell and Pound probed the crystal periodically with radio waves. As the nuclear
spin system cooled down slowly (with a time constant of about 5 minutes), its
temperature went from —350 K to —1,000 K and thence to —oc K, which is physically
equivalent to +oo K, and then continued through +1,000 K to +300 K, which is
ordinary room temperature (in round figures). The spin system did not pass through
absolute zero. Not only was this sequence found experimentally; we can see it
theoretically in figure 14.8. The spin system loses energy as it heats up the lattice
vibrations and as it emits photons in response to radio-frequency stimulation. As the
energy of the spin system decreases, the point on the temperature graph moves
leftward, and the temperature heads toward — oc K. Recall that the numerator of the
canonical probability distribution is the Boltzmann factor, Gxp(—Ej/kT). As T —>
—oo, the exponent goes to zero for all Ej, and so the probability distribution becomes
perfectly flat. Such flatness arises whatever the sign of T(when \T\ = oo), and so there
is continuity in the probability distribution as the temperature makes the discontinuous
switch from — oo K to +oo K. The spin system passes smoothly from negative to
positive temperature through the back door of infinite temperature. The unattainability
form of the Third Law becomes the colloquial expression, "You can not get to zero
from either side."
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346 14 Approaching Zero

Although there is no need to distinguish between plus and minus infinity for the
temperature, there is a vast difference between approaching absolute zero from positive
and from negative temperatures. As the temperature goes to zero from the positive side
(denoted T —» 4-0), the system settles into its ground state. In contrast, as the tempera-
ture goes to zero from the negative side (denoted T -» - 0 ) , the system is pushed into
its highest energy state. This distinction carries at least two consequences. For one, the
coldest temperatures are just above 0 K on the positive side, and the hottest tempera-
tures are just below 0 K on the negative side. Figure 14.9 displays this. We explore
another consequence of the distinction in the next subsection.

Conditions that permit a negative absolute temperature
If we imagine a negative absolute temperature, then the Boltzmann factor,
exip(—Ej/kT), in the canonical probability distribution grows as the energy eigenvalue
Ej increases. The states with high energy are more probable than those with low
energy, exactly the reverse of the situation at positive temperature. In a sense, the basic
experimental problem of achieving a negative temperature is to make the high-energy
states more probable than the low-energy states. If the system has energy eigenstates
of arbitrarily high energy (as does a gas), then no finite supply of energy can promote
the system to a negative temperature; an extremely hot positive temperature is the best
one can do.

Indeed, three conditions must be met if a system is to be capable of being at a
negative temperature.

1. The system must be macroscopic and in thermal equilibrium, so that the very
notion of temperature is applicable.

Hotter Hotter

-300K +300K

Figure 14.9 A depiction of hotness as a function of the absolute temperature. The vertical line at
T = 0 represents both a barrier for the arrows and an unattainable value. One cannot cool a
system to absolute zero from above nor heat it to zero from below.
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14.7 Temperature recapitulated 347

2. The possible values of the system's energy must have a finite upper limit.
3. The system must be isolated (effectively, at least) from systems not satisfying the

second condition.

The finite upper bound on the sequence of energies Ej ensures that a finite amount
of energy can produce a Boltzmann factor that grows with increasing Ej.

Effective isolation is necessary because systems in thermal contact reach the same
temperature in thermal equilibrium. For two systems in thermal contact, a negative
temperature is possible for either only if it is possible for both.

Note that perfect isolation is not required. Effective isolation means "little inter-
action during the time needed for the system of interest to come to internal thermal
equilibrium, for all practical purposes." This permits one to regard the system of
nuclear spins in lithium fluoride as effectively isolated from the lattice vibrations
(which cannot attain a negative temperature). To be sure, some early skeptics of
negative absolute temperatures insisted that the spins first come into equilibrium with
the vibrational motion of the nuclei before one would talk about a temperature for the
spins. The demand was unrealistic and unnecessary. Indeed, such insistence was
equivalent to demanding that the nurse not take my temperature until I have come into
equilibrium with the ubiquitous 2.7 K cosmic blackbody radiation—by which time the
doctor is not going to help me.

Since 1950, when the nuclei of the insulator lithium fluoride were promoted to a
negative temperature, physicists have generated negative nuclear spin temperatures in
silver and rhodium, both electrical conductors. In particular, the nuclear spin temper-
ature of rhodium has been made as hot as —750 picokelvin, that is, —7.5 X 10~10 K.

14.7 Temperature recapitulated

Now is a good time to recapitulate some key aspects of temperature.
General qualitative definition. We can order objects in a sequence that tells us

which will gain energy by heating (and which will lose energy by cooling) when we
place them in thermal contact. Of two objects, the object that loses energy is the
"hotter" one; the object that gains energy is the "colder" one. Temperature is hotness
measured on some definite scale. That is, the goal of the "temperature" notion is to
order objects in a sequence according to their "hotness" and to assign to each object a
number—its temperature—that will facilitate comparisons of "hotness."

General quantitative definition. Section 4.3 led us to the relationship

)
Ll/ fixed external parameters

The rate of change of entropy with energy (at fixed external parameters) gives a
quantitative definition of temperature and one that can be applied to an individual
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348 14 Approaching Zero

system. The rate (dS/dE)f.Q.v. (where f.e.p. denotes "fixed external parameters")
serves also a comparative function. Recall that the Second Law of Thermodynamics
implies evolution to increased multiplicity and hence to increased entropy (in the
context of isolation). Thus, when two systems are placed in thermal contact (but are
otherwise isolated), the system with the greater (dS/dE)f^^ rate will gain energy (by
heating) from the other system (so that the total entropy will increase). The system
with the greater value of (dS/dE)f.Q.v. will be the colder system, and so (OS/dE)fQ^
provides a way to order systems according to their hotness.

Energy per particle or per mode. If classical physics is sufficient, then the
equipartition theorem states that every quadratic energy expression has an estimated
value of \kT. (For the precise conditions under which the theorem holds, see section
13.3.) Thus translational kinetic energy has an estimated value of 3 X ̂ kT. The kinetic
and potential energies of a harmonic oscillator are each \kT. In a loose but useful
sense, these results lead to a physicist's rule of thumb.

If classical physics suffices, then the energy per particle or per mode is
approximately kT. (14.33)

Valuable though this rule is, it is not the whole story. As soon as quantum theory
becomes essential, the energy estimate changes dramatically. One way to understand
the change is this: introducing Planck's constant enables one to construct a character-
istic energy (that is independent of temperature); then a whole new range of estimated
energies can be constructed from £7 and the characteristic energy.

A good example of a characteristic energy is the Fermi energy £F-

2/3h2

correct for fermions with spin \h. The Fermi energy depends on h, rn, and the
intensive variable N/ V.

When the temperature is low (relative to the Fermi temperature Jp), the estimated
energy per fermion is

a result that follows from equations (9.12), (9.13), and (9.18). This expression differs
greatly from "approximately kT" The characteristic energy (here £p) and the associ-
ated characteristic temperature (here T? = e?/k) enable one to construct energy
estimates that are much more complicated than merely kT. Nature has seized the
opportunity and pursued it vigorously. The implication is this: when quantum theory is
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14.8 Why heating increases the entropy 349

essential, there is no general rule for the energy per particle or per mode. Rather, look
for the characteristic energy or temperature, and expect the energy estimate to be a
function of them as well as of kT The most that one could write in any generality is
the expression

IE) ( kT \
±-j-= kTX function of I ), (14.36)

•N ^ c h a r a c t e r i s t i c /
but, unless one knows the function, the formal relationship is barren.

Temperature is deeper than average kinetic energy. It is easy to come away from
introductory physics with the impression that "absolute temperature is a measure of
average kinetic energy," where the word "is" has the significance of a definition or an
explanation. Such an impression would be wrong—for several reasons, among which
are the following.

1. Consider a gaseous system that is in the quantum domain and yet is nearly classical.
For this context, section 8.5 showed that fermions and bosons—when manifestly at
the same temperature—have different average translational kinetic energies. By
itself, temperature does not determine average kinetic energy.

2. Section 14.6 showed that the absolute temperature may be negative, both theoreti-
cally and experimentally. Kinetic energy is never negative.

3. No one would go to the trouble of an elaborate definition such as \jT =
(dS/8E)f.e^ if temperature were merely a constant times average translational
kinetic energy.

The misconception that introduces this subsection is propagated with the best of
intentions: to make absolute temperature easier to understand. The root of the
conceptual error lies in this: a belief that the purpose of "temperature" is to tell us
about a physical system's amount of energy. That is not the purpose of the temperature
notion. Rather, temperature is intended to tell us about a system's hotness, its tendency
to transfer energy (by heating). All physical systems are capable of heating or cooling
others. The purpose of temperature is to rank the systems with respect to their ability
to heat one another.

14.8 Why heating increases the entropy. Or does it?

You may have wondered, why does energy transfer by heating increase the entropy but
energy transfer by work done does not? Here both transfers are prescribed to be done
slowly; experience indicates that the physical system then remains close to equili-
brium. The connection between entropy and uncertainty, developed in section 14.1,
provides a key to understanding why a difference arises.

Take first the case of work done. An external parameter, such as volume or magnetic
field, is changed slowly in a known way. The external parameter appears in the
Schrodinger equation for the system. If a quantum state W(̂ o) was the appropriate
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350 14 Approaching Zero

state to use to describe the system initially (at time t = to), then the state W(0 that
evolves (deterministically) according to the Schrodinger equation is the appropriate
state later. The same is true for other quantum states that, initially, have a nonzero
probability of being the right state to use. The quantum states may change, but no new
uncertainty is introduced; hence the multiplicity and entropy remain constant.

In section 2.5, we saw how the entropy can remain constant during a slow adiabatic
expansion. The spatial part of the multiplicity increases (because of the increasing
volume). The momentum part of the multiplicity decreases (because the gas molecules
do work, lose energy, and develop smaller momenta, on the average). Countervailing
effects can balance, and the entropy can remain constant as the external parameter
(here the volume) is changed.

In the case of heating, the situation is significantly different. There must be an
interaction between the system of interest and the source of energy. The former might
be the fried eggs of section 1.1, and the latter the hot metal of the frying pan. At the
interface, there are electrical interactions between organic molecules in the eggs and
metal atoms in the pan. These interactions accomplish the transfer of energy by
heating, but we do not know them in detail, and so the Schrodinger equation itself
contains terms that are uncertain. We cannot follow the evolution of quantum states for
the eggs deterministically, and so our uncertainty grows. Because entropy can be
conceived as a measure of uncertainty about the appropriate quantum state to use, it
makes sense that the entropy increases.

That paragraph, however, cannot be the whole story. For example, how does one
understand the decrease in entropy when a system is cooled? After all, similar
uncertainty arises about the microscopic details of the interaction. Why doesn't the
entropy increase for cooling, too?

Cooling a dilute gas at constant volume entails extracting energy from the gas. The
momentum part of the multiplicity decreases, but the spatial part remains constant.
Effects do not balance and cancel; hence the multiplicity and entropy decrease.

In heating and cooling, the uncertainty about the microscopic details implies that
entropy need not remain constant. What does determine the entropy change is,
formally, the partial derivative (<9S/<9is)f.e.p., itself multiplied by the amount of energy
transferred. In turn, the derivative depends on the system's constituents, their inter-
actions, the environment, and the current macrostate. Usually the derivative is positive,
and so heating increases the entropy, and cooling decreases it. We have found,
however, that (dS/dE)f^p. can be negative for a nuclear spin system. (Recall the
entropy versus energy curve in figure 14.8.) When the derivative is negative, heating
decreases the entropy, and cooling increases it.

In short, the uncertainty in the microscopic interactions of heating and cooling
provides permission for an entropy change but does not prescribe its sign. What gives
definitive information is the derivative (dS/dE)fep.

The evolution of entropy under various circumstances has occupied some of the
keenest minds in physics for over a century. Questions abound. Not all the answers are
known—or, at least, not all are agreed upon. Some sources for exploring the issues
further are given in the references for this chapter.
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14.9 Essentials

1. Entropy can be expressed directly in terms of probabilities:

2. In cooling by adiabatic demagnetization, the final temperature equals a ratio of
magnetic fields times the initial temperature:

7V ~ loc Tf ~ #high field

where B\oc is a "local" field that arises from the local interactions among the
paramagnets and with their crystalline environment. No direction is associated with
the "field" i?ioc. Rather, the square B\oc represents the correlating effects of the local
interactions in a scalar fashion.

3. The Third Law of Thermodynamics has three versions.

1. Unattainability form. No process can lead to T = 0 in a finite number of steps.
2. Absolute entropy form. The entropy goes to zero as T —» 0.
3. Entropy change form. The entropy change in any isothermal process goes to zero as

4. In part, the empirical content of the Third Law is this: physical systems have
characteristic temperatures (that depend on intensive variables like N / V but not on the
system's size); those temperatures have reasonable, laboratory-scale size; and when
T ^ 0.0irchar or so, the entropy is already small and approaches zero rapidly (relative
to its value at high temperature).

5. The Third Law, especially the entropy change form, can be used to deduce the
limiting behavior (as T —> 0) of surprisingly diverse quantities, such as the slope of the
solid-liquid coexistence curve and the coefficient of thermal expansion.

6. Temperatures below absolute zero exist both theoretically and experimentally.
According to the general relationship

T \dEj fixed external parameters

such negative absolute temperatures arise whenever the entropy S decreases with
increasing energy E.
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352 14 Approaching Zero

7. All negative temperatures are hotter than all positive temperatures. Moreover, the
coldest temperatures are just above 0 K on the positive side, and the hottest
temperatures are just below 0 K on the negative side.

8. Rule of thumb: if classical physics suffices, then the energy per particle or per
mode is approximately kT

Valuable though this rule is, it is only a small part of the whole story. As soon as
quantum theory becomes essential, the energy estimate changes dramatically. Introdu-
cing Planck's constant enables one to construct a characteristic energy (that is
independent of temperature); then a whole new range of estimated energies can be
constructed from kT and the characteristic energy.

Further reading

Kurt Mendelssohn tells a marvelous story in his Quest for Absolute Zero: the Meaning
of Low Temperature Physics, 2nd edition (Halsted Press, New York, 1977).

More technical but highly recommended is David S. Betts, An Introduction to
Millikelvin Technology (Cambridge University Press, New York, 1989).

J. Wilks, The Third Law of Thermodynamics (Oxford University Press, New York,
1961), provides a comprehensive and accessible exposition.

The issue of equivalence among various statements of the Third Law is nicely
discussed by Mark W. Zemansky and Richard H. Dittman, Heat and Thermodynamics,
6th edition (McGraw-Hill, New York, 1981), section 19-6. (Of course, Wilks also
examines this issue.)

To be sure, the equivalencies are questioned by John C. Wheeler, Phys. Rev. A, 43,
5289-95 (1991) and 45, 2637-40 (1992). Wheeler's view is that the unattainability
and entropy change versions are not equivalent thermodynamic statements and that
they make independent statements about the kinds of interactions that are found in
nature. See also P. T. Landsberg, Am. J. Phys. 65, 269-70 (1997).

A fully quantum mechanical derivation of the effective field B\oc is provided in
chapter 12 of Ralph Baierlein, Atoms and Information Theory (W. H. Freeman, New
York, 1971).

The behavior of (dP jdT)C0GXiStQnCQ is reported in F. E. Simon and C. A. Swenson,
"The liquid-solid transition in helium near absolute zero," Nature 165, 829-31
(1950).

Edward M. Purcell and Robert V Pound report the first negative absolute tempera-
ture in "A nuclear spin system at negative temperature," Phys. Rev. 81, 279-80
(1951). A fine theoretical discussion is provided by Norman F. Ramsey, "Thermo-
dynamics and statistical mechanics at negative absolute temperatures," Phys. Rev. 103,
20-8 (1956).

An example of negative temperatures as—by now—a standard aspect of physics
is provided by R. T. Vuorinen et al.9 "Susceptibility and relaxation measurements
on rhodium metal at positive and negative spin temperatures in the nanokelvin range,"
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J. Low Temp. Phys. 98, 449-87 (1995). A review article from the same laboratory is
A. S. Oja and O. V Lounasmaa, "Nuclear magnetic ordering in simple metals at
positive and negative nanokelvin temperatures," Rev. Mod. Phys. 69, 1-136 (1997).

An engaging introduction to Shannon's uncertainty measure is provided by Claude
E. Shannon and Warren Weaver, The Mathematical Theory of Communication
(University of Illinois Press, Urbana, IL, 1964).

Seminal papers on entropy by Ludwig Boltzmann, Ernst Zermelo, and others are
reprinted by Stephen G. Brush in Kinetic Theory, Vol. 2: Irreversible Processes
(Pergamon Press, New York, 1966). Joel L. Lebowitz's article, "Boltzmann's entropy
and Time's arrow" [in Physics Today 46, 32-8 (September 1993)] provides an
accessible introduction to many issues. Letters in response to Lebowitz's presentation
appeared in Physics Today 47, 11-15 and 115-17 (November 1994).

Edwin Jaynes has spoken out clearly on the issues of entropy and its evolution.
Particularly noteworthy is his paper "Gibbs vs Boltzmann Entropies" in Am. J. Phys.
33, 391-8 (1965). That paper and some other relevant papers appear in the collection
E. T. Jaynes: Papers on Probability, Statistics, and Statistical Physics (Reidel,
Dordrecht, 1983), edited by R. D. Rosenkrantz.

Problems

1. Entropy for fermions.

(a) Consider a statement that is necessarily either true or false, such as the statement,
"The moon contains more than 1014 kilograms of gold." On the basis of available
terrestrial and lunar evidence, one assigns (somehow) numerical values to the
probabilities of the statement's being true, Pyes, and being false, Pno. Information
theory and equation (14.5) imply that one's uncertainty about whether the moon
contains more than 1014 kilograms of gold is proportional to the expression

- ( P y e s In Pyes + Pno In Pno).

Graph the expression as a function of Pyes, which has the range 0 ^ Pyes ^ 1. Is
the behavior qualitatively reasonable? Why?

(b) Use the structure in part (a) to construct the entropy for an ideal quantum gas of N
fermions in terms of the estimated occupation numbers. (If you have not done
problem 8.1, read that problem over first.) The entropy is to be taken as a measure
of one's uncertainty of the true quantum state (which is equivalent to one's
uncertainty about which single-particle states are occupied). Then compare your
result with the expression in problem 8.6.

2. Relative heat capacities. At low temperature, the influx of energy from stray
sources of heating is a perennial problem. Cooling by adiabatic demagnetization will
provide a useful "cold reservoir" only if the heat capacity of the paramagnetic material
is relatively large (so that the reservoir does not heat up rapidly). Consider a cold
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354 14 Approaching Zero

reservoir formed by N spatially fixed paramagnets of spin \h and magnetic moment

(a) Use figure 5.3 or 14.1 to estimate where the heat capacity is largest (as a function
of kT/mBB). lfB = B[oc = 0.01 tesla, how low is the temperature?

(b) Compute the heat capacity per paramagnet at constant magnetic field, CB/N, as a
function of Tand B. Plot CB/Nk versus kT/mBB.

(c) Evaluate Cs/Nk for the value of the quotient kT/mBB that you estimated in part
(a).

(d) Compare your value of Cs/Nk in part (c) with Cv/Nk for metallic copper at
T = 0.01 K (in the absence of any magnetic field). How many copper atoms must
be collected to give as large a heat capacity as one paramagnet?

3. Another limit.

(a) Construct a line of reasoning to show that (8P/dT)v should go to zero as T —> 0.
(b) Test this proposition against some system for which you can determine the

derivative and the limit explicitly.

4. Hotter, graphically. Sketch the graph of entropy versus energy for a system of N
spatially fixed paramagnets in an external magnetic field. Then draw arrows, labeled
"hotter," to indicate the direction along the energy axis in which one should move to
find a hotter system.

5. Heat engines at negative temperatures. Consider using two heat reservoirs to run
an engine (analogous to the Carnot cycle of chapter 3), but specify that both tempera-
tures, 7hot and rcoid, are negative temperatures. The engine is to run reversibly.

(a) If the engine is to do a positive net amount of work, from which reservoir must the
energy be extracted?

(b) Under the same conditions, what is the engine's efficiency?
(c) If you drop the requirement of reversibility, what is the maximum efficiency, and

how would you achieve it?

6. Magnetization as T —> 0. The magnetic moment per unit volume (along the
direction of an external magnetic field B) is denoted by M and can be computed from
equation (5.20):

_ kTfdlnZ

(a) Develop a Maxwell relationship to relate {dM/dT)s to an isothermal change in
the entropy per unit volume.

(b) What can you infer about the limiting behavior of (dM/dT)B as T -» 0?
(c) Marshal support for your inference by citing evidence from the explicitly known

behavior of spatially fixed paramagnets.
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7. Extremum at negative temperatures. In the context of a fixed positive temperature
(and fixed external parameters), the Helmholtz free energy F attains a minimum at
thermal equilibrium. What is the corresponding property for F at a negative tempera-
ture? Justify your response.

8. In a hypothetical system, the single-particle states (pa have the following energies:

(p\- Sol

<P2, <P3, <P4, (P5, (p6- 3£o-

Altogether, there are only six states. The constant £o is positive.
For one particle in thermal equilibrium at temperature T, compute the following:

(a) partition function Z,
(b) energy estimate (E), and
(c) entropy S.

Express your answers in terms of k9 T, and £o-

(d) Then, from your answer to part (c), determine the limiting values of S when
kT <C So and kT ^> £o- Show your work. If the limiting values do not seem
reasonable, explain why.
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15 Transport Processes
75.7 Mean free path
15.2 Random walk
15.3 Momentum transport: viscosity
15.4 Pipe flow
15.5 Energy transport: thermal conduction
15.6 Time-dependent thermal conduction
15.7 Thermal evolution: an example
15.8 Refinements
15.9 Essentials

Two paragraphs set the scene for the entire chapter. Recall that the molecules of a gas
are in continual, irregular motion. Individual molecules possess both energy and
momentum, and they transport those quantities with them. What is the net transport of
such quantities? In thermal equilibrium, it is zero. If, however, the system has
macroscopic spatial variations in temperature, being hotter in some places than in
others, then net transport of energy may arise (even from irregular molecular motion).
Or if the locally averaged velocity is nonzero and varies spatially (as it does in fluid
flow through a pipe), then net transport of momentum may arise.

Our strategy is first to examine irregular molecular motion in its own right, then to
study transport of momentum, and finally to investigate the transport of energy.

15.1 Mean free path

Our context is a classical gas. The conditions of temperature and number density are
similar to those of air under room conditions. We acknowledge forces between
molecules, but we simplify to thinking of the molecules as tiny hard spheres, so that
they exert mutually repulsive forces during collisions. Generalization will come later.

When any given molecule wanders among its fellow molecules, its path is a random
sequence of long and short "free" paths between collisions. Figure 15.1 illustrates the
irregular, broken path. There is a meaningful average distance that the molecule
travels between collisions. We call this distance the mean free path and denote it by
lower case script ell: / . The adjective "mean" emphasizes that / is the average
distance between collisions. The process of random free paths and random collisions is
how a given molecule diffuses through the others.

The mean free path ought to decrease if the number density increases. What is the
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15.1 Mean free path 357

Figure 15.1 A view of the "free" paths, /,-, as a molecule pursues a straight-line trajectory
between collisions. The vector L describes the net displacement and is equal to the vectorial
sum of the N free paths.

quantitative connection? Figure 15.2 illustrates a collision. For a collision to occur, the
edge of another molecule must lie within one molecular radius of our molecule's
centerline-of-motion.

Equivalently, the center of another molecule must lie within two molecular radii of
the centerline. That amounts to one molecular diameter, which is denoted by d. Figure
15.3 illustrates this and goes further. For the purpose of calculating collisions, it is as
though our molecule carried a shield of radius d and every other molecule whose
center touched the shield caused a collision. The area of the shield is Jtd2. (If you are
familiar with the idea of a "cross-section," then you will recognize ltd1 as the cross-
section for collision and hence for scattering.)

*v. Edge where
contact occurs

Figure 15.2 The geometry of a collision.
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/molecular^ _ »
V radius /

"Shield"

Figure 15.3 Collision as determined by the molecular diameter d.

As illustrated in figure 15.4, our molecule sweeps out "stove-pipe sections" of
volume, each of which terminates in a collision. Thus each stove-pipe section contains
precisely one molecule other than our own, namely, the molecule that caused the
collision. On the average, the stove-pipe sections are one mean free path long. The
volume of the average stove-pipe section is (length) X (cross-sectional area) =
/ X nd1 because the radius of the shield is d. Because each stove-pipe section
contains one molecule (other than our traveler), we may write

/ average volume of
y stove-pipe section

that is,

/Xjtd2 X n = 1.

/ number of molecules \ _ 1

I per unit volume J ' (15.1)

(15.2)

The number density arises frequently in this chapter, and so the short symbol n denotes
the number of molecules per unit volume. Solving (15.2) for the mean free path, we
find

/> 1
nXjtd2'

(15.3)

The mean free path decreases as the reciprocal of the number density. Also, the larger
the molecular diameter, the shorter the mean free path, which also makes sense.

Figure 15.4 The stove-pipe sections of volume swept out by the molecule's shield.

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	�����������

�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
��'�����������&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.016
http:/www.cambridge.org/core


15.1 Mean free path 359

Some numerical estimates for air
We proceed to some numerical estimates for air under typical room conditions. The
dominant constituents of air are diatomic nitrogen and oxygen: N2 and O2. Both
molecules are much more nearly spherical than dumbbell-shaped. (To be sure, the two
nuclei form an exemplary dumbbell because they are separated by a distance much
larger than nuclear size. The electron cloud that surrounds the nuclei, however, is
nearly spherical, and that cloud determines the molecular shape and size, as they are
seen in molecule-molecule collisions.) We regard molecules of N2 and O2 as spheres
of approximately the same mass and size: mass m and diameter d.

The tactics are first to note some experimental values for mass density, next to
rewrite those densities in terms of molecular and gas parameters, and finally to
combine equations so as to extract ratios of characteristic lengths.

The mass density of air is readily measured; chapter 13 cited the value

pair = 1.2 kg/m3, (15.4)

where the letter rho, p, denotes mass density. The density of liquid nitrogen (at 77 K
and atmospheric pressure) is measured even more easily (by weighing a beaker of it):

p l i q N 2 = 800 kg/m3. (15.5)

Let us regard liquid nitrogen as providing a situation where the molecules are in
constant contact. Then there is one molecule in each cube of edge length d, and so the
mass density is

PliqN2=^3 (15.6)

in terms of the molecular parameters.
In air, the average separation of molecules determines the volume that a molecule

may call its own. That volume extends to each side of a molecule by a distance equal
to half the molecule-to-molecule separation. In short, there is one molecule in a
volume equal to (separation)3. Consequently, the mass density of air may be written as

Pair = (separation)3' ( 1 5 ' 7 )

Now to extract some length ratios. Form the ratio of equations (15.6) and (15.7);
then take a cube root:

(separation) = / p ^ y / 3 = g 7 ^ IQ

d \ Pair )

The average center-to-center separation of nearby molecules is approximately 10 times
the molecular diameter.
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360 15 Transport Processes

The number density n can be expressed in terms of d and the ratio of mass densities.
Form the cube of equation (15.8) and rearrange to find

„ = \ = ±(J*L\ (15 9)
( s e p a r a t i o n ) 3 d 3 \ p J

Substitute this expression for n into equation (15.3) and then rearrange to produce the
ratio

d 71 \ Pai

Taking the round figures, one can say that the mean free path is approximately 20
times the average separation of the molecules in air.

15.2 Random walk

Glance again at figure 15.1 as we pose the question, given some starting point for our
molecule, how far from that point will the molecule get in N free paths, on the
average? The vector location L after N free paths has the form

L = / 1 + / 2 + / 3 + . . . + /tf, (15.11)

where / / denotes the ith free path. To extract the magnitude of the distance, take the
scalar product of L with itself:

L • L - (/i + ?2 + ?3 + • • • + ?N) • (A + A + ?3 + * * *

= ?i • ?i + ?2 ' /2 + ' * ' + 2/i • ?2 + 2/i • ?3 + • • • .

Now take the average over many sets of TV free paths. The cross terms (such as
/ i • ~??) may be either positive or negative and hence will average to zero. The average
of/* • / z will be the same for all values of /: / = 1, 2, 3, . . . , N. Thus

(L-L) = N(?i-/1). (15.12)

The average of the magnitude of the first free path, ( | / i | ) , is precisely the mean free
path that we denoted by / in section 15.1. Let us ignore the distinction between the
root mean square value, (f\ • / I ) 1 / 2 , and the value (\/\ |), particularly since the factor
that relates them is close to unity and is difficult to determine. Proceeding in that spirit,
we take the square root of equation (15.12) and find

(15.13)

where Lrms. denotes the root mean square of the net distance traveled. Equation
(15.13) tells us that Lrms. grows not as N but only as y/N. The randomly oriented free
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15.2 Random walk 361

paths tend to cancel one another; the residual distance grows only as a consequence of
incomplete cancellation.

To determine how far the molecule will get from a starting point in a given elapsed
time t9 we need the number of steps N that can be taken in that time. If we were to
stretch a string along the tortuous path of figure 15.1, we would get a length (v)t,
where (v) denotes the mean speed. So the number N of free paths is

length of path
N = •

(v)t (15.14)

Substituting this expression into (15.13) yields

The net distance traveled grows only as \ft. Figure 15.5 illustrates the reason why.

Numerical estimates
How far does a chosen air molecule diffuse in various lengths of time? The diameter
of both N2 and O2 is approximated well by d = 3 X 10~10 meter. Then equation
(15.10) implies a mean free path of / = 6 X 10~8 meter. Chapter 13 gave the root
mean square speed as fr.m.s. = 500 m/s, and so (v) ~ 460 m/s. This information

(a) (b)

Figure 15.5 Geometry to illustrate the growth as y/t. The two sketches show where the molecule
could be after one more free path (of average length). Less of the circle of radius / is outside
the already-achieved distance in sketch (b) than in sketch (a). Thus, the larger the net distance
already traveled, the smaller the probability that the next free path will increase the distance. As
soon as L is much larger than / , the probability of an increase in L barely exceeds 1/2. The
molecule is almost as likely to regress as to progress.

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	�����������

�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
��'�����������&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.016
http:/www.cambridge.org/core


362 15 Transport Processes

provides the product (v)/ that appears in equation (15.15), and table 15.1 lists some
times and distances. If diffusion alone were responsible for apprising you that onions
are frying on the stove, you could wait a long time in the next room before you became
aware that dinner was cooking. Convection is much more effective than diffusion at
moving the aroma of cooking food or the scent of flowers through the air. Usually,
convection is responsible for bringing to us whatever we smell.

15.3 Momentum transport: viscosity

When fluid flows slowly through a pipe, the velocity profile has the shape shown in
figure 15.6. The flow is fastest at the pipe's central axis. As one approaches the walls,
the velocity drops to zero. In fluid dynamics, this property is called the no slip

Table 15.1 Net distance,
diffused by an air molecule. The
calculation is based on / = 6 X
10~8 meter and(v) = 460 m/s.

Time t

I s
10 s
1 min
lOmin
1 hour
1 day

A*.m.s.

0.53 cm
1.7 cm
4.1 cm

13 cm
32 cm

1.5 m

y ik

Figure 15.6 Velocity profile for slow fluid flow in a pipe. The velocity component vx is the
velocity component along the pipe; the overbar denotes an average of molecular velocity
components taken over a small volume (that is, small relative to the pipe radius R). The y-axis
represents a slice through the pipe: from one interior wall through the central axis and to the
diametrically opposite wall.
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15.3 Momentum transport: viscosity 363

condition. Experiment abundantly confirms its existence, and we can think of it this
way: the molecular attraction between wall atoms and fluid molecules holds the latter
at rest in an infinitesimal layer adjacent to the walls.

The major purpose of the diagram, however, is merely to give us a concrete instance
in which a component of fluid velocity (here the ^-component) varies in size in an
orthogonal direction (here the ^-direction):

vx = vx(y). (15.16)

In such a context, molecular diffusion transports x-momentum in the j-direction. To
understand how this process arises, we specialize to a dilute classical gas, as follows.

Part (b) of figure 15.7 shows a small portion of the velocity profile, and part (a)
shows two molecules that will cross the plane y = yo from opposite sides. On average,
the lower molecule has a larger value of vx and hence transports more x-component of
momentum upward across the plane than the upper molecule transports in the opposite
direction. Thus diffusion produces a net upward transport of x-momentum.

Now we quantify the transport. The goal is to determine the dependence on
temperature T, number density n, mean free path / , and so on. In setting up the
calculation, we will not concern ourselves with factors of 2 or jr.

Of the molecules immediately below the plane y = yo, half have a positive value for
vy, the ^-component of velocity. The flux of such molecules upward across the plane
is \nvy, where vy denotes now some typical (positive) value. Those molecules carry,
on average, an x-momentum of size mvx(yo — / ) , characteristic of the fluid velocity
one mean free path back along their trajectory. (Their last scattering could not, on
average, be farther back than one mean free path.) So we write

/ flux of x-momentum
y upward across y = yo (15.17)

y 4 y A

r
(a) (b)

Figure 15.7 Local analysis for momentum transport by diffusion, (a) Two molecules about to
cross the plane y = yo. (b) The local velocity profile of the fluid flow. Over a small range in y,
which need be only a few mean free paths long, the mean molecular velocity vx varies in a
nearly linear fashion.
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364 15 Transport Processes

The downward flux is similar but is proportional to vx(yo + / ) , the fluid velocity one
mean free path above the plane y — yo.

For the net flux of x-momentum, we have

/ net flux of x-momentum \ _ i - / ^ 1 - / , ^
V upward across unit area I 2 y xy7{) } 2 y xy^ }

w <15-18>
A Taylor series expansion of vx(yo =F f) about y = yo generates the last line. For vy,
we can take a substantial fraction of (v), the average value of the magnitude of the
irregular molecular velocity. (The irregular part of the velocity is v — v, that is, the
true molecular velocity minus the local average velocity, which is associated with the
macroscopic fluid motion.) The typical trajectory crosses the plane y — yo obliquely,
and so / is an over-estimate of the jy-distance where the last collision occurred. All in
all, to replace vy in the second line of (15.18) with ^(v) is reasonable. (More detail in
setting up the calculation leads to precisely the factor 1/3. It would be only fair,
however, to add that even more sophisticated calculations modify the 1/3 to a different
but similar fraction.)

The structure of equation (15.18) is this:

net flux of x-momentum \ _ dvx

in ^-direction ) dy'

where the coefficient eta, 77, is called the coefficient of (dynamic) viscosity and where
we have an approximate expression for the coefficient,

t]^-n(v)mf, (15.20)

valid for a dilute classical gas. The structure in (15.19) holds for most fluids, not just a
dilute gas. The velocity profile and its spatial variation appear solely in the derivative
dvx/dy. The coefficient of viscosity is characteristic of the fluid itself, independent of
any average velocity.

To see how the coefficient rj for a dilute gas depends on intrinsic parameters, we first
eliminate the mean free path / in terms of such parameters. Substituting from equation
(15.3), we find

1 m . .

W O5.2D
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15.3 Momentum transport: viscosity 365

Thus the coefficient of viscosity depends on the temperature T, the molecular mass m,
and the molecular diameter d. Once this dependence is recognized, one can say that
the coefficient rj does not depend on the number density or the pressure. When James
Clerk Maxwell derived this implication, it surprised him. He put it to experimental test
(in 1866) and found his derivation vindicated.

To be sure, there is a natural limit to such independence. If the number density drops
so low that the mean free path becomes comparable to the size of the container or to
the distance over which the average velocity changes greatly, then the local analysis in
equations (15.17) and (15.18) fails, and so the entire calculation needs to be reformu-
lated.

Equation (15.21) implies that the viscosity of a dilute gas increases with tempera-
ture. The molecules move faster and hence can transport momentum more readily.
Experiment confirms the increase.

The behavior is in dramatic contrast, however, to the way that viscosity changes for
a liquid. For the latter, an increase in temperature brings a decrease in viscosity.
Molecules in a liquid are virtually in constant contact with their neighbors, and strong
intermolecular forces operate. To a surprisingly large extent, the molecules are locked
into their locations relative to their neighbors. Increasing the temperature makes it
easier for molecules to surmount the potential energy barriers that inhibit shifts in
location. Thus an increase in temperature enables the liquid molecules to slide past
one another more easily, and so the fluid becomes less viscous.

Table 15.2 lists the coefficient of viscosity for some common substances.

Table 15.2 The coefficient of (dynamic) viscosity. The
ambient pressure is 1 atmosphere.

Fluid

Argon
Helium
Hydrogen
Nitrogen

Water

Glycerin

Temperature

300 K
300 K
300 K
300 K

0°C
20 °C
60 °C

- 2 0 °C
0°C

20 °C

Viscosity (N-s/m2)

2.3 X 10"5
2.0 X 10-5
0.90 X 10"5
1.8 X 10-5

1.8 X 10~3

1.0 X 10~3

0.47 X 10~3

130
12

1.5

Source: CRC Handbook of Chemistry and Physics, 71st edn,
edited by David R. Lide (Chemical Rubber Publishing Com-
pany, Boston, 1992).
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366 15 Transport Processes

15.4 Pipe flow

We are all familiar with viscosity as a physical phenomenon: maple syrup from the
refrigerator pours slowly; motor oil "thickens" in cold weather; and suntan lotion may
feel viscous. Yet students in physics or astronomy rarely see a calculation where
viscosity is prominent, and so this section provides an example.

Turn to the context of figure 15.8: steady fluid flow through a length of pipe.
Diffusion transports x-momentum to the walls, where the walls absorb it. The fluid
between points a and b would slow to a halt if momentum were not continually
supplied from outside. Pressure at the upstream end (point a), acting to the right, adds
momentum to the fluid. A lesser pressure at the downstream end (point b), acting to
the left, subtracts momentum from the fluid. The question we address is this: for fixed
flow rate (in cubic meters per second), how does the pressure difference Pa — Pb scale
when the radius R of the pipe is varied?

Specify that the fluid is incompressible. That is surely a good approximation for
water or blood, and it is a good approximation even for air at subsonic flow speeds.
The detailed shape of the velocity profile remains unknown (to us), but—for purposes
of scaling—the qualitative shape suffices.

Our plan is this: determine the rates of momentum loss and gain; equate them;
extract the pressure difference Pa — P&; and then incorporate the condition of fixed
flow rate.

We use equation (15.19) to estimate the momentum loss rate:

/ momentum \
I loss rate /

momentum flux across \
unit area of wall J X total wall

area

K
(15.22)

The derivative dvx/dy at the wall must scale as the change in vx between center and
wall, which is (vmax — 0), divided by the pipe's radius.

R

Pa

a b

pb

Lab -H
Figure 15.8 Momentum balance for steady flow through a pipe: some context.
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15.5 Energy transport: thermal conduction 367

The pressure at point a acts on an area JZR2 and so exerts a force PanR2 to the right.
At point b, a force P^nR1 acts to the left. Then Newton's second law implies

/momentum\ 2
y gain rate J v '

Equating the gain and loss rates and acknowledging the approximate nature of
equation (15.22), we find

^ (15.24)

The flow rate will scale as vmax and as the cross-sectional area JZR2:

(flow rate) ^ vm&xJtR2. (15.25)

We incorporate the fixed flow rate by using equation (15.25) to eliminate vmsLX in the
momentum balance equation. Dropping all pretense about numerical factors of order
unity, we find

Pa-Pboc rjjp x ( f l o w rate>- (1526)

The dependence on the inverse fourth power of the radius is well-established
experimentally (for smooth, non-turbulent flow). It is one aspect of Poiseuille's law, as
equation (15.26) is called. You can see vividly why clogging of the human arteries puts
such a strain on the heart. When blood returns to the heart, it is essentially at
atmospheric pressure. Decreasing the arterial radius by a mere 10 percent (throughout
the vascular system) increases the required blood pressure (as blood leaves the heart)
by more than 50 percent. Medicine that reduces the viscosity rj can help, but it is
difficult to fight a fourth power.

If you want to determine the detailed shape of the velocity profile, problem 7
provides a good start.

15.5 Energy transport: thermal conduction

Now we turn to the transport of energy by molecular diffusion. Again we begin with a
dilute classical gas and employ a local analysis, as sketched in figure 15.9. The average
energy per molecule, £, is a function of temperature, and the temperature decreases
along the ^-direction. We can expect diffusion to transport energy from the region of
high temperature to that of low temperature.

Following the pattern of reasoning that we used in section 15.3, we write

/ net flux of energy \ _ i _, ^ i -/ , ^
A -? - knvy£(yo - / ) - hnvye(y0 + / )

y upward across unit area J 2 y v</ ' 2 y yj f
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368 15 Transport Processes

yo

y ^

x
(a) (b)

Figure 15.9 Local analysis for energy transport by diffusion, (a) Two molecules about to cross
the plane y = yo. (b) The profile of the temperature distribution: the temperature decreases
along y and approximately linearly so in the short interval that is displayed. (The fractional
change in T over a distance 2 / is specified to be small, and so the y and T axes cross at some
finite T, not at absolute zero.)

The chain rule gives the derivative of £ with respect to position. You might wonder
whether the product nvy should be considered a function of position also and
evaluated at yo =F / . The answer is "no." The goal is to describe a situation wherein
there is no net flux of molecules per se, and so nvy must be the same (in magnitude)
below and above the plane y = yo.

Again we can extract a general structure:

/ net energy \ r^ , _a — —A^gradi,y flux J

where the positive coefficient KT is called
where we have an approximate expression,

the coefficient

(15.28)

of thermal conductivity and

(15.29)

valid for a dilute classical gas and based on the same approximation as for the
viscosity. (There is no standard notation for the coefficient of thermal conductivity.
Unadorned K is sometimes used, but that can be confused with the K for "kelvin,"
and so a subscript " T " for "thermal" has been appended: Kj.) The gradient, grad T,
generalizes the geometry. For any smooth function, the gradient points in the direction
of maximal spatial rate of change. Thus, in equation (15.28), the combination —grad T
says that the energy flux points in the direction in which the temperature decreases
fastest. The magnitude of a spatial gradient is always the maximal spatial rate of
change, and so |grad T\ generalizes the derivative of T in (15.27).
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15.6 Time-dependent thermal conduction 369

Viscosity and thermal conductivity compared
We can profitably compare the coefficients of viscosity and thermal conductivity. For a
dilute classical gas, equations (15.20) and (15.29) imply that the ratio of the coeffi-
cients is the following:

^ o d ^ . (15.30)
r] mdT v }

Both the mean free path and the molecular speed cancel out.
If the gas is monatomic, such as argon or helium, then e is strictly the average

translational kinetic energy, \kT, and so de/dT = 3k/2. The quantity rnKf/rj should
be the same for all monatomic gases. Experiments with helium, argon, and neon (near
room temperature) give mutual agreement within 5 percent.

If the gas is diatomic, then there will be a contribution of k to d'e/dT from classical
rotational motion. The vibrational motion is typically "frozen" into the ground state; it
does not contribute to dl/dT. Again, the quantity mKT/rj should be the same for all
diatomic gases (but should differ from the value for monatomic gases). A more
cautious comparison avoids any assumptions about de/dT and focuses on the
combination

(15.31)
rj(de/dT)'

which should have a single value for all gases. Experimental comparison among H2,
CO, N2, NO, and O2 finds that the values for the combination lie close together—
within 5 percent. That is the good news. The bad news is that, although the
combination in (15.31) should have the same value for both diatomic and monatomic
gases, it does not. The two sets differ by approximately 25 percent, and the situation is
worse for polyatomic molecules (such as CO2 and C2H4). The transport of energy
associated with internal motions turns out to be more complicated than a simple
classical "billiard ball" picture can describe. Despite this blemish, even the simple
kinetic theory of transport is a notable success.

Before we go on, let me emphasize one point. In a broad sense, equation (15.28)
provides a general structure for energy transport by thermal conduction. Although we
derived the equation in the context of a dilute classical gas, the gradient form remains
valid for most solids and liquids (as well as for dense gases).

Also, let me note that coefficients like rj and KT are called transport coefficients
because, together with certain spatial derivatives, they describe the transport of
momentum and energy.

15.6 Time-dependent thermal conduction

The local analysis in section 15.5 provides an expression for the energy flux. To solve
a large-scale problem of how the temperature distribution evolves in time, one needs
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370 15 Transport Processes

an equation for the time derivative dT/dt in terms of the energy flux. Conservation of
energy enables us to construct such an equation, as follows.

Consider the molecules that are in a small volume Fsman in the physical system.
Conservation of energy implies

/ rate of change \ / rate at which work is done \ _ ( rate of energy input \
V I i I I — I I

of their energy J \ by them in an expansion J \ by thermal conduction y '
(15.32)

Fundamentally, this equation is equation (1.13) after its right-hand and left-hand sides
have been interchanged and after it has been expressed as rates of change with respect
to time. (Note that the number of molecules is kept fixed, but the size of Fsmau may
change.)

When thermal conduction delivers energy to the molecules, the local temperature
changes, the pressure changes, and the volume that the molecules occupy changes. A
lot is going on, and we need to find a simplifying context. For the molecules in
question, regard their energy as a function of the temperature and pressure. The
volume Fsmaii that they occupy is likewise a function of T and P. Then split the
discussion into solids and liquids on the one hand and gases on the other.

Most solids and liquids are remarkably insensitive to changes in the ambient
pressure. For example, if the pressure applied to water (at 20 °C) is increased from 1
atmosphere to 10 atmospheres, the fractional change in volume is only 5 X 10~4. A
pressure change affects the energy of the molecules much less than a temperature
change does (when the changes in pressure and temperature are typical of those
induced by thermal conduction). Thus, for most solids and liquids, we may approx-
imate the entire left-hand side of (15.32) by the heat capacity at constant pressure (as
though the pressure really were constant) times the rate at which the temperature is
changing.

The situation with gases is quite different. A 1 percent change in pressure affects the
volume as much as a 1 percent change in temperature. In expressing the left-hand side
of equation (15.32) in terms of various coefficients, one must retain the change in
pressure that accompanies the thermal conduction. Usually the gas is the simpler
physical system, but that is not so here.

For the remainder of this section, we restrict our attention to typical solids and
liquids. Then the left-hand side of (15.32) may be approximated in terms of the heat
capacity at constant pressure:

C —=-\ ( e n e r£y flux v e c t o r ^ . j A (i 5 33)
P dt JsurfaceofsmallvolmneV for thermal conduction;'

The vector dA denotes a patch of surface area and points along the outward normal.
Thus the integral represents the outward flow of energy by thermal conduction. The
minus sign converts to the inward flow, as required by equation (15.32).
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15.6 Time-dependent thermal conduction 371

Next, divide both sides by Fsman and pass to the limit as Vsma\\ —> 0. The right-hand
side becomes the divergence of the energy flux (times a minus sign). Thus

tr< \ ®T A- ( energy flux vector \ , K ^ v
CppUv -77- = -d iv „ .u 1 A *- • (15.34)

v r/p.u.v. Qt y for thermal conduction y v f

The subscript "p.u.v." denotes "per unit volume." Taking the energy flux vector from
equation (15.28), we arrive at the relationship

dT
(CP)p.u.v. — = div(^r grad T). (15.35)

This equation is quite general; it applies to most solids and liquids (that are macro-
scopically at rest). As noted earlier, however, it would need to be augmented before it
could be applied to gases. The equation is often called the heat equation, another relic
of the nineteenth century. A modern view sees it as the evolution equation for the
temperature distribution. (Other names are the equation of thermal conduction and
Fourier's equation)

If the thermal conductivity Kj is spatially constant (or if that is a good approxima-
tion), one may pull Kj outside the divergence operation and write

O rp Jf
r div grad T. (15.36)

dt (CP\'p.u.v.

The pair of operations, first forming the gradient and then taking the divergence,
produces the Laplacian operator, often denoted by V2, and so the right-hand side could
be rewritten with V2 T. The ratio of parameters on the right-hand side is called the
thermal diffusivity:

/ thermal \ _ _ KT

\ diffusivity J ~ T ~~ (Cp)p u v

Table 15.3 lists representative values of KT, (Cp)p.u.v., and D
form, the heat equation is

dT
— = D r div grad T.

7. In its most succinct

(15.38)

In this form, the equation is often called the diffusion equation.
Dimensional balance in the succinct form implies that the units of DT are m2/s. If

the physical system has a characteristic length 2, then one can expect a characteristic
time to emerge. On dimensional grounds, the time scale must be proportional to
X2/DT. Thus large thermal diffusivity implies a short time scale and hence rapid
changes in temperature. The next section provides an example of how the combination
X2/DT arises.
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372 15 Transport Processes

Table 15.3 Thermal conductivity KT, heat capacity per unit volume (at constant
pressure) (Cp)pM.v., and thermal diffusivity Dj. The ambient pressure is 1 atmosphere,
where relevant.

Substance

Argon
Helium
Hydrogen
Nitrogen

Water

Aluminum
Copper
Silver

Temperature

300 K
300 K
300 K
300 K

20 °C

25 °C
25 °C
25 °C

KT
(J/s-m-K)

0.018
0.16
0.19
0.026

0.60

240
400
430

(QOp.u.v.
(J/K-m3)

830
830

1,200
1,200

4.2 X 106

2.4 X 106

3.5 X 106

2.5 X 106

DT

(m2/s)

0.22 X 10"4

1.9 X 10-4

1.6 X 10~4

0.22 X 10~4

1.4 X 10-7

0.98 X 10-4

1.2 X 10-4

1.7 X 10-4

Source: CRC Handbook of Chemistry and Physics, 71st edn, edited by David R. Lide (Chemical
Rubber Publishing Company, Boston, 1992).

15.7 Thermal evolution: an example

To gain some sense of how to use the diffusion equation, we work out an example in
one spatial dimension. At time t = 0, the temperature profile is

2JZX
T(x, 0) = T0 + ATsin

where To and AT are positive constants and where the strong inequality AT <C To
holds. The constant X denotes the wavelength of the sinusoidal variation in the initial
temperature profile. Figure 15.10 illustrates the initial profile and provides a prelude of
an evolved profile.

You may wonder, how realistic are these initial conditions? Although not common,
they can be produced in the lab. Pass a pulse of laser light through a pair of slits, and
let the interference pattern fall on a strip of copper foil, painted black for good
absorption. The double-slit interference pattern will generate a sinusoidal spatial
variation in the foil's temperature (together with an overall increase in temperature
equal to the amplitude of the sinusoidal variation). (Note. The wavelength X of the
spatial variations in temperature differs from the wavelength of the laser light. The X
here depends on the slit-spacing and the distance from slits to foil, although it is
proportional to the literal wavelength of the laser light.) Another example will be
discussed after the primary calculation, to which we turn now.

How does the temperature distribution evolve in time? The differential equation for
T(x, i) is
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15.7 Thermal evolution: an example 373

T(x,0)

Figure 15.10 The temperature profile T(x, t) at two times: t = 0 and t = (X/2JT)2/DT.

dT
at

d2T
ox1

no derivatives with respect to y or z need appear. Because the second derivative of a
sine function is proportional to the sine function, the spatial temperature variation will
remain sinusoidal and have the same wavelength. Thus we try the form

T(x, t) = To + AT sin
2JZX

X x/(0

for some function f(t). Substitute into the differential equation and then cancel
common factors on the two sides to find an equation for f(t):

The solution is a decaying exponential. Therefore the solution for T(x, t) is

x, t) = T0 +AT sin — Xexp -\T\Drt

The spatial variation in temperature decays away as energy diffuses from the peaks
(high T) to the troughs (low T) and "fills them." As the time scale of this process, we
take the ^-folding time, which yields

time scale for \
thermal evolution J

A \ 1
2JZJ DT

(15.39)

The longer the wavelength, the longer the time—and quadratically so. Long wave-
length implies a shallow thermal gradient and hence a small energy flux; that is the
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374 15 Transport Processes

key insight. (The spatial variation in the flux is then small also, and that variation is
what dumps energy into a region or extracts it.)

Application to sound waives in air
You may have learned that audible sound waves in air constitute an adiabatic process
(rather than, say, an isothermal process), at least to good approximation. The wave-
lengths are so long that the time required for significant energy diffusion is much
longer than the oscillation period of the sound wave. Hence there is almost no energy
diffusion, and the wave proceeds adiabatically. Long wavelength requires low fre-
quency (because the speed of sound is roughly equal to the root mean square molecular
speed and hence is largely independent of wavelengths or frequency). Hence we find a
pleasant surprise: the sound frequency is low enough—rather than high enough—for
sound propagation to be an adiabatic process.

For some detail, let us first estimate the thermal diffusivity for a dilute classical gas.
Equations (15.29) and (15.37) yield

VPW, (15.40)

The product nds/dT is the rate at which internal energy per unit volume, ne, changes
with temperature if the volume and hence n are kept fixed. Thus nde/dT is the heat
capacity per unit volume at constant volume. Section 1.5 introduced the symbol y for
the dimensionless ratio of heat capacities:

Using this notation, we write the thermal diffusivity as

[1 1 / l(v)f
DT 9* -(u)/(CV)P.u.v. /(Cp)p.u.v. = -±-1—. (15.41)

The diffusivity depends primarily on kinematic quantities: the mean speed and the
mean free path.

Next, we turn to equation (15.39) and find

/ time scale for \ / X \ 3y
Vthermal evolution/ \2jtJ (v)f ,

3y X ( period of \
2* — X

(2JZ)2 / \ sound wave /

The relations, (period of sound wave) = X/vsound = k/{v), lead to the second line. At
the upper end of the audible range, where the frequency is 20,000 Hz, the wavelength
of sound has shrunk to approximately 2 cm. The mean free path in air is approximately
10~5 cm. So, in the least favorable situation, A / / = 2 X 105. The time scale for
thermal evolution greatly exceeds the period of the sound wave.
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15.8 Refinements 375

Section 15.6 noted that equation (15.35) needs to be augmented before it can be
applied to gases. That is true, but the part of the thermal evolution that depends on
thermal conduction continues to be described by the term div(KT grad T). Hence the
time scale for that evolution is set by DT and the characteristic length, as reasoned at
the end of section 15.6 and as displayed in equation (15.39). The analysis is consistent.

For our purposes, a gas differs from a solid or liquid fundamentally in that changes
in pressure produce relatively large changes in temperature. That reaction plays a
major role in determining how the temperature profile in a sound wave oscillates in
time. Problem 9 explores the couplings that lead to such oscillations.

15.8 Refinements

This section discusses some refinements of the previous calculation for the mean free
path.

All molecules in motion
The derivation of the relationship

/ _
n X jcd2

in section 15.1 assumed, implicitly, that all molecules—other than the one we follow—
are at rest. In that context, collisions occur only on the forward-facing hemisphere of
our molecule. Now we acknowledge that the other molecules are in motion also. A
molecule moving rapidly or obliquely may "pursue" our molecule and collide with its
backward-facing hemisphere. This additional opportunity for collision increases the
collision rate and reduces the mean free path relative to our earlier assessment,
displayed in equation (15.43). In the following paragraphs, we determine the reduction
factor.

Consider first the original situation, where the other molecules are at rest. Assign
our chosen molecule a velocity vi (as observed in the laboratory reference frame), but
imagine riding with the molecule. In the molecule's rest frame, the other molecules
stream toward it with velocity —vi and hence with speed U\. The collision rate will be
proportional to V\ because the flux of other molecules is nv\. (After each collision, we
re-start our molecule with velocity vi as observed in the lab.) Next, average the
collision rate over the various possible values for vi, using the Maxwell velocity
distribution. The average collision rate is then proportional to (vi):

/ collision rate when other \ , > / i _ „ ..
1 1 . oc (v\)- (15.44)

Y molecules are at rest J
Turn now to the situation of interest: all molecules are in motion. Again assign our

chosen molecule the velocity vi and ride with it. The other molecules stream toward it
with the relative speed |v2 — vi |, where \2 denotes the velocity of a subset of other
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376 15 Transport Processes

molecules and where we need to average the relative speed over all possible values of
V2. (In the preceding calculation, \2 was zero, and so the relative speed was merely
|0 — vi| = V\.) The sole difference from the preceding calculation is that we need to
average the relative speed |v2 — vi | with respect to both vi and \2. In short,

collision rate when other ^ f average of \v2

molecules are in motion also J ^ ^with respect to vi and \2 J ^ l''
(15.45)

Problem 7 of chapter 13 outlines a route to the conclusion that the required double
average is y/2(v\).

Comparing equations (15.44) and (15.45) tells us that the collision rate increases by
a factor of y/2, and therefore the mean free path decreases by the same factor. Thus

/refined assessment of \ 1 /1 r .^
(1 J.4O)mean free path / J ^/2n x nd2

Intermolecular attraction
So far, the picture has been of molecules as hard spheres. That view approximates well
the intermolecular repulsion at very short distances—at what one may consider to be
"contact." Figure 12.8 indicated, however, that an attractive force acts when the
intermolecular separation exceeds a minimum (which is close to the "contact" separa-
tion). The range of the attractive force is relatively short, extending only out to two
molecular diameters or so. The attractive force will alter the trajectory of a passing
molecule (even though there is no contact). It is as though the chosen molecule of
section 15.1 carried a shield larger than ltd2. Although quantum theory is required to
calculate the effective size of the shield, one can—as a first approximation—just
replace ltd2 in a phenomenological way by Scattering? *ne effective shield area. (More
technically, Scattering is called the total scattering cross-section.) The algebraic
relations are just as before; for example,

(refined assessment of \ 1 n . .
V mean free path / ; ^ x Scattering '

The numerical value of cr scattering can be inferred from data on mean free paths or from
the transport coefficients, rj and KT.

Molecules that move slowly will be affected more by the attractive forces than fast
molecules. Thus the effective shield area is a function of the average relative speed of
the molecules. (In distinction, the hard sphere area, ltd2, is independent of molecular
speeds.) If the temperature decreases, the relative speed decreases, and so Scattering
increases. Because Scattering a PP e a r s i n the denominator of the expression for / , the
mean free path decreases when the temperature decreases.

There are corresponding implications for the coefficients of viscosity and thermal
conductivity. Each coefficient has a temperature dependence through the mean speed:
(v) ex y/T. Now each coefficient acquires additional temperature dependence through
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f(T). There is, however, no simple theoretical expression for the entire temperature
dependence—a disappointment, perhaps.

15.9 Essentials

1. The mean free path, denoted by / , is the average distance that a molecule travels
between collisions.

2. The simplest theory yields the relationship

= nXjzd2'

where d denotes a molecular diameter and n is the number density.

3. In a random walk, the root mean square of the net vectorial distance traveled is
well-defined and is denoted by Lr.m.s.- After N steps of average length / , the net
displacement is

£r.m.s. = VN/;

the distance grows only as the square root of N.
In terms of elapsed time and the mean speed, the relationship takes the form

Lv.m.s. = ^{V)t/.

4. The transport of momentum (in most fluids) is described by the equation

net flux of x-momentum \ dvx

in ^-direction J dy '

where the coefficient of viscosity rj is given approximately by

rj = -n(v)m/

for a dilute classical gas.

5. Thermal conduction is described by the equation

(net energy flux) — —KT grad T,

where the coefficient of thermal conductivity KT is given approximately by

for a dilute classical gas.

6. Time-dependent thermal conduction is governed by the diffusion equation,

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	�����������

�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
��'�����������&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.016
http:/www.cambridge.org/core


378 15 Transport Processes

dt

where the thermal diffusivity DT is defined by

(thermal diffusivity) = DT = •(vp)p.u.v.

The differential equation applies to typical solids and liquids (but must be augmented
for gases).

Further reading

A classic in the field is Sir James Jeans, An Introduction to the Kinetic Theory of
Gases (Cambridge University Press, New York, 1940). As of its publication date, the
book was authoritative, and it remains an excellent resource, but one has to pick and
choose in order to find easy reading.

The "Adiabatic assumption for wave propagation" is the title of a brief and
instructive exposition by N. H. Fletcher, Am. J. Phys. 42, 487-9 (1974) and 44, 486-7
(1976).

Problems

1. Collision rate. For air under room conditions, estimate the number of collisions that
a chosen molecule makes in one second.

2. A glass disk (of radius 2 cm) is to be "aluminized" for use as a mirror. Aluminum
atoms emerge from an oven through a small hole and fly 40 cm to the glass. All this
takes place in the "vacuum" under a bell jar. If most of the aluminum atoms are to
make the trip (from aperture to glass) without a collision, how low must be the
pressure of the air that remains in the bell jar?

3. Estimate the mean free path of air molecules at a height in the atmosphere equal to
1 percent of the Earth's radius. (Recall the original definition of the meter: a length
such that the distance between equator and north pole is 107 meters.)

4. Gases A and B are in separate containers with pressures and temperatures in the
ratios PB/PA = 1/6 and TB/TA = 2. Gas B has a mean free path that is three times as
long as that for gas A: / # = 3/A- Are the molecules of gas B actually smaller than
those of gas A? Defend your response by determining their size, relative to the
molecules of gas A.

5. Diffusion of photons. Within the sun, electromagnetic radiation is continually
emitted and absorbed by electrons and ions. For some purposes, one may consider the
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radiation to be a gas of photons whose mean free path is approximately / = 1
millimeter. (The use of a single value for / ignores the variation in temperature and
mass density within the sun and ignores also the Planck spectrum even at a single
location, but it's a good start.)

(a) Graph the average net distance, ZT.m.s., diffused by a photon in the following time
intervals: 1, 5, 10, 50, 200, 500, and 1000 seconds.

(b) According to this model, how many years does it take a photon to diffuse from the
solar center to the surface? (It is not the same photon, of course, after an absorption
and emission event, but the picturesque language is harmless here.)

6. Pipe flow and dimensional analysis. The flow rate in a pipe (in cubic meters per
second) can plausibly depend on the viscosity coefficient rj, the pipe radius R, and the
pressure gradient (Pa — Pb)/Lab. How can you combine these three parameters to
construct a quantity with the dimensions of a flow rate? Is there any freedom of
choice? What can you conclude about the final expression for the flow rate that a
correct, exact calculation will yield?

7. Velocity profile in steady pipe flow. Section 15.4 provides the context. That section
and section 15.3 imply

/ x-momentum transferred through a \ d ~ D K _ ...
r A - i * * A- A — -y-rX2jcrLab. (1)

y cylindrical surface of radius r per second J dr
Here v denotes the local macroscopic fluid velocity, which is along the x-direction.
Consider now an annular cylindrical volume: r to r + Ar in radius and Lab in length.
A steady state for the momentum in that volume requires

d ( dv \
(Pa - Pb)2jtrAr = -l-rj—X 2jtrLab) Ar. (2)

(a) Give a verbal interpretation of the expression on each side of equation (2).
(b) Integrate equation (2) and thus determine the velocity profile v(r). What is Umax in

terms of the viscosity coefficient 77, the pipe radius R, and the pressure gradient
(Pa - Pb)/Labl

(c) Determine the fluid flow rate in terms of R and i?max. Compare your answer with
the estimate in section 15.4.

8. Diffusion equation.

(a) Return to the geometry of figure 15.9, but specify that the number density varies,
n = n(y), and that the temperature is uniform. Derive an approximate expression
for the net particle flux; then generalize it to gradient form.

(b) Invoke conservation of particles to derive the diffusion equation:

—- — D div grad n,
at
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where the symbol D (without any subscript) is called the diffusion constant. What
expression do you find for D (in terms of gas parameters)?

(c) Consider the function

n(r, t) = no + ^ - ^ ^ exp[-r2/(4D0L

where no and AN are positive constants.

(i) Show that the function satisfies the diffusion equation for t > 0.
(ii) Interpret the expression in the limit t —> 0 (through positive values),

(iii) Compare the behavior of «(r, f) as a function of both space and time with the
random walk analysis in section 15.2. Include sketches of n versus r at
various times,

(iv) Consider the integral J[«(r, t) — no]d3x taken over all space. What is its
physical significance? Is its value constant in time? Cite evidence for your
claim.

9. Damped sound waves in air. A good set of approximate equations for sound waves
in a one-dimensional column of air are the following:

dT (y-l\TodP

dn _ dvx

~dt~~n°l)x~'
dvx dP

d2T

mn0 dt dx
The first equation is the augmented heat equation; the second expresses conservation
of molecules; and the last is Newton's second law. Variables with a subscript zero
denote values in the absence of the sound wave: the equilibrium values. The velocity
component vx is the local value of the macroscopic fluid velocity. (Thus vx is an
average over molecular velocities within a small volume.)

(a) Use the ideal gas law to eliminate the number density n in terms of the temperature
and pressure. Expand about the equilibrium values.

(b) To get your bearings, set the thermal diffusivity to zero; assume that all deviations
from equilibrium values depend on x and t through the form exp[i(bx — cot)],
where b and co are constants; and solve for the wave speed. The wave speed i;wave
is the "phase velocity" of a wave crest that moves through the gas. The crest may
represent a maximum in the temperature T, the pressure P9 or the local macro-
scopic fluid velocity vx. (Thus vwayQ is distinct from vx.)

(c) Now go back; include the thermal diffusivity, but work to first order only in
b2DT/co; and solve for co when the wavelength (and hence b) are fixed, as they
would be for a standing wave in a closed column of fixed length. At what rate is
the wave damped?
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10. Drag at extremely low density. A thin macroscopic disk moves with constant
velocity vo through an extremely dilute classical gas. The velocity vo is perpendicular
to the plane of the disk. The mean free path of the gas molecules is much longer than
the disk's radius r0. The molecules have mass m and mean speed (v); the inequality
(v) > |vo| holds.

(a) Explain qualitatively why the time-averaged force F exerted on the disk by the gas
is nonzero. Determine the dependence of the force on vo, {v)9 m, ro, and the
number density n. Viewing things from the disk's rest frame may help you.

(b) Determine the dimensionless numerical coefficient that completes the calculation
of the force.

11. Atomic and molecular size. Use relationships and data from this chapter to
estimate the size of argon atoms and hydrogen molecules. Argon has a mass 40 times
as large as that of atomic hydrogen. State your line of reasoning clearly.

12. Consider two panes of glass separated by an air-filled gap of 0.5 cm. The panes
are held at two slightly different temperatures, and so thermal conduction produces an
energy flux proportional to the coefficient of thermal conductivity. (Ignore radiation
here; focus on the transport of energy by molecular diffusion.) Initially, the air is at
atmospheric pressure. Then air is slowly pumped out, so that the pressure drops
continuously.

Describe the behavior of the energy flux as a function of pressure in the gap. Be
quantitative where you can. (Qualitatively, there are two regimes.)
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16 Critical Phenomena
16.1 Experiments
16.2 Critical exponents
16.3 Ising model
16.4 Mean field theory
16.5 Renormalization group
16.6 First-order versus continuous
16.7 Universality
16.8 Essentials

Here, in brief outline, is the run of the chapter. Section 16.1 presents two experiments
to introduce the topic of "critical phenomena," as that phrase is used in physics. The
next section illustrates the mathematical behavior of certain physical quantities near a
critical point. Section 16.3 constructs a theoretical model: the Ising model. The
following two sections develop methods for extracting predictions from the model.
The last three sections draw distinctions, outline some general results, and collect the
chapter's essentials.

Achieving a sound theoretical understanding of critical phenomena was the major
triumph of thermal physics in the second half of the twentieth century. Thus the topic
serves admirably as the culmination of the entire book.

16.1 Experiments

Liquid-vapor
We begin with an experiment that you may see as a lecture demonstration, performed
either with carbon dioxide or with Freon, a liquid once used in refrigerators. A sealed
vertical cylinder contains a carefully measured amount of CO2 (say) under high
pressure. To begin with, the system is in thermal equilibrium at room temperature, as
sketched in part (a) of figure 16.1. A distinct meniscus separates the clear liquid phase
from the vapor phase above it.

Now heat the system with a hair dryer. The meniscus rises (because the liquid
expands), and gentle boiling commences. Next the meniscus becomes diffuse, and then
it disappears. The CO2 has become spatially homogeneous in density, as illustrated in
figure 16.1 (b).

Figure 16.2 (a) shows the system's trajectory in the P— V plane. The amount of CO2

382
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Vapor

Fluid

(a)T<rc (b)T>Tc

Figure 16.1 Critical behavior in a liquid-vapor system, (a) Well below the critical temperature,
liquid and vapor form readily distinguishable phases, and a meniscus separates them, (b) Well
above the critical temperature, only a single, homogeneous "fluid" phase exists, (c) As the
system is cooled down to the critical temperature, a band of turbulence appears suddenly.

was chosen so that the rise in pressure at constant volume takes the system through the
critical point as it makes its way to the "fluid" region above the critical isotherm. In
part (b), we see the trajectory in the P—T plane. The system moves along the
vaporization curve to the critical point and then enters the fluid region.

Now turn off the heater and turn on a fan; blowing room temperature air over the
cylinder will cool it—but relatively slowly (in comparison with the earlier heating).
For a long time, nothing seems to happen. Then—suddenly!—a wide vertical band of
turbulence appears, as sketched in figure 16.1 (c). In reflected light, the turbulent
region appears bluish white; in transmitted light, it is rusty brown. Soon a meniscus
becomes faintly visible in the center of the band. Droplets of mist swirl above it;
bubbles gyrate in the liquid below it. The band is almost opaque because its droplets
and bubbles scatter light so efficiently. (The rusty transmitted light is like a sunset; the
blue end of the spectrum has been preferentially scattered out of the beam.) When a
liquid is far from the critical point, fluctuations in density occur primarily on an atomic
scale. Near the critical point, as bubbles and droplets form and disappear, density
fluctuations occur on much larger scales, scales comparable to the wavelength of
visible light. Fluctuations on that scale scatter light strongly. The phenomenon is
called critical opalescence. Still closer to the critical point, the fluctuations grow to
the size of the container; they eliminate the two-phase system as it is heated to the
critical point or produce the two-phase system as the fluid CO2 is cooled to the critical
point.

You may wonder about the seeming asymmetry in behavior as the CO2 is heated and
then cooled. If one looks closely during the heating stage, one can discern similar

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	������������
�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
��'����������&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.017
http:/www.cambridge.org/core


384 16 Critical Phenomena

(a)

i

2

1.5

1

0.5

-

i
i

i
i

i
i

i
i

o
o
o
o
o

° ^—^̂ ^
o ^ - ^ ^O " - - ^

0.5 1.5 2.5
V/Vr

(b) T

Figure 16.2 The trajectory, shown by open circles, as the liquid-vapor system is heated. The
critical point is marked by a smaller, filled circle, (a) P- Vplane. The increase in temperature
takes the system from one isotherm in the coexistence region to another. Ultimately, the system
passes through the critical point and into the fluid region, (b) P-Tplane. The system moves
along the vaporization curve, passes through the critical point, and enters the fluid region.

turbulence and density fluctuations. They occur on a smaller vertical scale because
(presumably) the relatively rapid heating rushes the system through the critical point.

Basically, critical phenomena are whatever happens when a system is near a critical
point. In turn, a critical point is a point where the existence or coexistence of phases
changes qualitatively. For CO2, the qualitative change is from the coexistence of
distinct liquid and vapor phases to the existence of merely one phase, a "fluid" phase.

What might one want to know about near carbon dioxide's critical point? Several
items come to mind:

1. the difference in mass density between liquid and vapor: pnq — pvap;
2. the heat capacity at constant volume, Cy\
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3. some measure of the maximum length scale for the density fluctuations;
4. the isothermal compressibility, -(\/V)(dV/dP)T.

Apropos of the compressibility, recall from section 12.8 and from figure 12.7 that
(dP/dV)r goes to zero as T approaches Tc from above. Thus the compressibility
becomes infinite, and that behavior is surely worth studying.

Section 16.2 will begin to develop general mathematical forms for behavior near a
critical point, but now we turn to a second experimental example.

Ferromagnetism
Bar magnets made of iron are probably familiar to you. The iron rod creates a
magnetic field outside itself, and you can use that field to pick up nails and paper clips.
If one heats the bar magnet until it is red hot, specifically, to a temperature of 1,043 K,
the iron loses its outside field. A phase transition has occurred. If the iron is allowed to
cool, it regains the capacity to be a bar magnet.

Those are some obvious external effects and changes. One interprets them, in part,
in terms of the magnetic moment per unit volume, M, inside the iron bar. The vector
M is called the magnetization. In principle, to determine M one adds vectorially the
individual magnetic moments in a tiny volume and then divides by the size of the
volume. Thus M is proportional to the local average of the magnetic moments. Not all
the moments in the tiny volume need point in the direction of M, but "most" do. The
volume itself must be small when compared with a macroscopic length scale but large
enough to contain millions of individual magnetic moments.

If we could look inside the once heated and then cooled iron bar, we would find a
situation like that sketched in figure 16.3. The magnetization points in one direction in
one region but in different directions in adjacent regions. Each region is called a
domain, is so small that it requires a microscope to be seen, and yet contains an
immense number of electronic magnetic moments, all of them aligned in a single
direction, more or less. (Typical domains contain 1012 to 1018 atoms.) The alignment
within a domain occurred spontaneously as the iron cooled below 1,043 K. To some
extent, just which direction was chosen for the alignment was a matter of chance and

Figure 16.3 Magnetic domains in iron. The sample is an iron "whisker," a long single crystal
(only 0.05 mm across a short side). The arrows indicate the direction of "macroscopic"
magnetization. [Source: R. W. DeBlois and C. D. Graham, Jr., "Domain observations on iron
whiskers," J. Appl Phys. 29, 931-40 (1958).]
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386 16 Critical Phenomena

would not necessarily be repeated on successive heating and cooling cycles. Because
the magnetizations of the domains point in many different directions, their contribu-
tions to a magnetic field outside the bar tend to cancel, and so the cooled bar is a
feeble magnet.

To reconstruct a powerful bar magnet, one needs to align the magnetizations of the
many domains. This can be done by using the magnetic field of another "permanent"
magnet or by employing the magnetic field produced by an electric current. Three
processes operate when an external field is applied to the bar and gradually increased
in magnitude.

1. Domain growth. A domain whose magnetization points along the external field
(or nearly parallel to it) grows at its boundary. Individual moments in adjacent domains
but near the boundary switch allegiance and become aligned with the external field (or
nearly so).

2. Domain rotation. In some directions relative to the crystal lattice, alignment of
magnetic moments is easier to achieve spontaneously (because of favorable mutual
interactions) than in others; such directions are called easy axes. In a sufficiently
strong external field, the moments in a domain rotate en masse to alignment along the
easy crystallographic axis that is parallel to the external field (or most nearly parallel).
The crystal structure itself inhibits such switching, but that is ultimately a blessing:
when the external field is removed, the crystal structure holds the domain magnetiza-
tions in rough alignment and thus preserves the large over-all magnetization needed
for a strong "permanent" magnet.

3. Coherent rotation. In a yet stronger external field, the magnetic moments in all
domains are swung away from an easy axis and forced into closer alignment with the
external field. This is a brute force or, better, a "brute torque" process.

The evolution of domains is a fascinating topic in its own right, but—for critical
phenomena—it suffices to focus attention on the magnetization within a single
domain, and we do that henceforth.

Recall that a paramagnetic system (such as the cesium titanium alum discussed in
section 5.3) acquires a magnetization when placed in an external magnetic field B, that
is, a field produced by external sources (such as a coil carrying an electric current).
Remove the external field, and the magnetization disappears, both on a macroscopic
scale and also on the scales of 1012 or half-a-dozen atomic paramagnets. Nothing is
left.

In contrast, hot iron that is cooled in the absence of an external field develops
magnetization spontaneously (in domains) and retains it. The property of spontaneous
magnetization characterizes ferromagnetism and distinguishes it from paramagnetism
(and from diamagnetism).

Figure 16.4 displays the spontaneous magnetism of iron as a function of tempera-
ture. The temperature at which spontaneous magnetism ceases to exist is a critical
temperature and is denoted by Tc. Above that temperature, iron behaves paramagneti-
cally. The critical temperature for ferromagnetism is usually called the Curie tempera-
ture, after Pierre Curie, who studied the temperature dependence of magnetism
extensively (before turning to the study of radioactivity with Marie Curie). By a happy
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Figure 16.4 The spontaneous magnetization of single-crystal iron as a function of temperature.
Plotted vertically is the magnetization divided by its value at complete alignment. The circles
represent experimental data. The solid line is a theoretical curve based on developments in
sections 16.3 and 16.4: the Ising model and mean field theory. [Source: H. H. Potter, Proc. R.
Soc. Lond. A146, 362-87 (1934).]

coincidence, you may regard the subscript c in Tc as standing for either "Curie" or
"critical." Table 16.1 lists some Curie temperatures.

For ferromagnetism, what needs to be explained theoretically? In broad outline, here
are some major items:

1. the occurrence of spontaneous magnetization;

Table 16.1 Some ferromagnetic materials and
their Curie temperatures.

Material

Iron
Nickel
Fe & Ni alloy (50% each)
Gadolinium
Gadolinium chloride (GdCy
Chromium bromide (CrBrs)
Europium oxide (EuO)
Europium sulfide (EuS)

^c(K)

1,043
633
803
293

2.2
37
77
16.5

Source: D. H. Martin, Magnetism in Solids (MIT
Press, Cambridge, MA, 1967).
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388 16 Critical Phenomena

2. the existence and numerical value of a critical temperature (the Curie temperature);
3. how the magnetization varies with temperature Tand external field B over various

temperature ranges: well below Tc, near Tc, and well above Tc.

16.2 Critical exponents

Of the various quantities worth studying near a critical point, spontaneous magnetiza-
tion is the easiest to begin with. The sharp growth of M when the temperature
descends below Tc suggests that one may be able to represent M by the temperature
difference Tc — T raised to some positive power less than 1:

(T — T\P
M = const X ( - £ - — (16.1)

when T ^ Tc and where the constant /? lies in the interval 0 </? < 1. (Provided /? is
less than 1, the derivative of M with respect to T will diverge as T approaches Tc from
below. That gives a vertical slope, such as one sees in figure 16.4.) The division by Tc

provides two benefits: (1) it compares the literal temperature difference Tc — T to the
natural magnitude scale, set by Tc itself, and (2) it gives a dimensionless quantity. A
one-term expression like that in equation (16.1) can be expected to hold only close to
Tc.

Experiments on ferromagnetic systems give values of j3 near 1/3 but not literally
that simple fraction (even with allowance for experimental error). The exponents lie in
the range 0.33 to 0.42.

Other quantities associated with critical phenomena have one-term expressions like
that for the magnetization. A few are displayed in table 16.2; the associated exponents
are called critical exponents. The experimental exponents and most of the theoretical

Table 16.2 Some critical exponents. The heat capacity C and magnetization M are
measured in the absence of an external magnetic field, denoted by the subscript B = 0.

Quantity

C\B-o

M\B=0

Pliq - Pvap

- ' (9V)
V\dP)T

Temperature range

T>TC

T<TC

T<TC

Proportional to

fT-rcya

\ Tc )
(Tc ~ T\p

(T,T- TV
V c /

V Tc )

An experimental value

a = 0.05 for EuS

p = 0.368 for CrBr3

y

Source: H. Eugene Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford
University Press, New York, 1971).
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ones are not simple fractions formed from small integers. Sometimes, as in the case of
heat capacity, the exponents may differ between the interval just below Tc and the
range just above it. (To be sure, there is now evidence, both experimental and
theoretical, that the exponents have the same numerical value on the two sides of Tc

for those phenomena—like heat capacity—that are qualitatively the same on both
sides. The proportionality constants continue to differ between the two sides.) More-
over, it would only be fair to note that sometimes the behavior is singular in a way that
cannot be described by an exponent. For example, a famous theoretical solution (Lars
Onsager's solution for the two-dimensional Ising model) has a logarithmic singularity
in the heat capacity: Cy = const X ln(|T — Tc\/Tc). Complexity proliferates rapidly,
and so the detailed discussion in this chapter is restricted to one exponent.

16.3 Ising model

In this section we construct a theoretical model whose goal is to explain ferromagnet-
ism. To be sure, the aim is not to reproduce all the details, but the model should yield
the qualitative and even the major quantitative aspects. Later we shall find that the
symbols can be re-named and rearranged to provide a description of a fluid system as
well.

The interaction energy
Spontaneous magnetization in a ferromagnetic domain arises when a majority of the
electronic magnetic moments point in a single direction (more or less). In turn, that
means that a majority of the electron spins point in a single direction (more or less).
What interaction could make such parallel alignment energetically favorable?

Surprisingly, the answer lies in a combination of electrostatics and the Pauli
exclusion principle. The following line of reasoning captures the essentials.

For simplicity, restrict attention to insulating ferromagnets. Examples are chromium
bromide (CrBr3), gadolinium trichloride (GdCh), and europium oxide (EuO). In these
compounds, the metal ions are the magnetically relevant ions, and we focus attention
on them. They are called the magnetic ions.

You may wonder, why the restriction to insulators? Ferromagnets that are electrical
conductors, such as pure metallic iron, are more difficult to analyze because the
conduction electrons move throughout the material. In contrast, the electrons in
insulators are localized to the immediate vicinity of the ions or atoms.

Now consider two electrons, one from each of two adjacent magnetic ions. Note two
items.

1. The electrons repel each other with the Coulomb electric force; associated with that
repulsion is some positive potential energy.

2. The wave functions of the two electrons may overlap. Where they do, the Pauli
exclusion principle correlates the relative positions of the electrons with their

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	������������
�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
��'����������&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.017
http:/www.cambridge.org/core


390 16 Critical Phenomena

relative spin orientations. If the spins are anti-parallel (and hence point differently),
the electrons are permitted to get close together, and so the Coulomb potential
energy is high. If the spins are parallel, then the two electrons may not be at the
same location. Their joint wave function must vanish if we imagine that the
electrons are at the same location. Moreover, continuity for the joint wave function
makes mere closeness improbable; that leads to lower potential energy. In short, the
Coulomb potential energy depends on the relative spin orientations.

Choose the zero of energy so that the spin-dependent interaction energy is

—J if the spins are parallel,
(16.2)

+J if the spins are anti-parallel,

where J is a positive constant with the dimensions of energy. (The letter J is often
used for angular momentum, but not so in this chapter, where we follow the convention
in ferromagnetism.)

The interaction energy ± J pertains to adjacent or—more technically—to nearest-
neighbor magnetic ions in the lattice. In the simplest model (which we are construct-
ing), pairs of ions that are more distant are taken to have negligible spin-dependent
interaction. (Why? Because the electron wave functions go to zero quickly with
increasing distance from the nominal atomic radius, and overlap is required if the Pauli
principle is to be relevant.)

The "Coulomb" interaction of equation (16.2) is often called the exchange inter-
action. Here is the reason why. The Pauli exclusion principle requires—as a mathema-
tical statement—that the joint wave function for a pair of electrons change sign if one
mentally "exchanges" the two electrons (with respect to their positions and spin
orientations). If the two electrons are assigned the same location and spin orientation
and are then "exchanged," the wave function can "change sign" only if the wave
function is actually zero. Thus the exchange property of the joint wave function is
indirectly responsible for the lower electrostatic potential energy that is associated
with the parallel alignment of nearest neighbor spins.

The summed energy
Specify further a uniaxial ferromagnetic system, that is, a system where spontaneous
magnetization arises along only one axis relative to the crystal structure. [Cobalt
provides an example of a uniaxial ferromagnet (but it is not an insulator).] Choose a
direction along that axis and call it the positive z-axis. Then only spin orientations
parallel or anti-parallel to the z-axis matter. The vector nature of electronic spin is
reduced to a two-valued scalar property. Let

0 i — +1 if spin / is parallel to z,
(16.3)

01 — —\ if spin / is anti-parallel to z,
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16.3 Ising model 391

where the subscript / denotes the /th spin and z is a unit vector along the positive z-
axis. The interaction energy of nearest neighbors i and j is then

-Jot Gj. (16.4)

(You can check the four possibilities: o i — ±1 and Oj = ±1.)
If the system consists of a one-dimensional array of magnetic ions, as displayed in

figure 16.5 (a), then the total spin-dependent interaction energy is given by the
following sum:

£int = -J(aio2 + o2a3 + a3a4 H ). (16.5)

In general, for any regular array in 1, 2, or 3 dimensions, the interaction energy is a
sum of terms —JotOj taken over all nearest neighbor pairs. The model thus con-
structed is called the Ising model. Wilhelm Lenz proposed such an interaction in a
1920 publication. Two years later, Lenz suggested to his graduate student, Ernst Ising,
that he look for solutions to the model. Ising was able to solve the one-dimensional
array exactly, and citations of his subsequent publication gave the model a name that
stuck.

Actually, in the presence of an external magnetic field B directed along the positive
z-axis, the full energy (that is relevant for ferromagnetism) is the sum of the
interactions between nearest neighbor pairs plus the interaction with the external field.
We write the relevant full energy as

where "n-n pairs" means a sum over all nearest neighbor pairs of magnetic ions. The
+ sign preceding the second term acknowledges that the electron's magnetic moment
mB is anti-parallel to its spin s. Consequently, the interaction energy —mB • B equals

I I I I I
— o — o — • — o — o —

— o — o — o — o — o — — o — • — 0 — • — o —
1 2 3 4 5 I I I I I

— O — O — • — O — O —
I I I I I

(a) (b)
Figure 16.5 Two arrays of spins (associated with the magnetic ions), (a) One-dimensional array.
(b) Two-dimensional square array. For the ion marked 0, the four nearest neighbors are marked
with solid circles.
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392 16 Critical Phenomena

—(— niB<J)B, that is, -\-mBBo. (Be aware that some authors ignore this fine algebraic
point, which has no effect on the major conclusions about solutions.)

In constructing the energy displayed in equation (16.6), we assumed (implicitly) that
only one electron is relevant in each magnetic ion and that the electron's orbital motion
is not relevant to the interaction with the external magnetic field. Those assumptions
are permissible for model building. One should note, however, that actual magnetic
ions often provide several relevant electrons per ion and that the electrons' orbital
motion often contributes to the magnetic moment per ion.

Before we explore some consequences of the Ising model, let us note a piece of
physics that has been left out, quite deliberately. That item is the magnetic interaction
of one magnetic moment with another, either nearby or distant. In section 14.3, we
noted that a moment mB produces a magnetic field of order 0.01 tesla at an interatomic
distance of 5 X 10~10 meter. A dipole field falls off with distance r as 1/r3. Thus, at a
nearest neighbor distance of 3 X 10"10 meter, the field would be approximately 0.05
tesla. Another magnetic moment mB at that distance has a magnetic energy of order
THB X (0.05 tesla), which is approximately 3 X 10~6 eV. Even on an atomic scale, that
is a small energy. Moreover, if the magnetic dipole interaction were responsible for
ferromagnetism, we would expect the Curie temperature to be approximately that
interaction energy divided by Boltzmann's constant, which amounts to 0.03 K. In
comparison with measured Curie temperatures, that temperature is much too low. In
fact, the "Coulomb" energy J is typically of order 3 X 10~2 eV, which is larger by a
factor of 104 (although there are wide variations). The magnetic dipole-dipole
interaction is too weak by far to explain spontaneous magnetization as it actually
occurs.

16.4 Mean field theory

In the Ising model, the nearest neighbor interactions couple together all the magnetic
ions, directly or indirectly. That extensive coupling may be able to align all the spins in
a domain, but it has another consequence as well: predictions are difficult to calculate,
usually extremely so. Is there some approximation that turns the coupled iV-spin
problem into merely a one-spin problem, which might be easy to solve?

Yes, there is. As our first method of solving the Ising model for the magnetization,
we reason as follows.

When discussing the /th spin and its variable o *, we treat the nearest neighbor spins
as though each had the average value (o) for its spin variable. In principle, the
numerical value of (a) is computed by averaging over all the spin variables of the
entire physical system. Moreover, the average (a) is equal to the expectation value
estimate for any single spin because all spins in the lattice are equivalent statistically.
Therefore we can express (a) in terms of (a) itself and then solve for it. (If this is
confusing, just read ahead; the details will make it clear.)

Let lower case z denote the number of nearest neighbors for the zth spin. Then we
extract from equation (16.6) an effective energy for the zth spin:
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16.4 Mean field theory 393

Et = —zJ(o)o>i

= mBB*oi9 (16.7)

where

B^ = B- — {a). (16.8)

The interaction with the nearest neighbors acts like an extra magnetic field of size
—{zJ/m^){o). The extra field is called the mean field. Pierre Weiss, a French expert
on magnetism, developed an approximation like this in 1907. He had in mind magnetic
interactions between magnetic dipoles (which we rejected as inadequate for ferro-
magnetism), and so his corresponding expression was literally an average or mean
magnetic field. Calling his expression a "mean field" makes a lot of sense. Nowadays,
any effective field that arises by Weiss's kind of approximate averaging is called a
"mean field," and the corresponding approximate theory is called a mean field theory.

The great merit of the mean field approximation is that it enables us to treat the z'th
spin as though it were a single particle interacting with constant fields (not fields that
fluctuate and that vary with the behavior of other particles).

The canonical probability distribution gives the probability P{Ot) for the two
possible values of az:

e-mBB*Oi/kT

The Boltzmann factor appears in the numerator, and the denominator provides the
correct normalization.

The expectation value estimate (at) follows as

(Of) =
Oi=±l

= -torih(mBB*/kT). (16.10)

Because all spins are statistically equivalent, the expectation value (a,-) must have the
common value (a). Therefore we may turn equation (16.10) into a self-consistent
equation for (a):

To check this equation, set zJ equal to zero and compare with equation (5.13). In the
present context, the quantity "(magnetic moment along B)" is represented by
— JWB(CT), and so equation (16.11) recovers the earlier result in section 5.3.
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394 16 Critical Phenomena

Spontaneous magnetization
Does mean field theory predict spontaneous magnetization? To find out, set B = 0 in
equation (16.11), which yields

(16.12)

and then solve for (a). Two routes are worth following.

1. Graphical
Figure 16.6 graphs both the left-hand side and the right-hand side as functions of (a)
for positive (a). Any intersection gives a solution to the equation. Because

tanhx = x + • • • when \x\ <C 1,

the initial slope of the right-hand side's curve is zJ/kT. Provided that zJ/kT> 1,
there will be an intersection at a nonzero value of (a). The critical temperature Tc is
given by

JcTc = zJ. (16.13)

When T>(zJ/k), only (a) = 0 is a solution, and so no spontaneous magnetization
occurs in the higher temperature range.

When the temperature is below Tc, there is a negative solution for (a) as well as a
positive solution; the two solutions have the same magnitude. That duality reflects the
basic symmetry of the context when no external field is present.

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

Figure 16.6 The graphical solution.
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16.4 Mean field theory 395

2. Closed form

To separate (a) and T in equation (16.12), first regard the right-hand side as a function
of y = exp(zJ(a)/kT) and solve algebraically for y as a function of (a). Then take
the logarithm of y, finding

zJ 1
kT 2(a) \l-

Figure 16.7 displays (a) as a function of T/Tc (for positive (a)).

(16.14)

Critical exponent
The slope d(o)/dT appears to become vertical as T -* Tc from below. To find the
detailed behavior near Tc, expand the logarithm in equation (16.14) through order (a)3

around the value (a) = 0 and then solve for (a). The result is

(o) = (16.15)

plus small corrections. Because (a) and the magnetization Mare proportional, mean
field theory predicts that the critical exponent /? equals 1/2.

The one-term expression in equation (16.15) is shown in figure 16.7 for comparison
with the precise solution extracted numerically from equation (16.14).

Figure 16.7 Magnetization in the Ising model according to mean field theory. The solid curve
gives the positive and zero values of (a), to which the magnetization is proportional. The dashed
curve illustrates equation (16.15), the one-term expression that captures the essential behavior
just below Tc.
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396 16 Critical Phenomena

Appraisal
How does one assess the combination of Ising model as a framework plus mean field
theory as a solution route? Here is a list of successes and failures.

Successes
Together, the Ising model and mean field theory predict

1. spontaneous magnetization,
2. a critical temperature, given by kTc = zJ,
3. a curve of (o) (or M) versus T as given by figure 16.7, and
4. a non-integral critical exponent /? = 1/2 for the behavior of the magnetization

near Tc.

These are notable qualitative successes.

Failures
The failures are discussed under the same sequence numbers, 1 through 4.

1. Ernst Ising's exact solution for the one-dimensional array shows no spontaneous
magnetization (except at absolute zero). The absence of a transition from paramagnetic
behavior to ferromagnetic at some nonzero temperature was a disappointment for
Ising. Lars Onsager's exact solution for the two-dimensional lattice does show a
transition to spontaneous magnetization at nonzero temperature, and there is good
theoretical evidence that the Ising model predicts such a transition in three dimensions.
Mean field theory fails to capture the dependence on the spatial dimensionality of the
spin array: 1, 2, or 3 dimensions. (All that mean field theory incorporates is the number
of nearest neighbors. That number can be the same for lattices with different
dimensions. For example, both a planar triangular lattice and a three-dimensional
simple cubic lattice provide six nearest neighbors.) In short, the actual predictions of
the Ising model depend on the number of spatial dimensions, but mean field theory
fails to display that dependence.

2. When a nonzero critical temperature actually exists (at least theoretically), mean
field theory yields a qualitatively correct estimate—but only that. Table 16.3 provides
a quantitative comparison, and one sees that mean field theory can be inaccurate by as
much as a factor of 2.

3. The curve of (a) or M versus T is qualitatively correct. Quantitative accuracy,
however, is lacking, as the discussion of item 4 will demonstrate.

4. Experimental exponents /3 lie in the range 0.33 to 0.42. The exact value for the
two-dimensional Ising model is /3 = 1/8 (for all lattices). Numerical estimates for the
three-dimensional simple cubic lattice appear to converge on j3 = 0.325 or near that
value. Yet mean field theory persists in assigning /} = 1/2 to all dimensions.

An over-all summary is this: mean field theory provides a qualitatively good
approximation for the Ising model, but the solution is quantitatively inadequate.

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	������������
�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
��'����������&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.017
http:/www.cambridge.org/core
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Table 16.3 Critical temperatures predicted from the Ising model.

Lattice

1-dim
2-dim:

honeycomb
square

3-dim:
simple cubic
body-centered cubic
face-centered cubic

Number of nearest
neighbors

2

3
4

6
8

12

Mean field
theory's Tc

2J/k

3J/k
4J/k

6J/k
SJ/k
\2J/k

Accurate
Tc

No transition above zero

0.506 X (3J/k)
0.567 X (4J/k)

Q.I52 X (6J/k)
0.794 X (8//k)
0.816 X (\2J/k)

Source: Daniel C. Mattis, The Theory of Magnetism II (Springer, New York, 1985), p. 100.

Table 16.3 provides a clue to why mean field theory fails quantitatively. Note that, as
the number of nearest neighbors increases, mean field theory gets better: its values for
Tc are closer to the accurate values. The more nearest neighbors, the more nearly their
collective behavior equals the average behavior of all spins. Mean field theory ignores
local fluctuations. It can be quantitatively accurate only when the fluctuations are
insignificant.

Yet, near a critical point, fluctuations are rampant. They occur on a wide spectrum
of length scales, from nearest neighbors to the size of the physical system. One needs a
calculational scheme that can take into account those fluctuations. The next section
develops such a procedure.

16.5 Renormalization group

When the fundamental problem is to cope with many length scales, then a basic
method is to treat one scale at a time and to repeat a standard procedure. Iteration is
the key.

The term renormalization group refers to a body of techniques that implement the
iterative insight. As applied in thermal physics, the name is not especially informative,
and that is an historical accident. The renormalization group arose in quantum field
theory in the 1950s as a way to cope with spurious infinities: to "renormalize"
quantities to physically sensible values. Work in thermal physics by Leo P. Kadanoff in
the 1960s and then a brilliant development by Kenneth G. Wilson in 1970-1971 gave
us a practical calculational framework for critical phenomena. For his work, applicable
to both thermal physics and quantum field theory, Wilson received the Nobel Prize for
Physics in 1982.

In this section, we use the renormalization group to calculate the partition function
for the Ising model, first in one dimension and then in two. At the end, we survey our
procedures and extract some of the key methodological elements.
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398 16 Critical Phenomena

One-dimensional Ising model
Using the nearest neighbor interaction of equation (16.5), we write the partition
function for the one-dimensional Ising model as

The sum goes over the values ±1 for each spin az. The external field B has been set to
zero, and figure 16.5 (a) displays the scene geometrically.

Now we prepare to sum over the ±1 values for all the even-numbered spins. Thus
we will sum over alternate spins (or "every other" spin), a procedure that can
subsequently be iterated. Introduce the abbreviation

K = J/kT, (16.17)

where K is called the coupling constant. Then factor the exponential so that each
factor contains only a single even-numbered spin:

Z(N, K) = ^2 eK(OlO2+O2°3) X eK(o3O4+o4o5) x . . . (16.18)

where N denotes the total number of spins.
Summing over a 2 = ±1 replaces, in effect, the first factor by two terms, and a

similar effect is true for all other even-numbered spins:

Z(N, K) = X^[eK(°l+o^ 4- e-K(°i+0i)] x [e
K(a3+°5) _|_ e-K(oz+o5)-^ x . . .

(16.19)

To avoid any difficulty with the end points, specify that the total number N of spins is
even, wrap the linear chain of spins into a large circle, and let the iVth spin interact
with the spins i = N — I and / = 1. When a system is large, boundary conditions have
an insignificant effect, and a wrap-around boundary condition is convenient.

The remaining sum in (16.19) goes over the odd-numbered spins. The tactical
problem is this: how to make that summation look similar to the original summation,
so that we can again sum over alternate spins. Is there a constant K' and a function
f(K) such that the equation

f(K)eK'ai°3 = e
K{Ol+Ol) + e-Z ( c 7 l + a 3 ) (16.20)

holds?

Let's see. When O\ — a3 = ± 1 , the relationship

f(K)eK' = e2K + e~2K (16.21)

must hold. When a 1 = — #3 = ± 1 , then

f(K)e~K' = 2 (16.22)
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must hold. These are merely two constraints on two unknowns. The solutions are

f(K) = 2(cosh2iQ1/2, (16.23)

K' = ±ln(cosh2£). (16.24)

Thus equation (16.19) can be written as

Z(N, K) = f(K)N/2 ] T eK'ai°3 X e
K'O3°5 X •.. . (16.25)

The remaining sum goes over the odd-labeled spins, which are N/2 in number. That
sum is numerically the partition function for N/2 spins with the coupling constant K'\
Z(N/2, K'). So equation (16.25) can be written as the terse statement

Z(N, K) = f(K)N/2Z(N/2, K'). (16.26)

Is equation (16.26) suitable for iteration? Not really, because the partition functions
refer to systems with different numbers of particles. To eliminate that awkward
dependence on N, recall that In Z must scale as the number of particles when the
system is macroscopic. (For one line of reasoning, note that the Helmholtz free energy
is an extensive quantity and equals — kTIn Z.) Thus, when N ^> I, the partition
function must have the structure

In Z(N, K) = N£(K) (16.27)

for some function zeta that depends on K. (The choice "zeta" is intended to have
mnemonic value, associated with the Z for partition function. The £ here should not
be confused with the Riemann zeta function.) Now take the logarithm of equation
(16.26); use the forms (16.27) and (16.23); and find the relationship

£( K') = 2£(K) - ln[2(cosh2JT)1/2]. (16.28)

Equations (16.24) and (16.28) relate the partition function for the original spins to a
partition function for a new system where alternate spins (the even-numbered spins)
have been eliminated by summation. The shortest length scale in the original system—
one lattice spacing—has been eliminated. In the new system, the remaining spins are
separated by two lattice spacings. One would expect their coupling constant K' to be
smaller than K. To confirm that expectation, write (16.24) as

e2K'= e2K X (l + 6
2~4Ky (16.29)

Because of the inequality exp(—4K) < 1, the second factor on the right-hand side is
less than one, and so the inequality K' < K holds. The spins in the new system interact
via the spins that have been summed over; so the coupling constant K' is a statistical
average of ±K, which is less than K in magnitude.

Equations (16.24) and (16.28) relate the set {K\ £(K')} to the set {K, £(£)}, and
so they are called recursion relations. The equations do not provide £ as a function of
its argument. (If they did, the calculation would be finished.)
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In principle, equations (16.24) and (16.28) can be iterated. Each iteration sums over
alternate spins and eliminates a larger length scale. One can continue the process until
the spins in the newest system are so far separated (in actual space) that their mutual
interactions are negligible. [Expressed mathematically, the process iterates equation
(16.29) and hence drives the effective coupling constant toward zero.] For a spin
system with negligible interactions, the partition function is readily evaluated, and then
one need only collect all the factors in order to express the original partition function.

To implement this scheme, it is convenient to work from the system with the largest
length scale down to the desired system. Why? Because that route provides a numeri-
cally definite starting value for the partition function. (The physics logic goes from
small length scales to large, but—in this instance, anyway—the numerical compu-
tation is easier from large to small.) Thus one needs K as a function of K' and £(K) as
a function of t,{K') and K'. Equation (16.24) may be solved for K:

K = \\n[e1K> + (e4K' - 1)1/2]. (16.30)

Equation (16.28) becomes

£(*) = \ X [£(£') + K' + In2]. (16.31)

For N spins that are spatially fixed and non-interacting, the partition function is

Z(N, 0) = ZiCO)* = 2N. (16.32)

The first equality follows from the analysis in section 5.6 and problem 5.5. The
partition function for one non-interacting spin, Zi(0), is simply the sum of two
Boltzmann factors, each of the form e°, and so Zi(0) = 2. Take the logarithm of
(16.32) and compare with equation (16.27) to find

£(0) = ln2. (16.33)

The iterative scheme cannot start at precisely Kf — 0. Why? Because if K' = 0 is
inserted into (16.30), the equation yields K = 0. No progress would be made. One says
that zero coupling constant is a fixed point of the iterative transformation. (Setting
K' = 0 exactly means "no interaction," and then no reshuffling of summations can
generate an interaction.) To get off the ground, one needs to use small but nonzero Kr

and to approximate £( K'). Thus let us take the values

£ ' = 0.01,
(16.34)

£(0.01) = ln2.

Table 16.4 displays the consequences of iterating from the starting point (16.34).
The exact value of £,{K) is computed from the closed-form relationship developed in
problem 16.4:

lim - l ln Z(N, inexact = HeK + e~K). (16.35)
N->oc TV

The iterative approach works impressively well.
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Table 16.4 The function t,(K) as calculated
by iteration and its exact value.

K

0.01
0.100 334
0.327447
0.636247
0.972 71
1.31671
1.662 64
2.009 05
2.355 58
2.702 15
3.048 72

^iterated

0.693 147
0.698 147
0.745 814
0.883 204
1.106 30
1.38608
1.697 97
2.026 88
2.364 54
2.70663
3.05096

bexact

0.693 197
0.698 172
0.745 827
0.883 21
1.10630
1.38608
1.697 97
2.026 88
2.364 54
2.70663
3.05096

Source: Humphrey J. Maris and Leo P. Kadan-
off, Am, J. Phys. 46, 652-7 (1978).

Recall that the coupling constant K equals J/kT. Knowing the temperature
dependence of the partition function Z(N, J/kT) enables one to calculate the energy
per spin, (E)/N, and then the heat capacity C/N (both in zero external magnetic
field). Both figure 16.8 and the exact expression show only smooth behavior for £ or Z
as a function of K. There is no indication of a phase transition (at some finite K).
Indeed, the one-dimensional Ising model has neither spontaneous magnetization nor
anomaly in heat capacity at any nonzero temperature.

3
£

2.5

2

1.5

1

0.5

0 0.5 1 1.5 2 2.5 3
K

Figure 16.8 The run of £(£) versus K when computed by the renormalization group (for the
one-dimensional Ising model).
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402 16 Critical Phenomena

Two-dimensional Ising model
To find a system that does exhibit a phase transition, we turn to the two-dimensional
Ising model. In the exponent of its Boltzmann factor, the full partition function has a
sum over all nearest neighbor pairs in a two-dimensional square lattice. The analog of
summing over alternate spins is illustrated in figure 16.9. The step consists of summing
over alternate spins in both x and y directions. The remaining spins form another
square lattice (with lattice spacing larger by \fl and rotated by 45°).

After the Boltzmann factor has been summed over alternate spins, can the new
exponent be written as a sum over all the new nearest neighbors? No. An algebraic
attempt analogous to equations (16.18) to (16.26) generates not only nearest neighbor
terms but also qualitatively different terms. Terms arise that represent direct interaction
between the new next-nearest neighbor spins; those terms are proportional to otoj for
the new next-nearest neighbors. [To visualize a next-nearest neighbor pair, choose four
filled circles in figure 16.9 that form a square (with one open circle inside). Then focus
attention on a pair of filled circles that lie on opposite corners, that is, one filled circle
is half-way around the new square from the other.] There are also terms that describe
the direct interaction of four spins (located on the corners of a square); those terms are
proportional to otojOkO/. (The algebra is omitted here; the paper by Maris and
Kadanoff, cited in the further reading section, provides details.) An exact recursion
relation cannot be derived by this route.

The simplest approximation that retains a phase transition consists of this: (1)
increase the coupling constant of the nearest neighbor interaction to approximate the
additional aligning effect of the next-nearest neighbor interaction (and then omit the
latter interaction from explicit inclusion) and (2) ignore the direct interaction of four
spins (which has a numerically small coupling coefficient). These two steps produce
analogs of equations (16.24) and (16.28):

— • — o — • — o —
I I I I— o — • — o — # — o —

— • — o — • — o —
I I I I

— o — • — o — • — o —
Figure 16.9 The square lattice of the two-dimensional Ising model. The alternate spins for the
first summation are shown as open circles; filled circles represent the spins that remain to be
summed over.
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*'=fln(cosh4JK),

') = 2t,{K) - ln[2(cosh2A01/2(cosh4£)1/8].

403

(16.36)

(16.37)

These are (approximate) recursion relations for the two-dimensional Ising model.
What do they imply?

To proceed as we did with the one-dimensional model, invert equations (16.36) and
(16.37) so that one can start with the almost-free context of (16.34). Figure 16.10 (a)
shows what iteration generates. The values of K and £ converge on the values

JBTC = 0.50698 . . . ,

£(KC)= 1.0843... ,
(16.38)

where the subscript c denotes—suggestively—a critical value.
To get values of K greater than Kc, one must start the iteration above Kc. At very

large coupling constant, most spins will be aligned. The partition function should be
dominated by the Boltzmann factors that represent complete alignment (and that
represent some nearby states as well). Each spin has four nearest neighbors, but each

1

0.9

0.8

0.7

- * — •

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
K

(b)
3.5

3

2.5

2

1.5

0.6 0.8 1.2 1.4
K

Figure 16.10 (a) Iteration from small K, the nearly-free context, (b) Iteration from large K, the
context of almost total alignment.
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404 16 Critical Phenomena

interaction is shared by two spins. So there are \ X 4N nearest neighbor terms in the
energy, and all will be negative in the two states of complete alignment. Thus

Z(N, K)^ yKX(\/2)XAN X
factor to include \

nearby states J' (16.39)

The exponential dominates, and so £,(K) = IK when K is large relative to 1. [Figure
16.8, which refers to the one-dimensional model, shows that £(X) is approximately
proportional to K already when K exceeds 2. The proportionality constant is
^ X 2 = l because each spin has only two nearest neighbors in a one-dimensional
system.]

Figure 16.10 (b) shows the consequence of starting with K' = 10 and £ = 2K' and
using the inverted recursion relations. Iteration takes K downward toward Kc and

Neither sequence of iterations takes K literally to Kc; rather, Kc is the limiting value
for each sequence. As such, Kc has the property that inserting Kc into the recursion
relation reproduces Kc. Thus Kc is a fixed point of the recursion relations. Moreover,
because Kc is neither zero nor infinity, it is called a non-trivial fixed point.

Figure 16.11 combines the two halves of figure 16.10. It shows that £(K) is
continuous at Kc. The smoothness of the join suggests that the first derivative, d£/dK,
is continuous, also; numerical analysis confirms that. Figure 16.12 displays the second
derivative, d2t,/dK2, as computed numerically from the original data points. Aha! At
last we see striking behavior at K = Kc.

The second derivative gives the heat capacity per spin, C/N, in the following way:

ww- (16-40)C

[For a derivation, start with equations (5.16) and (16.27), the relation K = J /kT, and

3

2.5

2

1.5

1

0.4 0.6 0.8 1 1.2 K

Figure 16.11 The combination of the two iterations shown in figure 16.10. To expand the
juncture region, some distant points—at both low K and high K—have been omitted.
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Figure 16.12 The second derivative, d2£/dK2, has a singularity at Kc

the chain rule for d£(K)/dT.] Thus figure 16.12 implies that the heat capacity C/N
becomes infinite as K —» Kc from each side. This singularity suggests that a phase
transition occurs at Kc.

Imagine fixing the interaction constant J and decreasing the temperature T from a
high value. That will generate a smooth increase in the coupling constant K. For high
T and small K, the spin system is paramagnetic and shows no magnetization (in the
absence of an external magnetic field). As Kc is passed, the system undergoes a phase
transition and develops a spontaneous magnetization. (Because we omitted all mention
of an external field in the partition function, our expressions cannot be used to
calculate even the spontaneous magnetization, but a separate calculation confirms its
existence. Indeed, it suffices to use mean field theory far from the critical point, where
that theory is adequate.)

Critical exponent
To characterize the singular behavior in the heat capacity, recall from table 16.2 that C
frequently varies as \T — Tc\~a for some critical exponent a. Because C is computed
as a second derivative of t,{K), suppose that

= a K - K \2~a + (function analytic in K\ (16.41)

where a and a are unknown constants. The amplitude a may have different values on
opposite sides of Kc. The adjective "analytic" means that the function has a con-
vergent Taylor series about the point K = Kc.

To determine the exponent a, we apply the recursion relations (16.36) and (16.37)
near Kc. (Those relations move the system away from Kc on both sides.) First calculate
K' symbolically:
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K' = K'(K) = K'[KC - Kc)]

dK'
~dK

X(K- Kc)
K=KC

X(K- Kc). (16.42)

The step to the second line is a first-order Taylor expansion. The last line follows
because Kc is a fixed point.

Equation (16.42) merely relates K and K'. Now we investigate what the structure in
(16.41) implies in the recursion relation for £, namely (16.37). On the right-hand side,
the logarithmic term is analytic in K; so

r.h.s. =2X a\K - Kc\2~a + (function analytic in K).

The left-hand side is

l.h.s. = a\K' - Kc\2~a + (function analytic in K')

(16.43)

= a\K-Kc
2-a X

dK'
~dK

2-a

+ (function analytic in K), (16.44)
K=KC

upon using (16.42) to substitute for K'.
The terms in \K — Kc\2~a on the two sides must have equal coefficients; so one

deduces the relation

2-a

2 =
dK'
~dK K=KC

To solve for a, take the logarithm of both sides, finding

In2

ln
dK'
~dK

(16.45)

(16.46)

The critical exponent is determined by a first derivative of the recursion relations at the
fixed point.

Appeal to the explicit recursion relation yields

a = 2-
In2

ln(ftanh47Q
= 0.1308. (16.47)

How do the results for Kc and the critical exponent compare with Lars Onsager's
exact results? Onsager derived the value Kc = 0.4407, and so the agreement on
location is gratifyingly good. In the exact solution, the heat capacity has only a
logarithmic singularity at Kc, varying there as — ln|T — Tc\. Such behavior is milder
than the power law that the approximation generates. Logarithmic singularities are rare

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	������������
�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
��'����������&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.017
http:/www.cambridge.org/core


16.6 First-order versus continuous 407

among critical phenomena, and so one should not be dismayed that the approximation
produced the much more common power law behavior.

Methods
From the preceding work, we can extract some methodological elements of the
renormalization group.

1. Iterate (in general).
2. Incorporate different length scales successively.
3. Derive recursion relations, for example, the pair of equations (16.24) and (16.28)

for the one-dimensional model.
4. Expect to approximate in item 3, for example, as in deriving the recursion relations

(16.36) and (16.37) of the two-dimensional model.
5. Iterate the recursion relations and look for notable behavior.
6. Wherever a divergence occurs, study the local behavior by a first-order Taylor

expansion. Thereby extract critical exponents.

The section and these items provide some insight into how the techniques of the
renormalization group are applied. A definitive prescription does not exist—at least
not yet. As Kenneth Wilson once remarked, "One cannot write a renormalization
group cookbook."

16.6 First-order versus continuous

By now we have amassed sufficient examples to make a crucial distinction among
phase transitions.

First consider heating a liquid at constant pressure; the pressure is specified to be
less than the pressure Pc of the critical point. A glance at figure 12.1 shows that the
point representing the system moves horizontally to the right through the liquid region,
pauses at the vaporization curve (while liquid becomes vapor), and then moves further
rightward in the vapor region. The chemical potential, /t(T9 P), changes continuously,
as illustrated in part (a) of figure 16.13. In particular, at the vaporization curve—a
coexistence curve—the chemical potentials of liquid and vapor are equal.

In contrast, the slope, (dju/dT)p, changes discontinuously at the vaporization curve,
as shown in part (b) of the figure. We can deduce that property as follows.

(1) The Gibbs-Duhem relation, equation (12.23), gives the slope as

8Tjr = -*• ( 1 6 ' 4 8 >

where s denotes the entropy per molecule.
(2) The latent heat of vaporization may be written [according to equation (12.8)] as

£vaP = T X (svap - shq). (16.49)
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(a)

dT

(b)

Figure 16.13 The behavior of the chemical potential and its first derivative under conditions of
constant pressure and P<PC. The tick mark denotes the temperature at which the system
crosses the coexistence curve (from liquid to vapor).

The latent heat is positive; so the inequalities sYap > snq > 0 hold. Thus the downward
slope of the JU versus T graph steepens discontinuously as the system passes through
the vaporization curve.

In 1933, the Austrian physicist Paul Ehrenfest proposed a classification of phase
transitions: if any nth derivative of the chemical potential is discontinuous (and is the
lowest discontinuous derivative), then the transition is called "wth order." According
to Ehrenfest's scheme, the liquid to vapor transition—when the inequality P<PC

holds—is a first-order transition.
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Succinctly and in general, if the phase transition has a nonzero latent heat, then the
transition is first order.

Now repeat the process: heat a liquid at constant pressure, but specify P = Pc

exactly. What can be qualitatively different? The latent heat of vaporization. Empiri-
cally, if one considers points on the vaporization curve successively closer to the
critical point, the latent heat becomes smaller. After all, one is approaching the point
where the liquid and vapor cease to differ. So, in the limit, no heating should be
required to convert liquid into vapor. Liquid and vapor come to have the same entropy
per molecule. Thus Lyap = 0 at the critical point, and so the slope (dju/dT)P is
continuous on the vaporization curve (at the critical point).

The phase transition is no longer first order. Indeed, the quantities that become
singular do so with power law singularities: as \T — Tc\ raised to some negative power.
There are no discontinuities per se, and the Ehrenfest classification fails to apply.
Rather, such transitions are best called continuous phase transitions. (To be sure, such
transitions are sometimes called "second order," a relic of a mistaken identification in
the 1930s and a usage to be shunned.)

For more detail about continuous phase transitions, consider the two-dimensional
Ising model of the previous section. The general structure in equation (16.27) enables
us to calculate the chemical potential as

The partial derivative is to be taken at constant T and constant external parameters; the
latter is here the external magnetic field, which is zero. [When the external field is
zero, the Gibbs and Helmholtz free energies coincide; so equation (16.50) follows also
from the relation G = /uN and equation (16.27).] Figure 16.11 and numerical analysis
show that both £,(K) and d^/dK are continuous at K = Kc. Hence /u(T) and dpt/dT
are continuous at T = Tc. The second derivative has a power law singularity but no
discontinuity. Thus the two-dimensional Ising model (solved approximately) provides
a continuous phase transition (from zero spontaneous magnetization to a nonzero
value).

In general, critical phenomena are associated with continuous phase transitions.

16.7 Universality

Two preliminaries come before we can turn to the topic of "universality."

Order parameter
The first of those preliminaries is the notion of an order parameter. The basic idea is to
identify a macroscopic quantity that changes from zero to nonzero during a continuous
phase transition. Called the order parameter, that quantity gives a succinct character-
ization of the system's macroscopic state. Some examples will illustrate this.
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410 16 Critical Phenomena

For a magnetic system, the high-temperature, paramagnetic regime exhibits no
spontaneous magnetization. In contrast, at low temperature, in the ferromagnetic
region—below the Curie temperature Tc—spontaneous magnetization exists and has
some nonzero value. The spontaneous magnetization provides an order parameter for a
magnetic system.

Is there an order parameter for the liquid-vapor system? Yes. At temperatures
below the critical point, liquid and vapor have different densities. Above TC9 there is
only a single, undifferentiated fluid, spatially uniform in density. Thus the density
difference, puq — pvap, provides an order parameter for a liquid-vapor system.

The order parameter pnq — pvap is obviously a scalar. In the Ising model, the spins
are constrained to point parallel or anti-parallel to a certain fixed axis, and so the
spontaneous magnetization is again a scalar. In a more realistic description of ferro-
magnetism, the spins may point in any direction. Then the spontaneous magnetization
is a vector and has three components.

Later, the number of components that an order parameter possesses will play a
significant role.

An order parameter can be defined for the superfluid transition in liquid 4He, for the
more complicated superfluid transition in liquid 3He, for a mixture of partially miscible
liquids, and for alloys.

Lattice gas
The second preliminary is the idea that the Ising model can help to explain the
behavior of a fluid. Specify that a monatomic classical fluid consists of Attorns
particles. The atoms may be distributed among a vapor phase, a liquid phase, or—
above Tc—merely a fluid phase. The classical analysis in section 13.1 can be extended
from one atom to Attorns- The partition function will have the structure

1 / 1 \N«™» C
Z = - — X exp[-(potential energy)/kT]d3x ld3x2 . . . . (16.51)

AWns- U t h I )v

The factorial incorporates (approximately) the indistinguishability of identical atoms,
as we learned in section 5.6. The integration over momenta produces the factor with
the thermal de Broglie wavelength. The remaining integral is the difficult one. The
integration goes over the conceivable positions of each atom within a box of volume V.
If there were no interatomic forces, the potential energy in the Boltzmann factor would
be zero, and the integral would be merely VNatoms. But, in fact, there are repulsive forces
(of short range) and attractive forces (of intermediate range).

For a tractable approximation, divide the volume V into small cubical cells, each the
size of an atom (more or less). Let there be A êiis of these tiny volumes. Each cell may
be empty or occupied by one atom. This approximation is called & lattice gas. Table
16.5 begins to display the correspondences with the three-dimensional Ising model.
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Table 16.5 The correspondences between a lattice gas and the
three-dimensional Ising model.

Lattice gas Ising model

Number of cells Number of spins
Cell occupied Spin up: o = +1
Cell empty Spin down: o = — 1

Potential energy of attractive forces — £o ( —^—) f -~:—

Number of atoms Number of up spins

Limiting occupancy to a maximum of one atom incorporates the short-range
repulsive forces. To acknowledge the attractive forces, one says that, if adjacent cells
are occupied, then the potential energy drops by — e& where £o is a positive constant.
This potential energy corresponds to a nearest neighbor attractive interaction. For
adjacent cells labeled / andy, the potential energy may be expressed as

[According to table 16.5, (a; + l) /2 equals 1 when cell / is occupied and equals zero
when the cell is empty. Therefore the entire expression in (16.52) is — 8Q when both
cells are occupied and is zero otherwise.] When multiplied out, the interaction energy
contains the product OjOj that is characteristic of the Ising model. The terms linear in
Oi or o j are analogous to the interaction of a magnetic moment with an external field.

Indeed, the only significant difference between the lattice gas and the Ising model is
a constraint. The number of occupied cells equals Attorns- Because occupancy
corresponds to spin up, one must impose the constraint that the number of up spins
equals Attorns- This can be done efficiently (in a good approximation), but we need not
go into that detail. It suffices to know that a lattice gas and an Ising model can be
matched up, item by item. That detail must carry over to their critical behavior. In
particular, both will have a phase transition, and the critical exponents will be the
same. For one system, the order parameter is the spontaneous magnetization; for the
other, the density difference pnq — pvap. The language will differ, but the mathematics
will be the same.

Universality classes
In 1970, a medley of investigations—both experimental and theoretical—led to the
suggestion that diverse physical systems have precisely the same critical behavior. The
phrase "same critical behavior" means that corresponding physical quantities (such as
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heat capacities or order parameters) have the same kinds of singularities and that the
critical exponents are numerically the same.

These are three determinants of critical behavior:

1. the dimensionality of the physical space,
2. the number of components of the order parameter, and (16.53)
3. the range of the interaction.

To start with, one characterizes the interaction range as either short or long. If
short—for example, if nearest neighbor interactions exist—then the mere characteriza-
tion "short range" usually suffices. If the range is long, then one needs to specify the
exponent in a presumed power-law decrease with separation r.

Physical systems that share common values of items 1 to 3 belong to the same
universality class. For example, a lattice gas and the three-dimensional Ising model are
in the universality class specified by

1. space dimensionality = 3,
2. components of order parameter = 1, and
3. range of interaction = short.

Moreover, the two models are faithful to the systems that they represent—at least near
the critical point—and so real gases and actual uniaxial ferromagnets are in the
universality class specified above. All have precisely the same critical exponents.

In short, all members of a universality class have the same critical exponents.

How universality arises
Return to figure 16.11. The figure was computed by iteration from starting values at
low K and high K. Recall that K = J/kT and that £ was defined in (16.27). That is
the background. Now think of the points in figure 16.11 as providing (l/iV)ln Z as a
function of J/kT at fixed J. High temperature means low K and hence appears at the
left-hand end. Cooling the system moves the system rightward. As figure 16.12
indicated, a phase transition occurs at a temperature Tc such that J/kTc = Kc —
0.506 . . . . We determined one critical exponent from the behavior of £,(K) near Tc,
and other exponents can be extracted there also. In short, the behavior of £(K) near Tc

determines a system's critical behavior.
To go on, note that the specific lattice in the two-dimensional Ising model—square,

honeycomb, or triangular—makes no difference to the critical exponents. How can
that be? Recall that our original renormalization procedure took the system, iteration
by iteration, from a point near Kc to low K (or to high K). Because Kc is a limit point,
many iterations are required to move from the starting value of K to a value where £
can be assessed reliably by approximation. Each iteration sums over alternate spins.
The process averages over the short-distance properties of any specific lattice and
removes their influence. Simply put, the largeness of the number of iterations washes
out the short-distance details.
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16.7 Universality 413

Analogously, systems as different as gases and ferromagnets can exhibit the same
critical exponents because the iterations average over short-distance details.

To be sure, uniaxial ferromagnets and isotropic ferromagnets, for example, fall into
different universality classes (because their order parameters have different numbers
of components: 1 versus 3). The number of coupling constants (each akin to K for the
simplest approximation to the Ising model) typically will differ, and the number will
exceed 1. The way in which the coupling constants change upon iteration will differ.
But, for each universality class, there is a characteristic pattern of change for the
coupling constants under iteration. Such a pattern is the more complicated analog of
the juncture region in figures 16.10 and 16.11. Moreover, certain rates of change are
the analogs of (dKf/dK)\K=Kc, and those rates determine the critical exponents. The
pattern near the critical point will be independent of details like the lattice structure
because the many iterations wash out such details.

One should not ask too much, however, of the argument that "multiple iterations
wash out the short-distance details." Although the specific lattice structure does not
affect the critical exponents, it does influence the critical temperature. A glance back
at table 16.3 substantiates the claim. The table displays accurate values of Tc for three
members of the universality class to which the three-dimensional Ising model belongs;
the critical temperatures are all different. Similarly, Tc changes with change of lattice
structure for the two members of the universality class to which the two-dimensional
Ising model belongs.

One might ask next, why are so many iterations required in the calculation? The
mathematical reason was noted several paragraphs back: a fixed point is a limit point
of many iterations. But what is the "physical" reason?

For the answer, we return to critical opalescence, the dramatic feature of a liquid-
vapor system near its critical point. Light is scattered by density fluctuations that occur
on a wide range of length scales. Both at the critical point and near it, local fluctuations
(from mean behavior) are correlated over an immense range of length scales. (The
phrase "local fluctuations" means fluctuations in the number of atoms in a region of
linear size equal to a few atomic diameters or—for a magnetic system—fluctuations in
the values of a few nearby spins.) Such a wide spectrum of length scales occurs for all
kinds of systems: liquid-vapor, magnetic, etc.

In a fluid, the long-range correlations produce the large-scale variations in density
that scatter the light. The large length scales themselves suggest that small-scale
details—such as lattice structure in a magnetic system—are irrelevant to critical
behavior. Moreover, the presence of correlations on many length scales requires many
iterations of a renormalization procedure before the separation of the remaining spins
(in a magnetic system) is so large that one can reliably approximate the partition
function and terminate the sequence of steps. Once again, the partition function near a
critical point emerges only after a large number of iterations. Now we see a physical
reason: local fluctuations (from mean behavior) are correlated over an immense range
of length scales.

Admittedly, the description above is sketchy, but it should provide a glimpse into
what is, in fact, a complicated analysis.
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414 16 Critical Phenomena

16.8 Essentials

1. A critical point is a point where the existence or coexistence of phases changes
qualitatively. (Often a critical point marks the termination of an existence or coexist-
ence curve.)

2. Near a critical point, fluctuations occur on a broad range of length scales.

3. Ferromagnetism is characterized by spontaneous magnetization (in domains and at
temperatures below the Curie point).

4. Near a critical point, many physical quantities become singular (or vanish) with a
power law behavior. The exponent in the power law is called a critical exponent.

5. The Ising model has —JOfOj as the basic nearest neighbor interaction. Positive J
favors parallel alignment of spins and hence can produce spontaneous magnetization.
The interaction has its origin in a combination of electrostatics and the Pauli exclusion
principle.

6. Mean field theory is an approximation scheme that reduces a coupled TV-particle
problem to a one-particle problem. For each particle, its interaction partners are
replaced by the average behavior of all the particles. To determine the average
behavior, a self-consistent equation is derived and solved. Mean field theory ignores
local fluctuations, and so it can be quantitatively accurate only when such fluctuations
are negligible.

7. The renormalization group uses iteration to incorporate different length scales
successively. One derives recursion relations (which are usually only approximate),
iterates them, and looks for fixed points, which represent a phase transition. A first-
order Taylor expansion about a fixed point provides the critical exponents.

8. With few exceptions, phase transitions split into two sets:

1. first-order transitions, which have a nonzero latent heat (usually) and a discontinu-
ity in a first derivative of the chemical potential;

2. continuous transitions, which have zero latent heat and power law singularities. (No
discontinuities precede the appearance of the power law singularities.)

Critical phenomena are associated with continuous phase transitions.

9. An order parameter is a (usually macroscopic) quantity that changes from zero to
nonzero during a continuous phase transition. It gives a concise characterization of the
system's macroscopic state. An order parameter may be a scalar, a vector, a complex
number, or a more complicated geometric object.
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Problems 415

10. Diverse physical systems have precisely the same critical exponents and fall into
the same universality class. The determinants of class are the dimensionality of the
physical space, the number of components of the order parameter, and the range of the
interaction.

Critical behavior is associated with fixed points. Consequently, many iterations are
required to calculate a partition function for a system near a critical point. The
numerous iterations wash out specific details such as lattice structure and hence lead to
the very existence of universality classes.

Further reading

The history of the Ising model (up to the middle 1960s) is ably narrated by Stephen G.
Brush in "History of the Lenz-Ising model," Rev. Mod. Phys. 39, 883-93 (1967).

Cyril Domb has contributed to our understanding of critical phenomena for over
fifty years and knows whereof he speaks in The Critical Point: A historical introduc-
tion to the modern theory of critical phenomena (Taylor and Francis, Bristol, PA,
1996).

Clear writing and good insights are to be found in Nigel Goldenfeld, Lectures on
Phase Transitions and the Renormalization Group (Addison-Wesley, Reading, MA,
1992). Another valuable perspective—although sometimes expressed too tersely—is
provided by J. M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford
University Press, New York, 1992).

Section 16.5 is based on the article, "Teaching the renormalization group," by
Humphrey J. Maris and Leo P. Kadanoff, Am. J. Phys. 46, 652-7 (1978).

Another development, also based on the paper by Maris and Kadanoff, is provided
by David Chandler, Introduction to Modern Statistical Mechanics (Oxford University
Press, New York, 1987). Chandler makes some different points and hence comple-
ments section 16.5.

Kenneth G. Wilson described his work for a popular audience in "Problems in
physics with many scales of length," Sci. Am. 241, 158-79 (August 1979).

Problems

1. Curie-Weiss law.

(a) Solve approximately for (a) from its mean field equation under the conditions
T ^ l.2Tc and m^B/kTc <C 1. The ensuing expression is called the Curie-Weiss
law.

(b) Compare your results with the analogous expression derived in section 5.3 for
paramagnets that have no mutual interactions. Does the mean field interaction
enhance or diminish the magnetization?
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416 16 Critical Phenomena

2. Mean field revisited. Here is another way to formulate the mean field theory of
section 16.4. Write

Gi = (a) + (at - (a)) = (a) + 6GU

use this form for each ot or a7 in the energy expression (16.6); and then ignore terms
in the product da (da j .

(a) Compute the partition function for a system of N spins, each having z nearest
neighbors. Note that the final form can be written as

/ , mBB*\N ( zJN(a)2

Z= 2cosh——- X exp -V kT ) rV 2kT

(b) The minima in the Helmholtz free energy, F = — kT In Z, as a function of (a) will
give the most probable values of (a). When you look for merely the extrema of F9

what equation for (a) emerges?

For parts (c) and (d), specify B = 0 and thereby study spontaneous magnetization.

(c) When T <TC, does (a) = 0 correspond to a local minimum or maximum? What
do you conclude about the "solution" (a) — 0?

(d) Graph F/NkT versus (a) for both T > Tc and T < Tc. What can you infer?
(e) Dropping the terms in dofda7 corresponds to ignoring correlations in the fluctua-

tions of nearest-neighbor spins (relative to the mean behavior). Under which
circumstances should this step be a good approximation? When a poor approxima-
tion?

3. Susceptibility in mean field theory. The derivative of the magnetization M with
respect to the external field B is called the susceptibility. Often the limit B —> 0 is
subsequently taken, and that limit yields the initial or zero-field susceptibility.

(a) Use mean field theory to study—near the critical point—the function

which is proportional to the initial susceptibility per spin.
(b) In particular, determine the critical exponents above and below Tc.
(c) Also, determine the amplitudes, that is, the multiplicative coefficients of the power

iawin|r-rc|/rc.
(d) Provide a graph of %(T) versus Tfor the interval around the critical temperature.
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4. Exact Ising model in one dimension. Specify a linear chain of N spins, open at the
ends, so that there are iV — 1 nearest-neighbor interactions. Factor the partition
function as

7(N K^ = \ e
KOiai X PK°2°I X • • •

The summation goes over the values ±1 for each spin. Start with spin number 1.
Regardless of what value a2 has, the sum over O\ — ±1 replaces the factor
exp(Ko\O2) by the factor (eK + e~K).

(a) Write out a justification for the claim in the preceding sentence. Then go on to
determine Z(N9 K) completely.

(b) In which ways does your result justify the relationship (16.35), which was used for
a closed chain?

(More about exact solutions to the one-dimensional model, given various boundary
conditions, can be found in Goldenfeld's book, cited in the chapter references.)

5. Fixed point in the two-dimensional Ising model. Equation (16.36) determines how
the coupling constant evolves under iteration. One can search for a fixed point, denoted

p.5 by asking whether that equation, now written as

has a solution.

(a) Search numerically for a solution.
(b) Then determine the numerical value o

6. Classify the phase transition associated with Bose-Einstein condensation (in an
ideal three-dimensional gas).

7. Latent heat and transition order. Specify a ferromagnet at temperature T <TC. Let
the external magnetic field be Bext — Bz, where B may be positive or negative.

(a) Consider the magnetization M in the two limits, B —> 0 through positive values
and through negative values. Is M continuous? Or does it have a finite disconti-
nuity? (You can analyze in terms of either the vector M or its component M • z
along the fixed direction z.)

(b) Classify the phase transition according to Ehrenfest's scheme.
(c) Do the two limits in part (a) have the same entropy per spin? Is there a nonzero

latent heat (for the transition between the two "phases")? Is a nonzero latent heat a
necessary or a sufficient condition for a first order transition?

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	������������
�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
��'����������&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511840227.017
http:/www.cambridge.org/core


418 16 Critical Phenomena

8. Ehrenfest's classification. Paul Ehrenfest actually stated his classification system in
terms of the Gibbs free energy G (per unit mass), rather than the chemical potential.

(a) If the physical system has only one species of particle, are formulations in terms of
G and ju entirely equivalent? Defend your response.

(b) Now consider a binary mixture, such as a mixture of 3He and 4He liquids or zinc
and copper atoms in an alloy like brass. Adopt the formulation in terms of the
Gibbs free energy. What can you infer if the first derivative of G with respect to T
is discontinuous?
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Epilogue

All too easily, a book on thermal physics leaves the impression of a collection of
applications: blackbody radiation, Debye theory, conduction electrons, van der Waals
equation, and so on. Those applications are vital; they connect the theoretical and
experimental worlds. Yet even more important is to come away from the book with a
sense of its underlying theoretical structure. What is its equivalent of the equation
F = ma in a mechanics text? Or of Maxwell's equations in a book on electromag-
netism?

In this book, the key theoretical ideas are the Second Law of Thermodynamics, the
canonical probability distribution, the partition function, and the chemical potential.
Of these, the Second Law of Thermodynamics comes first logically and is most nearly
the central organizing principle. The majority of the applications, however, found us
using the latter three items: PC¥f) = (l/Z)Qxp(—Ej/kT), Z, or pt. By comparison
with mechanics or electromagnetism, thermal physics suffers in that its most basic
principle, the Second Law of Thermodynamics, is separated by layers of secondary
theory from the physical applications. Perhaps that reflects the inherent difficulty of
coping with 1020 particles all at once, or perhaps the root lies in the diversity of topics
that can be addressed.

To emphasize the centrality of the Second Law, let me remind you that the evolution
of entropy to a maximum (for an isolated system) led us to the general definition of
temperature, l/T — (dS/dE)y. That relation was a key ingredient in our derivation of
the canonical probability distribution. The inequality AS ^ q/T, which is another
aspect of the Second Law, led us to the minimum property for the free energies. In
turn, the minimum property led to the equality of chemical potentials (suitably
weighted) in chemical and phase equilibria. Thus we can see the Second Law as the
underlying principle in those equilibria.

Altogether, this epilogue should help you to see the forest despite the trees. A glance
back to figure PI in the preface, where the book's logical structure is outlined in flow-
chart fashion, will help, too.

419
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Appendix A Physical and Mathematical Data

Physical constants

Boltzmann's constant

Planck's constant

Speed of light in vacuum
Electron charge (in magnitude)
Avogadro's number

Bohr magneton

Stefan—Boltzmann constant

Newtonian gravitational constant
Mass of electron
Mass of proton
Mass of hydrogen atom
Mass of helium atom (4He)
Mass of diatomic nitrogen
Mass of the sun
Radius of the sun
Radius of the Earth's orbit (mean)

k =_ / 1 . 3 8 1 X 10"23 J/K
0.8617 X 10"4 eV/K

'6.626 X 10" 3 4 J . s
4.136 X 10"1 5eV-s

c = 2.998 X 108 m/s
e= 1.602 X 10"19 coulomb
NA = 6 mi X 1023 items per mole

eft
2mt

= 9.274 X 10"24 J/tesla

G = 6.673 X lO"11 meter3/(kg • s2)
0.9109 X 10-30 kg

= 1.673 X 10"27kg
m
mp

mH = 1.674 X 10"27kg
m4He = 6.649 X lO"2 7 kg
mN2 = 4.653 X 10- 2 6 kg
msmi= 1.989 X 1 0 3 0 kg
^sun = 6.960 X 108 meters
ŝun to Earth = 1-496 X 1011 meters

Conversions and equivalencies
1 electron volt (eV) corresponds to 1.602 X 10"19 joule.
1 atmosphere corresponds to 1.013 X 105 N/m2.
1 calorie (20 °C) corresponds to 4.182 joules.

Convenient typical values

4lue-green = 5 X 10"7 m and (/^blue-green = 2 -5 eV.
-̂orange = 6 X 10"7 m and ^orange = 5 X 1014 Hz.
*T|r=300K = 0.0259 eV - 1/40 eV.
Room temperature = 273 + 20 = 293 K ^ 300 K.

420
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A Physical and Mathematical Data 421

Integrals of the form \e~ax2xn dx
Integrals of the form

POO

I(n, d)= e~axlxndx, (Al)
Jo

where a is a positive constant and n is zero or a positive integer, occur frequently in
physics, particularly in classical thermal physics. Only for two values of n, namely,
n — 0 and n = 1, need one work out the integrals in detail. All others follow by
differentiation with respect to the parameter a, as follows:

8l(n, a)
da

• = [ (-x2)e~ax2xn dx = -I(n + 2, a).
Jo

(A2)

Case of n = 1. When n = 1, the integrand contains the differential of the exponent
(within a constant factor), and so the integral is easy:

/(I, a) = ^e~ax2xdx = - — I"*\-ax2d(-ax2) = —. (A3)
Jo 2<2Jo 2a

Case of n — 0. The mathematician Pierre Simon, Marquis de Laplace, devised a
neat trick for evaluating the integral

7(0, a) - f e~axl dx. (A4)
Jo

Square both sides; replace the integration variable x in one integral by the variable y;
and then construe the right-hand side as an integral over the positive quadrant of the
x-y plane. Going to polar coordinates in that plane, where r — \Jx2 + y1, one splits
the area into quarter-circle annular regions and finds

f°° IT
[7(0, a)]2 = e~ar2\ Xlitrdr^—. (A5)

Jo 4a

Then

K0, a) = y ^ . (A6)

Table Al displays the results for n running from 0 to 5.

Table Al Integrals of the form
2

7(0, a) = \sf7ta-x

7(2, a) = \^ta-3

7(4, a) = l^Jna-5

I2 I(\,a) = \a-1

I2 I(3,a) = ±a-2

/2 7(5, a) = a~3
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422 A Physical and Mathematical Data

Integrals of the form Jxp~7/fex - 1) dx
Provided p > 1, the integral cited above can be rearranged for evaluation by converting
the awkward two-term denominator into a series of monomial expressions, as follows.

f°° xp~l f°°
dx = e~x(l - e~x)-lxp-1 dxJ o e x - l J o

 V ;

OO /»OO

e-(m+l)xxP-l dx (A7)
OO /»O

dy = l&p) X T(p).

The step to a series uses a binomial expansion or recognizes the sum of a geometric
series. The substitutions n — m + 1 and y — nx reduce all the integrals to a single
integral, the gamma function: T{p). The remaining sum is the Riemann zeta function:
£(p). For a generic value of p, neither function can be evaluated exactly or in closed
form, but exact values are known for some of the ^-values that concern us, as table A2
shows.

The logarithm of 1 + a
There are several ways to justify the approximation ln(l + a) = a when a is small (in
magnitude) relative to 1.

First, one may turn to the integral expression for a natural logarithm and reason as
follows:

Table A2 Integrals of the form

p

3
2

5
2
3

4

6

T(p)

~2~

3JT1/2

4
2

6

120

Sip)

2.612

1.341

1.202
jt4

90

jt6

945

TipKip)

JT1/2 1.306

jt1'21.006

2.404

15
8;r6

63
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A Physical and Mathematical Data 423

rl+a i cl+a i
ln(l + a) =\ -dy^\ - dy = (1 + a) - 1 = a. (A8)

Ji y Ji i
The second step is permitted when 0 < \a\ <C 1, so that even 1/(1 + a) = 1.

Second, one may make a Taylor expansion of the logarithm about the value 1 for its
argument:

fJlnxl _ fl"
L dx \x=i U. (A9)

The derivative of lnx with respect to x is simply 1/x, and so the second equality
follows from the first.

Third, one may use a hand calculator to tabulate ln(l + a) for small values of a and
find the approximation as a numerical fact, provided \a\ <0.01 or so. Of course, the
smaller the magnitude of a, the better the approximation. Table A3 illustrates these
facts.

Approximating N!
The function AH consists of Af factors that range in size from 1 to N\

N \ = I X 2 X 3 X . . - X N . (A10)

For a first approximation when iV is large, take the "average" size of a factor and
multiply that average together N times:

^NN2~N, (All)

provided N ^> 1. Using the arithmetic average might raise some doubts, but—we shall
find—this approximation captures the essentials.

Our needs in thermal physics will be met by a good approximation to the logarithm
of N\9 and so we focus on In N\. The logarithm of a product is a sum of logarithms,
and we can approximate the sum by an integral, as follows.

Table A3 Numerical approximation ln(l + a) when
a is small relative to 1.

X

1.0
1.1
1.01
1.001
1.0001

lnx

0
0.0953
0.009 95
0.000 9995
0.000099 995

In x rounded off

0
0.1
0.01
0.001
0.0001
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424 A Physical and Mathematical Data

lniNT! = ln ( l X 2 X 3 X • • • X N) = l n l + l n 2 + • • • + l n t f

eN
x)\x

xZ? (A12)

Because the term In 1 in the first line is numerically zero, the sum has only N — I non-
zero terms. It suffices to integrate lnx over the N — 1 unit intervals between x = 1 and
x = N. A term of order 1 is ignored in the step to the last line. The final expression is
an excellent approximation to In Nl when N ^> 1.

What about N\ itself? We carry on and rearrange equation (A 12) as

lnNl^NlnN-N = NQnN- lne) = \n(NNe~N). (A13)

Logarithms are remarkably insensitive to modest changes in their arguments, and so
we can not assert a near-equality for the two arguments. Nonetheless, to some lesser
accuracy, we may equate the arguments and find

Nl ^ NNe~N. (A14)

Because e = 2.7, the present approximation sharpens our first approximation—but
without making any radical change.

An even better approximation is provided by the expression

Nl 9* VlJzN X NNe~N, (A15)

the first term in Stirling's approximation (which is usually derived from an integral
representation of Nl).

Differentials
Consider a function / of two spatial variables, x and y: f = / (x, y). By how much
does the function / change in value when we shift attention from location (x, y) to
location (x + Ax, y + Ay)? Figure Al illustrates the context.

The shift in location is given by the vector

Ar = Axi + Ayy, (A16)

where the circumflex (or "hat") denotes a unit vector along the corresponding
direction. The gradient of the function / i s

g r a d / = f * + i * ' (A17)
when expressed in Cartesian coordinates. The vector grad/ points in the direction that
gives the maximal spatial rate of change o f / Moreover, the magnitude of grad/ is
equal to that maximal spatial rate of change. (In a direction perpendicular to grad/,
the function / does not change at all.)

To first order in the shift Ar, the change A / is given by the product of |grad/| times

�''$��***���!�%�����#%���#%��'�%!&���''$����+��#��#%����������������	�����������
�#*" #������%#!��''$��***���!�%�����#%���#%����"�)�%&�',�#����%*�����#"�����������
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y-axis grad//

x-axis

Figure Al The vectors. Only the component of Ar along grad/ contributes to the change in the
value of/(to first order).

the component of Ar along grad/ because only that component matters. Thus A/ is
given by the scalar product of grad/ and Ar:

A/ = / ( r + A r ) - / ( r )

= (grad/) • Ar + higher order terms

= -r- Ax + -7T- Ay + higher order terms.
dx dy

(A18)

In effect, equation (A18) is the first portion in a Taylor's series (in two dimensions).
Extension to three or more dimensions in Cartesian coordinates follows the same
pattern: a sum of terms whose form is "partial derivative times change in the
corresponding independent variable."

The general pattern holds true even if the independent variables are not spatial
variables. Moreover, in the main text, all the A's are sufficiently small that only terms
linear in A's need be retained.
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Appendix B Examples of Estimating Occupation
Numbers

Fermions
Suppose there are only three single-particle states (rather than the typical infinite
number) and only two particles: N = 2. Table Bl shows the three full states Wj and
the corresponding sets of occupation numbers (given by the rows in the table). Now
we use the second line of (8.7) to compute (n\) by summing over the admissible sets
of occupation numbers. First take n\ to be zero and sum over the admissible values of
«2 and 723. Then take rt\ to be 1 and do likewise. Those steps produce the result

i\ n2 m

subject to n\ + ni + «3 = 2

— * mp-(0+e2+e3)/kT , i -(f
- Z ( 2 ) L U g + l e

Looking at the second and last columns of table Bl, we see that the outcome is exactly
what we would have gotten by using the first line in equation (8.7). For large values of
N, these direct methods are utterly impractical, and some special technique is needed.

Bosons
Again we specify N = 2 and only three single-particle states. Table B2 indicates that
there are now six states W7 and the corresponding sets of occupation numbers. To
evaluate the boson analog of equation (8.7), sum over all sets of occupation numbers.

Table Bl States and occupation numbers for
two fermions, given only three single-particle
states.

*Pi 0
^ 2 1
\|f 1

»2

1
0
1

m
l
l
0

Ej

82+ £3
Si +£3
£l +£2
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B Examples of Estimating Occupation Numbers 427

Table B2 States and occupation numbers for
two bosons, given only three single-particle
states.

Wi 0
W2 0
W3 0
W4 1
w5 1
x^f 2

n2

0
1
2
0
1
0

m
2
1
0
1
0
0

2e3

£2+£3
2£2

£l +£3
£l + £2

First take n\ to be zero and sum over the admissible values of ni and n^. Next, take n\
to be 1 and do likewise. Finally, take n\ to be 2 and sum over the admissible values of
the other nas:

n\ «2 «3

subject to n\ 4- #2 + n3 — 2

_ _JL_[O + 0 -I- 0 + le
Z(2)

Again, comparison with the second and last columns of table B2 shows that summing
over sets of occupation numbers correctly evaluates (n\).
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Appendix C The Framework of Probability
Theory

Section 5.1 introduced the two schools of thought on what a probability means. This
appendix carries on from that introduction and develops the framework of probability
theory.

We noted that probabilities always arise in a context. The notation should reflect that
fact. To express the idea, "the probability that a four appears, given that I roll a die
once, is 1/6," we write succinctly

P(4 appears |roll once) = \. (Cl)

The vertical line is read as "given that."

The two fundamental rules
Two fundamental rules govern the manipulation of probabilities. Dice and cards
provide an easy way to introduce the rules by way of examples; then I will generalize
the rules and later elaborate on why the generalizations are justified.

1. Negation ("not")

The probability that something does not occur is determined (numerically) by the
probability that it does occur. For example, we can reason that

tries when 4 does not appear
P(4 does not appear|roll once) =

all tries
all tries — those in which 4 appears

all tries
= 1 - P(4 appears|roll once). (C2)

The generalization is this:

P(not A|B) = 1 - P(A|B), (C3)

where A and B denote verbal statements.

2. Conjunction ("and" written as "& ")

The probability that both of two statements are true can be decomposed into separate
probabilities. For an example, we ask, what is the probability of picking the queen of

428
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C The Framework of Probability Theory 429

clubs when we pick one card from a well-shuffled deck? We might reason that there is
only one queen of clubs in 52 cards, and so

P(gQt queen of clubs|pick one card) = ™. (C4)

Alternatively, we might look at figure Cl and note that a card's being the queen of
clubs is equivalent to the card's being a club and being a queen simultaneously. Then
we might reason that 1/4 of the cards are clubs and that, of the clubs themselves, only
one in 13 is a queen. Thus we would compute the probability of picking the queen of
clubs as | X ~ — ™, which agrees with our previous reasoning. Symbolically, we
would write

.P(get queen of clubsjpick one card)

— P(card is club & card is queen|pick one card)

= P(card is club|pick one card) X P(card is queen|pick one card & card is club)

= 4 X 13 = 52'

The abstract generalization is

P(A & B|C) = P(A|C) X P(B\C & A). (C6)

Note that, for one of the probabilities on the right-hand side, the "given" condition
is more than just the original statement C. The more informative and restrictive
"given," C & A, can make a decisive difference. For an example, let A = "a 3
appears," B — "an even number appears," and C = "I roll a die once." Then
P(A & B|C) = 0 because 3 is not an even number, and so the conjunction is
impossible. For use in the expansion (C6), one needs the probability

P(B|C & A) = P(an even number appears]I roll a die once & a 3 appears)

where the zero arises because an even number cannot appear if a 3 appears when I roll
a die only once. Thus the right-hand side of equation (C6) has a zero factor, implying
that the left-hand side equals zero, as it should. In contrast, the probability ,P(B|C), in

Clubs: [Ace 2 3 4 _ 5 6 7 89 10 HjT) K]

Hearts: Ace 2 ... Q

Diamonds: Ace 2 ... Q

Spades: Ace 2 ... Q

Figure Cl Picking the queen of clubs.
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430 C The Framework of Probability Theory

which the given is merely C, is ^ and hence is nonzero. Using the latter probability by
mistake would lead to inconsistency and error.

Equations (C3) and (C6) are the two fundamental rules of probability theory. To
arrive at the rules, our development used the frequency version of what a probability
means. Remarkably, the same rules emerge if one adopts the degree of belief
interpretation from the very beginning. In a paper published in 1946, "Probability,
frequency, and reasonable expectation," Richard T. Cox gave a compelling demonstra-
tion of that assertion. Cox's mathematical starting point was the following pair of
modest assumptions:

(a) the probability .P(not A|B) is some function (presently unknown) of the probability
P(A|B).

(b) the probability P(A & B|C) is some other function (also presently unknown) of
the probabilities P(A|C) and P(B|C & A).

To determine the two unknown functions, Cox required that the functions yield rules
that are consistent with ordinary logical reasoning. For example, because a double
negative is equivalent to a positive statement, the functions must yield the relation
P(not (not A)|B) = P(A|B). After constructing several such constraints, Cox sought
the most general functions that satisfy the constraints. The solution, Cox discovered, is
unique. Aside from the freedom to reckon probabilities on different scales (0 to 100
percent, say, rather than 0 to 1), there is only one consistent set of rules for manipulat-
ing probabilities. Regardless of whether one construes a probability as a relative
frequency or as a rational degree of belief, one must use precisely the rules (C3) and
(C6).

The rule for "or"
The probability that either A or B or both statements are true can be decomposed into
other, related probabilities. The rule for decomposition is derivable from the two
fundamental rules, but we will follow a shorter route: an example and then general-
ization.

Suppose you are picking a single card from a well-shuffled deck. What is the
probability that the card is a club or a queen? With the aid of figure C2, we reason that

Clubs:

Hearts:

Diamonds:

Spades:

Figure C2 Picking a queen or a club.

Ace

Ace

Ace

Ace

2 3 4 5 6 7 1

2 ...

2 ...

2 ...

I 9 10 J Q

Q

Q

Q

K
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13 clubs + 4 queens — 1 queen of clubs
P(club or queen | take 1 card from deck) =

52

= P(club|take 1 card) + P(queen|take 1 card) — P(club & queen|take 1 card).
(C7)

In the first line, we must subtract 1 queen of clubs because the queen of clubs appears
among both the 13 clubs and the 4 queens; thus it has appeared twice already in the
tally. Because the queen of clubs should appear only once (altogether), we must
explicitly subtract 1 queen of clubs.

The generalization, known as the rule for disjunction, is

P(A or B|C) = P(A|C) + P(B|C) - P(A & B|C). (C8)

In the next subsection, we explore some consequences of this rule.

Mutually exclusive and exhaustive statements
If the statements A and B cannot both be true, given the context C, one says that the
statements A and B are mutually exclusive, given C. The probability P(A & B|C) is
zero, and equation (C8) simplifies to

P(A or B|C) = P(A|C) + P(B|C) (C9)

when A and B are mutually exclusive, given C.
For an example, again let A = "a 3 appears," B = "an even number appears," and

C = "I roll a die once." Then, upon going all the way back to equation (C8), we have

P(a 3 appears or an even number appears | roll once)

= P(a 3 appears | roll once) + P(an even number appears | roll once)

— P(a 3 appears & an even number appears | roll once)

= 1 + 1 - 0 = 4. (CIO)

If at least one of the statements Ai, A2, . . . , An that appear in a disjunction, Ai or
A2 or . . . or An, must be true, given the context C, then the corresponding probability
i s l :

P(Ai or A2 or . . . or AW|C) - 1. (Cll)

Moreover, one says that the statements in the set {Ai, A2, . . . , An} are exhaustive,
given C.
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432 C The Framework of Probability Theory

If the statements Ai, A2, . . . , An are both mutually exclusive and exhaustive, given
C, then equation (Cl 1) and repeated use of equation (C8) imply

P(Ai or A2 or . . . or AW|C) = ] T P(Aj\C) = 1.

For example, if the statements have the form Ay — "the number j appears" and if the
context C is that you roll a die once, then each A7 = | . Letting j run from 1 to 6 in
equation (C12), we get the perhaps-familiar result that the sum of the probabilities
yields 1. Note, however, that a sum equal to 1 requires (in general) that the statements
be mutually exclusive and exhaustive in the given context.

For some further perspective on the result in equation (C12), remember that, given
the statement C, the exhaustive property means that at least one of the statements Aj
must be true. The mutual exclusion property means that no more than one of the
statements may be true. Given the context, one but only one of the statements Aj is
true, though we may not know which. That the probabilities sum up to unity, the
number used to represent certainty, is then natural.

The expectation value estimate
Probabilities can provide us with estimates of physical quantities. Consider 40
paramagnetic particles that may, individually, have their magnetic moments parallel or
anti-parallel to an external magnetic field. The net moment parallel to the field may be
netN — 40, 38, 36, . . . , or —40 times the value m^ of a single magnetic moment.
(Section 5.3 sets the physical context more fully; the preceding sentences may suffice
for here.) Figure C3 displays the set of probabilities P(netN\C\ where C denotes the

i

P(netN\C) ° ' 1 2

0.1

0.08

0.06

0.04

0.02

• •

" •

" •

-40 -20 20 40
netN

Figure C3 Probabilities in thermal equilibrium: P(netN\C) for 40 particles. If the number of
particles were much larger, the peak would be significantly narrower relative to the full range.
(Note. The probabilities were computed from the canonical probability distribution, which is
derived in section 5.2).
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context sketched here and in section 5.3. Properly, to the left of the "given that" sign
should appear the statement, "The net moment parallel to the field is netN" but using
merely the variable netN provides brevity and is sufficient.

To estimate the value of netN, one could take the value that has the largest
probability; inspection of figure C3 gives the estimate, netN —Yl. Alternatively, one
could consider each possible netN, weight its value by its probability of occurrence,
and sum the terms:

40
{netN) = ] T netNP(netN\C). (C13)

/ie/^=-40

Such an estimate is called an expectation value (or an expectation value estimate) and
is denoted by angular brackets or an overbar. In the present situation, explicit summa-
tion yields {netN) = 11.65. When thermal physics gives probabilities for a macro-
scopic property of a macroscopic system, the distribution is generally extremely
narrow relative to its potential range. Then the expectation value estimate gives a
reliable estimate and is often relatively easy to compute. For these reasons, we will use
it extensively.

If the probabilities that enter an expectation value can be construed as frequencies in
a long sequence of observations, then the expectation value itself can be construed as a
simple arithmetic average over many observations. Such a situation might arise in an
accelerator experiment in which many protons are shot at a beryllium target and the
energy loss of each scattered proton is recorded. An expectation value calculated from
quantum theory may be able to predict the average energy loss.

If, however, the situation is typical of a low temperature physics lab—perhaps a lab
where the magnetic properties of liquid 3He are under study—then an experiment is
repeated only a few times. If one adopts the rational degree-of-belief interpretation,
then the theoretical probabilities that we can calculate in thermal physics represent
numerically the degree of conviction one should have in various possible values of a
component of total magnetic moment, say. The expectation value estimate gives a
weighted average over those possible values, where the weights are proportional to the
strength of the conviction one should have, given the context (such as temperature and
external magnetic field).

The narrowness of a probability distribution (for magnetic moment, say) arises
because so many helium atoms contribute to the macroscopic property. What is large
relative to 100 is not the number of experiments performed nor the number of helium
samples that physicists literally work with. Rather, to repeat, it is the number of helium
atoms in even one sample, perhaps 1020 atoms. In a sense, the law of averages operates
within the macroscopic system. That enables us to make accurate predictions when we
know a mere handful of experimental parameters.

Adherents of the frequency school will typically ask that one imagine a great many
replicas of the actual experiment on helium. They will calculate a simple arithmetic
average based on that collection of replicas and will then take the average as represen-
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434 C The Framework of Probability Theory

tative of what the single system in the lab will do. This approach is called the ensemble
method. I will be candid and say that it seems artificial to me, but the practical
conclusions are virtually identical to those drawn from the degree-of-belief inter-
pretation.

A reduction procedure
In chapter 13, we derive a probability distribution for a gas molecule's velocity. Once
we have that, we ought to be able to compute a probability distribution for the
magnitude alone of the velocity, regardless of direction. To accomplish that reduction,
we use a procedure that we derive now in some generality.

Suppose we have a set of probabilities {P(Aj & B|C)}, where the index j runs from
1 to n. What we really want, however, is merely the probability P(B|C). To extract the
latter, we sum over the index j and use equation (C6):

j & B|C) = £ > ( B | C ) P ( A , | C & B)

The step to the last line follows from equation (C12) provided the statements
Ai, A2, . . . , An are exhaustive and mutually exclusive, given the conjunctive state-
ment C & B. [At the cost of a much more elaborate analysis, one can show that the
conclusion in equation (C14) follows also if the statements Ai, A2, . . . , An are
exhaustive and mutually exclusive, given merely the original context C ]

The common sense interpretation of equation (C14) is that one "gets rid of" the
statement A7 in P(Aj & B|C) by summing over all the possibilities for Aj. In chapter
13, we sum (or, really, integrate) over all directions for the molecular velocity in order
to compute a probability distribution for the speed alone.

References for further exploration of probability theory appear at the end of
chapter 5.
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Appendix D Qualitative Perspectives on the
van der Waals Equation

The van der Waals equation, derived as equation (12.49), is reproduced here:

This appendix offers further qualitative understanding of how the attractive and
repulsive intermolecular forces affect the pressure.

Attraction
The attractive force reduces the pressure. A common line of reasoning proceeds as
follows. When a molecule is deep in the interior of the gas, it is surrounded by a (more
or less) spherically symmetric distribution of nearby molecules, and so it experiences
no net force, on the average. When a molecule approaches the wall, however, numer-
ous other molecules pull it away from the wall, but only a few pull it toward the wall
(because few molecules lie between it and the wall). The molecule experiences a net
pull away from the wall and toward the interior. The pull tends to diminish the
momentum with which the molecule hits the wall and hence diminishes the pressure.
The inward pull on a molecule will be proportional to the number of molecules behind
it (which pull on it), and so the inward pull will be proportional to N/ V. The number
of collisions per second with the wall (by any molecules moving toward the wall) is
proportional to N/V, as we reasoned in section 1.2. Thus the attractive force should
reduce the pressure by a term proportional to (N/V)2, which is precisely what
emerged in equations (12.49) and (Dl).

There is a flaw, however, in this common line of reasoning. The classical canonical
probability distribution, as developed in chapter 13, implies that

\m(v2) = \kT (D2)

everywhere in the gas, regardless of intermolecular forces. The estimated translational
kinetic energy is \kT both deep in the interior and very near the wall. Moreover, the
distribution of molecular velocities is predicted to be isotropic everywhere. One needs
to look at some aspect other than momentum for a tenable qualitative explanation.

Toward that end, we return to kinetic theory and to equation (1.6). For our purposes,
that equation is best written as

435
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436 D Qualitative Perspectives on the van der Waals Equation

• 2 v W n 2 \ v ( n u m b e r density \
3 2 x ' \ very near the "'o11 '

The kinetic energy factor remains | £ r , and so the effect of the attractive intermole-
cular forces must arise from a change in the number density very near the wall, a
change relative to the over-all number density N/ V.

Several paragraphs back, we noted that a molecule near the wall experiences a pull
directed toward the interior. That pull will reduce the number density, as follows.

We can model the variation in number density with the "isothermal atmosphere"
that we derived in chapter 7. Equation (7.7) can be written

( number density \ _ f number density \
y at height H J ~ y at height zero J

„ /number density\ / mgH_\
" V at height zero J X V kT J9 ( }

provided mgH/kT <C 1. The gravitational force points from height H toward height
zero; so height H corresponds to the wall, and height zero to the gaseous interior. What
corresponds to the change in gravitational potential energy, mgH? It is a change in
intermodular potential energy associated with the attractive forces. Earlier, we ex-
pressed the potential energy of a single molecule as —a X (N/ V) when the molecule is
deep in the interior. When the molecule is close to the wall and fewer molecules attract
it, its potential energy will have increased by an amount of order a X (N/ V). Precisely
how much is hard to say. Nonetheless, being guided by equation (D4), we can write

/ number density \ ^ N_ |~ _ order of a X (N/V)\
\VQF/ near the wally = V [ kT \

Substituting this form into equation (D3), we find

P s kT!l x [l - order of (^-)]. (D6)

If you mentally multiply out the factors, you will see that the pressure reduction term
in the van der Waals equation, (Dl), can indeed be understood as arising from a
density reduction near the wall.

Repulsion
Now we ask how the repulsive forces can affect the number density. Represent the
molecules by hard spheres of radius r$. Figure Dl shows two wafer-like regions of
space; the thickness of each is a small fraction of r$. The first region is in the interior;
the second has its upper edge at a distance ro — e from the wall (where s is infinitesimal).
Parts of these regions are excluded from occupancy by the center of any molecule
because the exclusion spheres of nearby molecules extend into the region. For the
interior region, the centers of such nearby molecules may lie on either side (or within the
region). For the "near wall" region, molecular centers cannot fit between the wall and
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D Qualitative Perspectives on the van der Waals Equation 437

Near wall

n, O O
Interior

Figure Dl Wafer-like geometric volumes in the interior and near the wall. Seen edge-on, the
volumes appear as strips. The circles represent molecular surfaces of radius r$. The exclusion
spheres (that is, spheres from which other molecular centers are excluded) have radii twice as
large.

the region itself; only molecules with centers below (or within) the region can exclude
other molecules. In essence, for the near wall region, only half as much volume is
excluded as for the interior region. The number density in the near wall region should be
higher than average; that enhances the collision rate and hence the pressure.

At first reading, you may wonder, how can a region of less excluded volume have
higher number density? The key lies in the thinness of the regions. Almost all the
"excluding" is done by molecules whose centers lie outside the regions.

For a quantitative assessment, we can reason as follows. According to section 12.9,
a single molecule excludes the center of other molecules from a volume 8i>o> where
Vo = (4JT/3)TQ is the volume of a single molecule. In the interior, a geometric volume
Kgeo provides an accessible volume Facc given by Kacc = Pgeo — 8^0 x (N/V)Vgeo. To
understand this relationship, first take a large geometric volume—large in all direc-
tions—so that most of the excluded volume arises from molecules whose centers and
exclusion spheres lie within the geometric volume. The number of such molecules is
the number density, N/V, times VgQ0. Each molecule excludes a volume Svo. The full
product gives the total excluded volume, and the difference between it and Fgeo is the
volume accessible to the center of another molecule.

By the homogeneity of the interior—on the average—the relationship between Facc

and Fgeo applies to an interior volume of any size. In particular, it must apply to the
wafer-like interior volume of figure Dl.

Very near the wall (in the sense of figure Dl), the excluded volume would be only
half as large (because molecules can intrude from only one side, not from two). Thus
the accessible volume near the wall is enhanced by the factor 1 + 4v$ X (N/ V). In a
dilute gas, the probability that a molecular center is within a given geometric region is
proportional to the accessible volume. Thus the number density near the wall is
enhanced by the factor 1 + AVQ X (N/ V). This factor implies that the coefficient b in
van der Waals equation is approximately Av$.

The approach in this appendix was espoused by Arnold Sommerfeld, Lectures on
Theoretical Physics, Vol. 5: Thermodynamics and Statistical Mechanics (Academic
Press, New York, 1964) and by Fritz Sauter, Ann. Phys. (Leipzig) 6, 59-66 (1949).
The reasoning for the effect of repulsion goes back to Ludwig Boltzmann, Lectures on
Gas Theory (University of California Press, 1964), Part 2, Sections 3 to 5, first
published in the last years of the nineteenth century.
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absorptivity, defined, 124
adiabatic, defined, 13
adiabatic relation, for

classical ideal gas,
14-16

angular brackets, defined,
6,95

Avogadro's number, 13

black, defined for surface,
123

BEC, defined, 207
Bohr magneton, defined, 94
Boltzmann factor, defined,

93
Boltzmann's constant, 6
Bose-Einstein

condensation:
defined, 202-3
experiments, 205-9
in a dilute gas, 207-9
theory, 199-205

Bose temperature, defined,
201-3

boson, defined, 168

canonical probability
distribution, derived,
91-4

Carnot cycle:
defined, 51-2
efficiency of, 54-5

Celsius, unit, 6
chemical equilibrium:

conditions for, 246-7
derived from kinetic

theory, 244-6

derived from minimum
property, 246-50

influences that determine,
260-2

in semi-classical ideal
gases, 247-50

chemical potential:
at absolute zero, 226-8
defined with Helmholtz

free energy, 152-3
early synopsis, 155
equivalent expressions

for, 226, 231, 239
for adsorbed gas, 157-9
for fermions at low

temperature, 186-8
for ideal gas, 153, 157
for photon gas, 228-9
for semi-classical ideal

gas, 228
functional dependence of,

232-3
from Gibbs free energy,

231
lemma for computing,

156-7
meaning of, 153-5
understanding numerical

values of, 226-30
parallel between

temperature and, 154
when creation and

annihilation occur,
262-4

classical ideal gas: see ideal
gas, classical

classical limit, of canonical

probability
distribution, 306-14

Clausius-Clapeyron
equation:

derived, 280-1
and vaporization curve,

281-2
closed system, defined, 222
CM, defined, 8
conduction:

as a heating process, 1-3
equation of thermal,

369-71
thermal, studied, 367-75

convection, 3
cooling:

by adiabatic compression,
282-9

by adiabatic
demagnetization,
331-7

see also heating
coupling constant, defined,

398
critical exponents, defined,

388-9
critical opalescence, 383
critical phenomena, defined,

384
critical point:

defined in general, 384
for liquid and vapor,

211-12

Debye T3 law, derived,
134-7

438
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Debye temperature, defined,
134

Debye theory, 130-9
degenerate, defined, 192
density of modes:

defined, 117
for electromagnetic

modes, 118-9
for sound waves, 133-4

density of states:
defined, 75
for entire system, 79-80
for single spinless

particle, 75-9
for single particle with

spin, 176-7
diatomic molecule, 250-7,

318-20
diffusion equation, derived,

369-71
domain, magnetic, defined,

385

efficiency:
of Carnot cycle, 54-5
maximum, 55-9
of Otto cycle, 65

Einstein model, 131-2, 145
emissivity, defined, 125
energy:

average translational
kinetic, 7-8, 177-8

internal, defined, 8
modes of transfer of, 1-3
per particle or mode,

classically, 348-9
zero point, 316-17

enthalpy:
and latent heat, 274
defined, 242, 274
quantities derivable

from, 242
entropy:

additivity of, 42
defined, 34
disorder and, 44-5
energy input by heating

and, 34-5, 41-4
evolution and, 128-30
etymology of, 34
heat capacity and, 62
heating and, 349-50
of ideal gas, 104, 107
of radiation, 122-3
paramagnetism and,

329-31
probabilities and, 327-9
variation with

temperature, 39-41
rapid change and, 60-2
when canonical p.d.

applies, 100-1
equilibrium constant:

defined, 245, 249
for semi-classical ideal

gases, 249
equipartition theorem,

derived, 314-16
exchange interaction,

defined, 389-90
expectation value,

defined, 95
expectation value estimate,

defined, 95
extensive variable:

defined, 105, 230
examples: 230

external parameter, 2
extremum principles:

for F and G, 233-4
for S, F and G, 237

fermion, defined, 168
Fermi energy, defined, 184
Fermi energy, calculated,

184-5
Fermi function, defined, 183
Fermi temperature, defined,

185
ferromagnetism, 385-8
First Law of

Thermodynamics,
defined, 8-10

Fourier's equation, derived,
369-71

fusion curve: see melting
curve

gas constant R, 13
Gibbs-Duhem relation,

derived, 279-80
Gibbs free energy:

chemical potential and,
231

defined, 230-1
quantities derivable from,

231
generalization, 232
minimum property,

233-4
Gibbs' phase rule, derived,

290-1

heat:
as noun, 16-18
as verb, 16-18

heat capacity:
and (dS/dT)x, 275-6
at constant pressure:

defined, 12
for classical ideal

gas, 12
at constant volume:

defined, 11
for non-relativistic

monatomic classical
ideal gas, 11

Debye theory of, 134-9
defined, 11
Dulong and Petit value

of, 137
heat as noun and, 16-17
of diatomic molecules,

318-20
offermionsat low

temperature, 188-9
heat capacities, ratio of:

defined, 15
for diatomic molecules,

318-20
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heat engine:
defined, 55-6
reversible, 56

heat equation, derived,
369-71

heating:
as inducing temperature

change, 17
as process, 16-18
defined, 1-3
entropy and, 349-50
symbols q and Q, 9

heat reservoir, defined, 52
Helmholtz free energy:

defined, 151-2
expressed by partition

function, 152
minimum property,

155-6,233-4
quantities derivable from,

225-6
why "free energy"?,

234-5
heteronuclear, defined, 254
homonuclear, defined, 254

ideal gas:
classical, defined, 12
defined, 4
degenerate: see quantum

ideal gas
nearly classical, 175-8
quantum, 166-79,

182-214
treated semi-classically,

101-7
ideal gas law, defined, 6-7
intensive variable:

defined, 105, 230
examples, 230

isentropic, defined, 288, 331
Ising model:

defined, 389-92
mean field theory and,

392-7
renormalization group

and, 397-407

isotherm:
defined, 292
critical, 293

isothermal, defined, 14

Kelvin, biographical
paragraph, 83

kelvin, unit, 6
kinetic theory, defined, 109

lambda:
point, 205-6
transition, 205-6

Langmuir model, 163-4
latent heat:

discussed, 273-6
entropy change and,

275-6
of vaporization, 273-4
versus heat capacity,

274-6
lattice gas, defined, 410-11
law of mass action:

derived from kinetic
theory, 244-6

derived from minimum
property, 246-50

Legendre transformation:
defined, 225
geometrically conceived,

240-1

macroscopic regularity, 25
macrostate, defined, 27
magnetic field, "local", 336
magnetic ions, defined, 389
magnetic moment,

reviewed, 94
magnetization:

defined, 385
easy axes, defined, 386
spontaneous, defined, 386
spontaneous, in mean

field theory, 394-5
Maxwell relations, 240-2
Maxwell velocity

distribution, derived,
310-11

mean field theory:
appraised, 396-7
defined, 392-3

mean free path:
defined, 356
refined, 375-6
simplest expression for,

358
melting curve, defined, 270
microstate, defined, 25
mole, defined, 13
multiplicity:

defined, 27
energy range in quantum

version, 99-101
energy transfer by

heating and, 31-4
entropy and, 34
quantum version, 80,

99-101

natural variables, defined,
236

nearly classical:
defined, 212
ideal gas: see ideal gas,

nearly classical
normal modes, defined, 116
normalization, 314
number density, defined, 5

occupation number:
classical limit, 173-4
defined, 169
definition of estimated,

170
derivation of estimated,

170-3
open system, defined, 222
order parameter, defined,

409-10
Otto cycle (simplified):

automobiles and, 65-7
compression ratio and,

66-7
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Otto cycle (simplified):
(cont.)

defined, 57, 62-5
efficiency of, 65
entropy changes in, 63-5

paramagnetism:
entropy and, 329-31
Pauli, 192-4
of conduction electrons,

192-4
of spatially fixed

particles, 94-6,
329-37

partition function:
computing energy

with, 97
computing magnetic

moment with, 98
computing pressure with,

97-8
defined, 93
for diatomic molecule,

252-7
for single particle (Z\),

defined, 102-4
internal, defined, 248
list of specific explicit

forms, 108
semi-classical limit of

quantum, 174-5
semi-classical, 103-4

perfect gas law: see ideal
gas law

phase, defined, 270
phase equilibrium,

conditions for,
276-9

phase space, definition of
classical, 306

phase transitions:
continuous, 409
first order, 407-9

phonons, and sound waves,
130-9

Planck, determination of h
and £ by, 7, 127-8

Planck distribution, derived,
119

Pomeranchuk refrigerator,
285

Poiseuille's law, 366-7
pressure:

according to kinetic
theory, 4-6

defined, 4
extreme relativistic

regime, 197-9
of classical ideal gas, 4-7
of electromagnetic

radiation, 121
of degenerate fermions,

191
of nearly classical ideal

gas, 175-8
probabilities:

entropy and, 327-9
when temperature is

fixed, 91-4
probability, defined, 89-91
probability distribution:

defined, 310
for speed, 311-12
for velocity, 310-11

probability density, 309-10
probability theory,

framework of,
428-34

q and Q, defined, 9
quantum ideal gas, 166-79,

182-214

radiation:
absorptivity, 124
as a heating process, 1-3
cosmic background,

127-8
electromagnetic, 118-28
emissivity, 125
energy flux from black

surface, 124
energy flux from hole,

123-4

energy per photon, 122
flux as function of

frequency, 125-6
Planck distribution, 119
pressure, 121
total energy, 119-21
Wien's displacement law,

112
radiative flux, defined, 123
random walk, and mean free

path, 360-2
recursion relations, 399
renormalization group:

1-dim. Ising model and,
398-401

2-dim. Ising model and,
402-407

defined, 397, 407
fixed points and, 400, 404
methods of, 407

reservoir: see heat reservoir
reversible:

cycle, 56
heat engine, 56
process, defined, 67

reversibility:
Carnot cycle and, 55-6
conditions for, 67-9
defined, 56, 67
entropy change and,

55-6, 67-9
dissipative processes and,

67-9
maximum efficiency and,

56-9
Otto cycle and, 63-5
slowness and, 67-9

Saha equation, 259-60
scaling, 105, 230
Second Law of

Thermodynamics:
defined, 29
and desert analogy, 28-9
in terms of entropy, 45-6

semi-classical
approximation,
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range of validity,
105-7

semi-classical, defined, 175,
212

specific heat, defined, 11-
12

speed:
most probable molecular,

312-313
mean molecular, 313
root mean square

molecular, 313
spin, degeneracy factor,

252, 257
state function, defined, 18
statistical mechanics,

defined, 109
Stefan-Boltzmann

constant, defined,
124

Stefan-Boltzmann law,
derived, 123-4

stoichiometric coefficient,
defined, 246-7

sublimation curve, defined,
271

sublimation, defined, 270-1
superfluidity:

in 3He, 288-9
in 4He, 205-6

temperature:
absolute, provisional

definition of, 6
average translational

kinetic energy and,
177-8, 348-9

as deeper than average

kinetic energy, 349
Celsius, defined, 85
characteristic rotational,

253-4
characteristic vibrational,

252-3
critical, 271
Curie, defined, 386-7
Debye, 134
energy per particle or per

mode and, 348-9
qualitative definition, 3
general quantitative

definition, 80-2
individual versus

relational, 85-6
Kelvin's definition of,

83-4
negative absolute, 343-7
recapitulated, 347-9
Thomson's definition of,

83-4
thermal:

conductivity, coefficient
of, 368

contact, defined, 2-3
de Broglie wavelength,

defined, 103
diffusivity, defined, 371
equilibrium, defined, 4
ionization, 257-60
physics, defined, 18

thermodynamic potentials:
defined, 236
natural variables for,

236-7
thermodynamics:

defined, 109

etymology, 9
thermometer, defined, 3
Third Law of

Thermodynamics,
337-41

triple point:
defined, 83, 271
of water, 83

transport:
of energy, 367-75
of momentum, 362-7

universality:
class, defined, 411-12
determinants of, 412

van der Waals equation of
state:

developed, 293-300
qualitative perspectives

on, 435-8
vaporization curve:

Clausius-Clapeyron
equation and, 281-2

defined, 271
model for, 276-8

viscosity:
studied, 362-7
coefficient of, 364

w and W, defined, 9
white dwarf stars, 194-9
work:

defined, 2
pressure-volume, 10
symbols w and W for, 9

working substance,
defined, 55
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