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Preface

In the years following the publication of the �rst edition, we have frequently discussed
producing an updated version, and indeed have been nagged on many occasions by
colleagues to do so. Despite its increasingly dated content, with quaint references to
micro�che, magnetic tapes, and Fortran-77 language examples, the �rst edition has
continued to sell well for three decades. �is is quite surprising, bearing in mind the
tremendous development of the �eld and the computer technologies on which it is based.
To an extent, the material in our book has been complemented by the publication of other
books and online resources which help to understand the underlying principles. Also, it is
much easier than it used to be to �nd technical details in the primary literature, in papers,
appendices, and supplementary information. New and improved techniques appear all
the time, and the problem is almost that there is too much information, and too much
rediscovery of existing methods. �e widespread use of simulation packages has provided
enormous leverage in this research �eld. �ere is much to gain by carefully reading the
manual for your chosen package, and we strongly recommend it!

Nonetheless, it remains true that ‘ge�ing started’ can be a signi�cant barrier, and there
is always the need to understand properly what is going on ‘under the hood’, so as not to
use a packaged technique beyond its range of validity. Many colleagues have rea�rmed
to us that there is still a need for a general guide book, concentrating on the strengths of
the �rst edition: providing practical advice and examples rather than too much theory. So,
we agreed that an updated version of our book would be of value. We intended to produce
this many years ago, and it is a sad fact that the demands of academia and industry le�
too li�le time to make good on these aspirations. We wish to acknowledge the patience
of our editor at Oxford University Press, Sönke Adlung, who has stuck with us over this
long period.

Although the �eld has grown enormously, we resisted the temptation to change
the title of the book. It was always focused on the liquid state, and this encompasses
what are now known as complex �uids, such as liquid crystals, polymers, some colloidal
suspensions, gels, so� ma�er in general, some biological systems such as �uid membranes,
and glasses. �e techniques will also be of interest outside the aforementioned �elds, and
there is no well-de�ned dividing line, but we try not to stray too far outside our expertise.
Rather than give a long list in the title, we hope that ‘Computer Simulation of Liquids’,
interpreted with some latitude, is still su�ciently descriptive.

�e content of the book, although structured in the same way as the �rst edition,
has changed to re�ect the above expansion in the �eld, as well as technical advances.
�e �rst few chapters cover basic material. Molecular dynamics in various ensembles
is now regarded as basic, rather than advanced, and we devote whole chapters to the
handling of long-range forces and simulating on parallel computers, both of which are
now mainstream topics. �ere are a few more chapters covering advanced simulation
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methods, especially those for studying rare events, mesoscale simulations (including
coarse graining), and the study of inhomogeneous systems. Instead of concentrating
some scienti�c examples in a single chapter, we have sca�ered them through the text, to
illustrate still further what can be done with the techniques we describe. �ese examples
very much re�ect our personal preferences, and we have tried to resist the temptation
to turn our book into a collection of scienti�c or technical reviews, so many otherwise
suitable ‘highlights’ have been omi�ed. To give a balanced overview of such a huge �eld
would probably be impossible and would certainly have resulted in a very di�erent, and
much larger, book. We have dropped material, when methods have been superceded (such
as predictor–corrector algorithms), or when they were really of limited or specialized
interest (such as the use of integral equations to extend correlation functions to longer
distance).

�e examples of program code which accompanied the �rst edition were �rst provided
on micro�che, and later online, courtesy of Cornell University and ccp5. We continue to
use such code examples to illustrate ideas in the text, and provide them online. We give
the individual �lenames, the �rst few lines of each example, and some guidance on usage,
in the book. �e full set of codes is available online at

http://www.oup.co.uk/companion/allen tildesley

Although we stick to Fortran 2008 in the main, some online �les are also provided in
Python, to widen the accessibility. Some relevant programming considerations may be
found in Appendix A.

We wish to reiterate our thanks to those who supported us at the start of our careers
(see below) and we have many more people to thank now. J. Anwar, P. Carbone, J. H. Hard-
ing, P. A. Madden, S. C. Parker, M. Parrinello, D. �igley, P. M. Rodger, M. B. Sweatman,
A. Troisi, and M. R. Wilson all provided advice and/or encouragement during the early
stages of writing. S. Bonella, P. J. Daivis, S. Khalid, P. Malfreyt, B. D. Todd, and R. Vuilleu-
mier advised us on speci�c topics. G. Cicco�i, A. Humpert, and G. Jackson read and
commented on a complete �rst dra�. Any mistakes or misconceptions, naturally, remain
our own responsibilities. Our colleagues over the years, at Bristol, Warwick, Southamp-
ton, Imperial College London, Unilever plc, and cecam Lausanne, have also provided a
stimulating working environment and a challenging intellectual atmosphere. MPA also
wishes to acknowledge helpful study leave periods spent in Germany, at the Universities
of Mainz and Bielefeld, and in Australia, at the Universities of Swinburne, Monash, and
Deakin. DJT acknowledges an important and stimulating collaboration with the chemistry
department at the Université Blaise Pascal, Clermont-Ferrand, France.

Our families have remained an ongoing source of support and inspiration. DJT thanks
Eleanor for her unwavering encouragement, while MPA particularly wishes to thank
Pauline and Charles, whose holidays frequently had to coincide with conferences and
summer schools over the years!
Bristol MPA
Lausanne DJT
August 2016
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From the Preface to the First Edition
�is is a ‘how-to-do-it’ book for people who want to use computers to simulate the
behaviour of atomic and molecular liquids. We hope that it will be useful to �rst-year
graduate students, research workers in industry and academia, and to teachers and
lecturers who want to use the computer to illustrate the way liquids behave.

Ge�ing started is the main barrier to writing a simulation program. Few people begin
their research into liquids by si�ing down and composing a program from scratch. Yet
these programs are not inherently complicated: there are just a few pitfalls to be avoided.
In the past, many simulation programs have been handed down from one research group
to another and from one generation of students to the next. Indeed, with a trained eye, it is
possible to trace many programs back to one of the handful of groups working in the �eld
20 years ago. Technical details such as methods for improving the speed of the progam
or for avoiding common mistakes are o�en buried in the appendices of publications
or passed on by word of mouth. In the �rst six chapters of this book, we have tried to
gather together these details and to present a clear account of the techniques, namely
Monte Carlo and molecular dynamics. �e hope is that a graduate student could use these
chapters to write his own program.

Both of us were fortunate in that we had expert guidance when starting work in the
�eld, and we would like to take this opportunity to thank P. Scho�eld (Harwell) and
W. B. Stree� (Cornell), who set us on the right road some years ago. �is book was largely
wri�en and created at the Physical Chemistry Laboratory, Oxford, where both of us have
spent a large part of our research careers. We owe a great debt of gratitude to the head of
department, J. S. Rowlinson, who has provided us with continuous encouragement and
support in this venture, as well as a meticulous criticism of early versions of the manuscript.
We would also like to thank our friends and colleagues in the physics department at Bristol
and the chemistry department at Southampton for their help and encouragement, and
we are indebted to many colleagues, who in discussions at conferences and workshops,
particularly those organized by ccp5 and cecam, have helped to form our ideas. We cannot
mention all by name but should say that conversations with D. Frenkel and P. A. Madden
have been especially helpful. We would also like to thank M. Gillan and J. P. Ryckaert, who
made useful comments on certain chapters, and I. R. McDonald who read and commented
on the completed manuscript.

Books are not wri�en without a lot of family support. One of us (DJT) wants to thank
the Oaks and the Sibleys of Bicester for their hospitality during many weekends over
the last three years. Our wives, Diane and Pauline, have su�ered in silence during our
frequent disappearances, and given us their un�agging support during the whole project.
We owe them a great deal.
Bristol MPA
Southampton DJT
May 1986
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1
Introduction

1.1 A short history of computer simulation
What is a liquid? As you read this book, you may be mixing up, drinking down, sailing on,
or swimming in, a liquid. Liquids �ow, although they may be very viscous. �ey may be
transparent or they may sca�er light strongly. Liquids may be found in bulk, or in the form
of tiny droplets. �ey may be vaporized or frozen. Life as we know it probably evolved in
the liquid phase, and our bodies are kept alive by chemical reactions occurring in liquids.
�ere are many fascinating details of liquid-like behaviour, covering thermodynamics,
structure, and motion. Why do liquids behave like this?

�e study of the liquid state of ma�er has a long and rich history, from both the
theoretical and experimental standpoints. From early observations of Brownian motion
to recent neutron-sca�ering experiments, experimentalists have worked to improve the
understanding of the structure and particle dynamics that characterize liquids. At the
same time, theoreticians have tried to construct simple models which explain how liquids
behave. In this book, we concentrate exclusively on atomic and molecular models of
liquids, and their analysis by computer simulation. For excellent accounts of the current
status of liquid science, the reader should consult the standard references (Barker and
Henderson, 1976; Rowlinson and Widom, 1982; Barrat and Hansen, 2003; Hansen and
McDonald, 2013).

Early models of liquids (Morrell and Hildebrand, 1936) involved the physical manipu-
lation and analysis of the packing of a large number of gelatine balls, representing the
molecules; this resulted in a surprisingly good three-dimensional picture of the structure
of a liquid, or perhaps a random glass, and later applications of the technique have been
described (Bernal and King, 1968). Assemblies of metal ball bearings, kept in motion by
mechanical vibration (Pieranski et al., 1978), have been used as models of granular materi-
als and show some analogies with molecular systems (Olafsen and Urbach, 2005). Clearly,
the use of large numbers of macroscopic physical objects to represent molecules can be
very time-consuming; there are obvious limitations on the types of interactions between
them, and the e�ects of gravity are di�cult to eliminate. However, modern research
on colloidal suspensions, where the typical particle size lies in the range 1 nm–1000 nm,
with the ability to manipulate individual particles and study large-scale collective be-
haviour, has greatly revitalized the �eld (Pusey and van Megen, 1986; Ebert et al., 2009;
Lekkerkerker and Tuinier, 2011; Bechinger et al., 2013).

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
© M. P. Allen and D. J. Tildesley 2017. Published in 2017 by Oxford University Press.
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2 Introduction

�e natural extension of this approach is to use a mathematical, rather than a physical,
model, and to perform the analysis by computer. It is now over 60 years since the �rst
computer simulation of a liquid was carried out at the Los Alamos National Laboratories
in the United States (Metropolis et al., 1953). �e Los Alamos computer, called maniac,
was at that time one of the most powerful available; it is a measure of the continuing
rapid advance in computer technology that handheld devices of comparable power are
now available to all at modest cost.

Rapid development of computer hardware means that computing power continues to
increase at an astonishing rate. Using modern parallel computer architectures, we can
expect to enjoy exa�op computing by 2020 (an exa�op is 1018 �oating-point operations per
second). �is is matched by the enormous increases in data storage available to researchers
and the general public. Computer simulations, of the type we describe in this book, are
possible on most machines from laptops to continental supercomputers, and we provide
an overview of some opportunities with respect to architecture and computing languages,
as they relate to the �eld, in Appendix A.

�e very earliest work (Metropolis et al., 1953) laid the foundations of modern Monte
Carlo simulation (so-called because of the role that random numbers play in the method).
�e precise technique employed in this study is still widely used, and is referred to simply
as ‘Metropolis Monte Carlo’. �e original models were highly idealized representations
of molecules, such as hard spheres and disks, but, within a few years, Monte Carlo (mc)
simulations were carried out on the Lennard-Jones interaction potential (Wood and Parker,
1957) (see Section 1.3). �is made it possible to compare data obtained from experiments
on, for example, liquid argon, with the computer-generated thermodynamic data derived
from a model.

A di�erent technique is required to obtain the dynamic properties of many-particle
systems. Molecular dynamics (md) is the term used to describe the solution of the
classical equations of motion (Newton’s equations) for a set of molecules. �is was �rst
accomplished, for a system of hard spheres, by Alder and Wainwright (1957; 1959). In
this case, the particles move at constant velocity between perfectly elastic collisions, and
it is possible to solve the dynamic problem without making any approximations, within
the limits imposed by machine accuracy. It was several years before a successful a�empt
was made to solve the equations of motion for a set of Lennard-Jones particles (Rahman,
1964). Here, an approximate, step-by-step procedure is needed, since the forces change
continuously as the particles move. Since that time, the properties of the Lennard-Jones
model have been thoroughly investigated (Verlet, 1967; 1968; Johnson et al., 1993).

A�er this initial groundwork on atomic systems, computer simulation developed
rapidly. An early a�empt to model a diatomic molecular liquid (Harp and Berne, 1968;
Berne and Harp, 1970) using molecular dynamics was quickly followed by two ambitious
a�empts to model liquid water, �rst by mc (Barker and Wa�s, 1969), and then by md
(Rahman and Stillinger, 1971). Water remains one of the most interesting and di�cult
liquids to study by simulation (Morse and Rice, 1982; McCoustra et al., 2009; Lynden-Bell,
2010; Lin et al., 2012). From early studies of small rigid molecules (Barojas et al., 1973)
and �exible hydrocarbons (Ryckaert and Bellemans, 1975), simulations have developed to
model more complicated systems such as polymers (Binder, 1995), proteins, lipids, nucleic
acids, and carbohydrates (Monticelli and Salonen, 2013). Simulations containing half a
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Fig. 1.1 �e approximate number of articles concerning the computer simulation of condensed
phases published in each complete decade. �e search was carried out using the Web of Science® by
searching on Monte Carlo, molecular dynamics, Brownian dynamics, la�ice Boltzmann, dynamical
density functional theory, Car–Parrinello, qm/mm in both the title and topic search �elds.

million atoms have been conducted for 50 million timesteps to study the surface tension of
a small liquid droplet (van Giessen and Blokhuis, 2009) and the massive parallel molecular
dynamics code, ls1 mardyn, has been used to simulate a trillion Lennard-Jones atoms
(Niethammer et al., 2014). It is now possible to follow the folding of a solvated protein
using simulations in the microsecond-to-millisecond range (ca. 109–1012 timesteps) on a
special purpose computer (Piana et al., 2014).

�e growth of the �eld of computer simulation over the last 60 years, as evidenced by
the number of publications in refereed journals, has been dramatic. In Fig. 1.1, we have
a�empted to calculate the number of papers published in this �eld during each complete
decade. While bibliometric exercises of this kind will fail to capture some important
papers and will o�en include some unwanted papers in related disciplines, the overall
trend in the number of articles is clear.

�is is, in part, due to the continuing and substantial increase in computing power,
which follows the celebrated Moore’s law curve over this period (see Appendix A). It is
also due to the application of these methods to a wide range of previously intractable
problems in the materials and life sciences. However, it is also, in no small part, due
to the ingenuity of its practitioners in extending the early methods to areas such as:
the calculation of free energies and phase diagrams (Chapter 9); the simulation of rare
events (Chapter 10); the development of nonequilibrium methods for calculating transport
coe�cients (Chapter 11); the development of coarse-grained methods to extend the
length and timescales that can be simulated (Chapter 12); and in the extension to include
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quantum mechanical e�ects (Chapter 13). �is level of activity points to the proposition
that computer simulation now sits alongside experiment and theory as a third and equally
important tool in modern science. We start by asking: what is a computer simulation?
How does it work? What can it tell us?

1.2 Computer simulation: motivation and applications
Some problems in statistical mechanics are exactly soluble. By this, we mean that a
complete speci�cation of the microscopic properties of a system (such as the Hamiltonian
of an idealized model like the perfect gas or the Einstein crystal) leads directly, and perhaps
easily, to a set of useful results or macroscopic properties (such as an equation of state
like PV = NkBT ). �ere are only a handful of non-trivial, exactly soluble problems in
statistical mechanics (Baxter, 1982); the two-dimensional Ising model is a famous example.

Some problems in statistical mechanics, while not being exactly soluble, succumb
readily to an analysis based on a straightforward approximation scheme. Computers may
have an incidental, calculational, part to play in such work; for example, in the evaluation
of cluster integrals in the virial expansion for dilute, imperfect gases (Rosenbluth and
Rosenbluth, 1954; Wheatley, 2013). �e problem is that, like the virial expansion, many
‘straightforward’ approximation schemes simply do not work when applied to liquids. For
some liquid properties, it may not even be clear how to begin constructing an approximate
theory in a reasonable way. �e more di�cult and interesting the problem, the more
desirable it becomes to have exact results available, both to test existing approximate
methods and to point the way towards new approaches. It is also important to be able to
do this without necessarily introducing the additional question of how closely a particular
model (which may be very idealized) mimics a real liquid, although this may also be
a ma�er of interest. Computer simulations have a valuable role to play in providing
essentially exact results for problems in statistical mechanics which would otherwise
only be soluble by approximate methods, or might be quite intractable. In this sense,
computer simulation is a test of theories and, historically, simulations have indeed dis-
criminated between well-founded approaches, such as integral equation theories (Hansen
and McDonald, 2013), and ideas that are plausible but, in the event, less successful, such
as the old cell theories of liquids (Lennard-Jones and Devonshire, 1939a,b). �e results of
computer simulations may also be compared with those of real experiments. In the �rst
place, this is a test of the underlying model used in a computer simulation. Eventually,
if the model is a good one, the simulator hopes to o�er insights to the experimentalist,
and assist in the interpretation of new results. �is dual role of simulation, as a bridge
between models and theoretical predictions on the one hand, and between models and
experimental results on the other, is illustrated in Fig. 1.2. Because of this connection role,
and the way in which simulations are conducted and analysed, these techniques are o�en
termed ‘computer experiments’.

Computer simulation provides a direct route from the microscopic details of a system
(the masses of the atoms, the interactions between them, molecular geometry, etc.) to
macroscopic properties of experimental interest (the equation of state, transport coe�-
cients, structural order parameters, and so on). As well as being of academic interest, this
type of information is technologically useful. It may be di�cult or impossible to carry out
experiments under extremes of temperature and pressure, while a computer simulation
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Fig. 1.2 �e connection between experiment, theory, and computer simulation.

of the material in, say, a shock wave, a high-temperature plasma, a nuclear reactor, or
a planetary core, would be perfectly feasible. �ite subtle details of molecular motion
and structure, for example in heterogeneous catalysis, fast ion conduction, or enzyme
action, are di�cult to probe experimentally but can be extracted readily from a computer
simulation. Finally, while the speed of molecular events is itself an experimental di�culty
it represents no hindrance to the simulator. A wide range of physical phenomena, from
the molecular scale to the galactic (Hockney and Eastwood, 1988), may be studied using
some form of computer simulation.

In most of this book, we will be concerned with the details of carrying out simulations
(the central box in Fig. 1.2). In the rest of this chapter, however, we deal with the general
question of how to put information in (i.e. how to de�ne a model of a liquid) while in
Chapter 2 we examine how to get information out (using statistical mechanics).

1.3 Model systems and interaction potentials
1.3.1 Introduction

In most of this book, the microscopic state of a system may be speci�ed in terms of the
positions and momenta of a constituent set of particles: the atoms and molecules. Within
the Born–Oppenheimer (bo) approximation (see also Chapter 13), it is possible to express
the Hamiltonian of a system as a function of the nuclear variables, the (rapid) motion
of the electrons having been averaged out. Making the additional approximation that
a classical description is adequate, we may write the HamiltonianH of a system of N
molecules as a sum of kinetic- and potential-energy functions of the set of coordinates qi
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and momenta pi of each molecule i . Adopting a condensed notation

q = (q1, q2, · · · , qN ) (1.1a)
p = (p1, p2, · · · , pN ) (1.1b)

we have

H (q, p) = K (p) +V (q). (1.2)

Usually, the Hamiltonian will be equal to the total internal energy E of the system. �e
generalized coordinates qi may simply be the set of Cartesian coordinates ri of each atom
(or nucleus) in the system, but, as we shall see, it is sometimes useful to treat molecules as
rigid bodies, in which case q will consist of the Cartesian coordinates of each molecular
centre of mass together with a set of variables Ωi that specify molecular orientation. In
any case, p stands for the appropriate set of conjugate momenta. For a simple atomic
system, the kinetic energy K takes the form

K =

N∑
i=1

∑
α

p2
iα /2mi (1.3)

where mi is the molecular mass, and the index α runs over the di�erent (x ,y , z) com-
ponents of the momentum of atom i . �e potential energy V contains the interesting
information regarding intermolecular interactions: assuming that V is fairly sensibly
behaved, it will be possible to construct, fromH , an equation of motion (in Hamiltonian,
Lagrangian, or Newtonian form) which governs the entire time-evolution of the system
and all its mechanical properties (Goldstein, 1980). Solution of this equation will gener-
ally involve calculating, from V , the forces f i and torques τi acting on the molecules
(see Chapter 3). �e Hamiltonian also dictates the equilibrium distribution function for
molecular positions and momenta (see Chapter 2). �us, generally, it isH (orV) which is
the basic input to a computer simulation program. �e approach used almost universally
in computer simulation is to separate the potential energy into terms involving pairs,
triplets, etc. of molecules. In the following sections we shall consider this in detail.

Recently, there has been a spectacular growth in the number of simulation studies
which avoid the use of e�ective potentials by considering the electrons explicitly using
density functional theory (Martin, 2008). In an early approach, the electron density was
represented by an extension of the electron gas theory (LeSar and Gordon, 1982; 1983;
LeSar, 1984). In most of the current work, the electronic degrees of freedom are explicitly
included in the description. �e electrons, in�uenced by the external �eld of the nuclei,
are allowed to evolve during the course of the simulation by an auxiliary set of dynamical
equations (Car and Parrinello, 1985). �is method, known as ab initio molecular dynamics
(Marx and Hu�er, 2012), is now su�ciently well developed that it may become the method
of choice for simulations in materials and the life sciences as the speed of computers
increases. We will consider this approach in more detail in Chapter 13.
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Fig. 1.3 Argon pair potentials. We illustrate (solid line) a recent pair potential for argon calculated
by ab initio methods (see Patkowski and Szalewicz, 2010). Also shown is the Lennard-Jones 12–6
potential (dashed line) used in computer simulations of liquid argon.

1.3.2 Atomic systems

Consider �rst the case of a system containing N atoms. �e potential energy may be
divided into terms depending on the coordinates of individual atoms, pairs, triplets, etc.:

V =
∑
i

v1 (ri ) +
∑
i

∑
j>i

v2 (ri , rj ) +
∑
i

∑
j>i

∑
k>j

v3 (ri , rj , rk ) + . . . . (1.4)

�e ∑
i
∑

j>i notation indicates a summation over all distinct pairs i and j without counting
any pair twice (i.e. as ij and ji); the same care must be taken for triplets. �e �rst term
in eqn (1.4), v1 (ri ), represents the e�ect of an external �eld (including, e.g. the container
walls) on the system. �e remaining terms represent particle interactions. �e second
term, v2, the pair potential, is the most important. �e pair potential depends only on
the magnitude of the pair separation ri j = |ri j | = |ri − rj |, so it may be wri�en v2 (ri j ).
Figure 1.3 shows one of the more recent estimates for the pair potential between two
argon atoms, as a function of separation (Patkowski and Szalewicz, 2010). �is potential
was determined by ��ing to very accurate ab initio calculations for the argon dimer. �e
potential provides a position for the minimum and a well-depth that are very close to
the experimental values. It can be used to calculate the spectrum of the isolated argon
dimer and it produces a rotational constant and dissociation energy that are in excellent
agreement with experiment (Patkowski et al., 2005). In fact, the computed potential is
accurate enough to cast some doubt on the recommended, experimental, values of the
second virial coe�cient of argon at high temperatures (Dymond and Smith, 1980).

�e potential shows the typical features of intermolecular interactions. �ere is an
a�ractive tail at large separations, essentially due to correlation between the electron
clouds surrounding the atoms (‘van der Waals’ or ‘London’ dispersion). In addition, for
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charged species, Coulombic terms would be present. �ere is a negative well, responsible
for cohesion in condensed phases. Finally, there is a steeply rising repulsive wall at short
distances, due to non-bonded overlap between the electron clouds.

�e v3 term in eqn (1.4), involving triplets of molecules, is undoubtedly signi�cant
at liquid densities. Estimates of the magnitudes of the leading, triple-dipole, three-body
contribution (Axilrod and Teller, 1943) have been made for inert gases in their solid-state
face centred cubic (fcc) la�ices (Doran and Zucker, 1971; Barker and Henderson, 1976).
It is found that up to 10 % of the la�ice energy of argon (and more in the case of more
polarizable species) may be due to these non-additive terms in the potential; we may
expect the same order of magnitude to hold in the liquid phase. Four-body (and higher)
terms in eqn (1.4) are expected to be small in comparison with v2 and v3.

Despite the size of three-body terms in the potential, they are only rarely included
in computer simulations (Barker et al., 1971; A�ard, 1992; Marcelli and Sadus, 2012). �is
is because, as we shall see shortly, the calculation of any quantity involving a sum over
triplets of molecules will be very time-consuming on a computer. In most cases, the
pairwise approximation gives a remarkably good description of liquid properties because
the average three-body e�ects can be partially included by de�ning an ‘e�ective’ pair
potential. To do this, we rewrite eqn (1.4) in the form

V ≈
∑
i

v1 (ri ) +
∑
i

∑
j>i

v
e�
2 (ri j ). (1.5)

�e pair potentials appearing in computer simulations are generally to be regarded as
e�ective pair potentials of this kind, representing all the many-body e�ects; for simplicity,
we will just use the notation v(ri j ), or v(r ). A consequence of this approximation is that
the e�ective pair potential needed to reproduce experimental data may turn out to depend
on the density, temperature, etc., while the true two-body potential v2 (ri j ), of course, does
not.

Now we turn to the simpler, more idealized, pair potentials commonly used in computer
simulations. �ese re�ect the salient features of real interactions in a general, o�en
empirical, way. Illustrated, with the accurate argon pair potential, in Fig. 1.3 is a simple
Lennard-Jones 12–6 potential

v
LJ (r ) = 4ϵ

[
(σ/r )12 − (σ/r )6

]
(1.6)

which provides a reasonable description of the properties of argon, via computer simula-
tion, if the parameters ϵ and σ are chosen appropriately. �e potential has a long-range
a�ractive tail of the form −1/r 6, a negative well of depth ϵ , and a steeply rising repulsive
wall at distances less than r ∼ σ . �e well-depth is o�en quoted in units of temperature as
ϵ/kB, where kB is Boltzmann’s constant; values of ϵ/kB = 120 K and σ = 0.34 nm provide
reasonable agreement with the experimental properties of liquid argon. Once again, we
must emphasize that these are not the values which would apply to an isolated pair of
argon atoms, as is clear from Fig. 1.3.

For the purposes of investigating general properties of liquids, and for comparison
with theory, highly idealized pair potentials may be of value. In Fig. 1.4, we illustrate three
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σ σ1

σ2

Fig. 1.4 Idealized pair potentials. (a) �e hard-sphere potential; (b) the square-well potential;
(c) �e so�-sphere potential with repulsion parameter ν = 1; (d) �e so�-sphere potential with
repulsion parameter ν = 12. Vertical and horizontal scales are arbitrary.

forms which, although unrealistic, are very simple and convenient to use in computer
simulation and in liquid-state theory. �ese are: the hard-sphere potential

v
HS (r ) =




∞ if r < σ
0 if σ ≤ r ;

(1.7)

the square-well potential

v
SW (r ) =




∞ if r < σ1

−ϵ, if σ1 ≤ r < σ2

0, if σ2 ≤ r ;
(1.8)

and the so�-sphere potential

v
SS (r ) = ϵ (σ/r )ν = ar−ν , (1.9)

where ν is a parameter, o�en chosen to be an integer. �e so�-sphere potential becomes
progressively ‘harder’ as ν is increased. So�-sphere potentials contain no a�ractive part.
It is o�en useful to divide more realistic potentials into separate a�ractive and repulsive
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Fig. 1.5 �e separation of the Lennard-Jones potential vLJ into a�ractive and repulsive components,
v
ALJ and v

RLJ, respectively. �e vertical dashed line shows the position of rmin.

components, and the separation proposed by Weeks et al. (1971) involves spli�ing the
potential at the minimum. For the Lennard-Jones potential, the repulsive and a�ractive
parts are, as illustrated in Fig. 1.5,

v
RLJ (r ) =




v
LJ (r ) + ϵ if r < rmin

0 if rmin ≤ r
(1.10a)

v
ALJ (r ) =




−ϵ if r < rmin

v
LJ (r ) if rmin ≤ r ,

(1.10b)

where rmin = 21/6σ ≈ 1.12σ . In perturbation theory (Weeks et al., 1971), a hypothetical
�uid of molecules interacting via the repulsive potential vRLJ is treated as a reference
system and the a�ractive part vALJ is the perturbation. It should be noted that the potential
v

RLJ is signi�cantly harder than the inverse twel�h power so�-sphere potential, which is
also sometimes thought of as the ‘repulsive’ part of vLJ (r ).

For ions, of course, these potentials are not su�cient to represent the long-range
interactions. A simple approach is to supplement one of these pair potentials with the
Coulomb charge–charge interaction

v
qq (ri j ) =

qiqj

4πϵ0ri j
(1.11)

where qi , qj are the charges on ions i and j and ϵ0 is the permi�ivity of free space (not
to be confused with ϵ in eqns (1.6)–(1.10)). For ionic systems, induction interactions are
important: the ionic charge induces a dipole on a neighbouring ion. �is term is not
pairwise additive and hence is di�cult to include in a simulation. �e shell model is a
crude a�empt to account for this polarizability (Dixon and Sangster, 1976; Lindan, 1995).
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Each ion is represented as a core surrounded by a shell. Part of the ionic charge is located
on the shell and the rest in the core. �is division is always arranged so that the shell
charge is negative (it represents the electronic cloud). �e interactions between ions are
just sums of the Coulombic shell–shell, core–core, and shell–core contributions. �e shell
and core of a given ion are coupled by a harmonic spring potential. �e shells are taken
to have zero mass. During a simulation, their positions are adjusted iteratively to zero the
net force acting on each shell: this process makes the simulations expensive. We shall
return to the simulation of polarizable systems in Section 1.3.3.

When a potential depends upon just a few parameters, such as ϵ and σ , it may be
possible to choose an appropriate set of units in which these parameters take values
of unity. �is results in a simpler description of the properties of the model, and there
may also be technical advantages within a simulation program. For Coulomb systems,
the factor 4πϵ0 in eqn (1.11) is o�en omi�ed, and this corresponds to choosing a non-
standard unit of charge. We discuss such reduced units in Appendix B. Reduced densities,
temperatures, etc. are o�en denoted by an asterisk, that is, ρ∗,T ∗ etc.

1.3.3 Molecular systems

In principle, there is no reason to abandon the atomic approach when dealing with molec-
ular systems: chemical bonds are simply interatomic potential-energy terms (Chandler,
1982). Ideally, we would like to treat all aspects of chemical bonding, including the reac-
tions which form and break bonds, in a proper quantum mechanical fashion. �is di�cult
task has not yet been accomplished but there are two common simplifying approaches.
We might treat the bonds as classical harmonic springs (or Morse oscillators) or we could
treat the molecule as a rigid or semi-rigid unit, with �xed bond lengths and, sometimes,
�xed bond angles and torsion angles.

Bond vibrations are of very high frequency (and hence di�cult to handle, certainly
in a classical simulation). It quite possible that a high-frequency vibration will not be
in thermal equilibrium with the �uid that surrounds it. �ese vibrations are also of low
amplitude (and are therefore unimportant for many liquid properties). For these reasons,
we prefer the approach of constraining the bond lengths to their equilibrium values. �us,
a diatomic molecule with a strongly binding interatomic potential-energy surface might
be replaced by a dumb-bell with a rigid interatomic bond.

�e interaction between the nuclei and electronic charge clouds of a pair of molecules
i and j is clearly a complicated function of relative positions ri , rj and orientations Ωi ,
Ωj (Gray and Gubbins, 1984). One way of modelling a molecule is to concentrate on the
positions and sizes of the constituent atoms (Eyring, 1932). �e much simpli�ed ‘atom–
atom’ or ‘site–site’ approximation for diatomic molecules is illustrated in Fig. 1.6. �e
total interaction is a sum of pairwise contributions from distinct sites a in molecule i , at
position ria , and b in molecule j, at position rjb :

v(ri j , Ωi , Ωj ) =
∑
a

∑
b

vab (rab ). (1.12)

Here a, b take the values 1, 2, vab is the pair potential acting between sites a and b, and rab
is shorthand for the inter-site separation rab = |rab | = |ria − rjb |. �e interaction sites are
usually centred, more or less, on the positions of the nuclei in the real molecule, so as to
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a = 1

a = 2

b = 1

b = 2

i
j

Fig. 1.6 �e atom–atom model of a diatomic molecule. �e total interaction is a sum of terms
involving the distances |ria − rjb |, indicated by dashed lines.

represent the basic e�ects of molecular ‘shape’. A very simple extension of the hard-sphere
model is to consider a diatomic composed of two hard spheres fused together (Stree� and
Tildesley, 1976), but more realistic models involve continuous potentials. �us, nitrogen,
�uorine, chlorine, etc. have been depicted as two ‘Lennard-Jones atoms’ separated by a
�xed bond length (Barojas et al., 1973; Cheung and Powles, 1975; Singer et al., 1977).

�e description of the molecular charge distribution may be improved somewhat by
incorporating point multipole moments at the centre of charge (Stree� and Tildesley,
1977). �ese multipoles may be equal to the known (isolated molecule) values, or may
be ‘e�ective’ values chosen simply to yield a be�er description of the liquid structure
and thermodynamic properties. A useful collection of the values of multipole moments
is given in Gray and Gubbins (1984). Price et al. (1984) have developed an e�cient way
of calculating the multipolar energy, forces and torques between molecules of arbitrary
symmetry up to terms of O (r−5

i j ). However, it is now generally accepted that such a
multipole expansion of the electrostatic potential based around the centre of mass of a
molecule is not rapidly convergent.

A pragmatic alternative approach, for ionic and polar systems, is to use a set of
�ctitious ‘partial charges’ distributed ‘in a physically reasonable way’ around the molecule
so as to reproduce the known multipole moments (Murthy et al., 1983). For example, the
electrostatic part of the interaction between nitrogen molecules may be modelled using
�ve partial charges placed along the axis, while for methane, a tetrahedral arrangement
of partial charges is appropriate. �ese are illustrated in Fig. 1.7. For the case of N2, taking
the molecular axis to lie along z, the quadrupole momentQ is given by (Gray and Gubbins,
1984)

Q =
5∑

a=1
qaz

2
a (1.13)
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q′ q −2(q + q′) q q′
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Fig. 1.7 Partial charge models: (a) A �ve-charge model for N2. �ere is one charge at the bond
centre, two at the positions of the nuclei, and two more displaced beyond the nuclei. Typical values
(with e = 1.602 × 10−19 C): q = +5.2366 e , q′ = −4.0469 e , giving Q = −4.67 × 10−40 C m2 (Murthy
et al., 1983). (b) A �ve-charge model for CH4. �ere is one charge at the centre and four others at
the positions of the hydrogen nuclei. Typical values are CH bond length 0.1094 nm, q = 0.143 e
giving O = 5.77 × 10−50 C m3 (Righini et al., 1981).

with similar expressions for the higher multipoles (all the odd ones vanish for N2). �e
�rst non-vanishing moment for methane is the octopole O

O =
5
2

5∑
a=1

qaxayaza (1.14)

in a coordinate system aligned with the cube shown in Fig. 1.7. �e aim of all these
approaches is to approximate the complete charge distribution in the molecule. In a
calculation of the potential energy, the interaction between partial charges on di�erent
molecules would be summed in the same way as the other site–site interactions.

�e use of higher-order multipoles has enjoyed a renaissance in recent years. �is is
because we can obtain an accurate representation of the electrostatic potential by placing
multipoles at various sites within the molecule. �ese sites could be at the atom positions,
or at the centres of bonds or within lone pairs, and it is normally su�cient to place a
charge, dipole and quadrupole at any particular site. �is approach, known as a distributed
multipole analysis (Stone, 1981; 2013, Chapter 7), is illustrated for N2 and CO in Fig. 1.8. In
the case of N2 the multipoles are placed at the centre of the bond and on the two nitrogen
atoms, with their z-axis along the bond. Each site has a charge and a quadrupole and, in
addition, the two atoms have equal and opposite dipoles. �ese are calculated using an
accurate density functional theory b3lyp (Martin, 2008). In atomic units (see Appendix B),
the overall quadrupole of the molecule calculated from this distribution is −1.170 ea0

2

corresponding to the experimental estimate of (−1.09 ± 0.07) ea0
2. A similar calculation

for CO produces charges, dipoles and quadrupoles on all three sites (the C and O atoms and
the centre of the bond). �e overall dipole and quadrupole moments from this distribution
are 0.036 ea0 and −1.515 ea0

2 respectively, compared with the experimental estimates of
0.043 ea0 and −1.4 ea0

2. �e electrostatic energy between two molecules is now the sum
of the multipole interactions between the atoms or sites in di�erent molecules. �e energy
of interaction between two sets of distributed multipoles {qa , µa ,Qa } and {qb , µb ,Qb },
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N N

1.0337 1.0337

C O

1.066 1.066

q 0.427 −0.854 0.427 0.556 −0.832 0.276
µz 0.947 0.0 −0.947 1.159 −0.030 −0.796
Qzz 0.775 0.283 0.775 0.377 0.274 1.068

Fig. 1.8 �e distributed multipoles required to represent the electrostatic potential of a N2 and
CO molecule calculated using a cc-p-VQZ basis set. Multipoles are placed at the positions of
the atoms (black circles) and at the midpoint of the bond (white circles). �e distances are in
atomic units, a0 = 0.529 Å; charges, q, are in units of e = 1.602 × 10−19 C; dipoles, µ, are in units
of ea0 = 8.478 × 10−30 C m; and quadrupoles, Q , are in units of ea02 = 4.487 × 10−40 C m2 (see
Appendix B). Data from Stone (2013).

on atoms a and b at ra and rb , is given by

v
elec
ab = Tqaqb +Tα (µaαqb − qaµbα )

+Tα β
(

1
3qaQbα β − µaα µbβ +

1
3Qaα β qb

)
+ 1

3Tα βγ
(
µaαQbβγ −Qaα β µbγ

)
+ 1

9Tα βγ δQaα βQbγ δ (1.15)

where we take the sum over repeated Cartesian indices α , β etc. �e interaction or ‘T ’
tensors are given by

Tα,β ...γ = (−1)n∇α∇β . . .∇γ
1
rab
, (1.16)

where n is the order of the tensor. �us

T =
1
rab
, Tα =

(rab )α

r 3
ab

, Tα β =
3(rab )α (rab )β − r 2

abδα β

r 5
ab

, (1.17)

and so on. Note that theT tensors are de�ned for rab = ra−rb . �is is a useful formulation
of the electrostatic energy for a computer simulation where the T tensors are readily
expressed in terms of the Cartesian coordinates of the atoms. In addition, it is also
straightforward to evaluate the derivative of the potential to obtain the force (the �eld)
or the �eld gradient. �e electrostatic potential, ϕ, at a distance r from a charge q is
ϕ (r ) = q/r and the corresponding electric �eld is E = −∇ϕ (r ). �e �eld is simply the
force per unit charge. For example the �eld (E) and �eld gradient (E′) arising from a
charge qb at b are

Eα = −∇αqbT = qbTα

E ′α β = −∇α∇βqbT = −qbTα β . (1.18)

�e quadrupole tensor used in eqn (1.15) is de�ned to be traceless,

Qα β =
∑
a

qa
(

3
2 (ra )α (rb )β −

1
2r

2
aδα β

)
. (1.19)
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Code 1.1 Calculation of T tensors
�is �le is provided online. For a pair of linear molecules, electrostatic energies and
forces are calculated using both the angles between the various vectors, and the T
tensors.

! t_tensor.f90
! Electrostatic interactions: T-tensors compared with angles
PROGRAM t_tensor

�e components of the dipole and quadrupole will initially be de�ned in an atom-�xed
axis frame centred on an atom (or site) and at any given point in a simulation it will be
necessary to transform these properties to the space-�xed axis system for use in eqn (1.15)
(Dykstra, 1988; Ponder et al., 2010). �is can be simply achieved with a rotation matrix
which we discuss in Section 3.3.1. An example of the calculation of T tensors is given in
Code 1.1.

Electronic polarization refers to the distortion of the electronic charge cloud by the
electrostatic �eld from the other molecules. In a molecular �uid it can be an important
contribution to the energy. It is inherently a many-body potential and unlike many of the
interactions already discussed in this chapter, it cannot be broken down to a sum over
pair interactions. For this reason, it is expensive to calculate and was o�en omi�ed from
earlier simulations. In these cases, some compensation was obtained by enhancing the
permanent electrostatic interactions in the model. For example, in early simulations of
water, the overall permanent dipole of the molecule was set to ca. 2.2 D rather than the
gas-phase value 1.85 D (where 1 D = 0.299 79 × 10−30 C m) in order to �t to the condensed
phase properties in the absence of polarization (Watanabe and Klein, 1989). Nevertheless,
polarization can be included explicitly in a model and there are three common approaches:
the induced point multipole model; the �uctuating charge model; and the Drude oscillator
model (Antila and Salonen, 2013; Rick and Stuart, 2003).

�e induced multipole approach (Applequist et al., 1972) is based on a knowledge
of the atomic dipole polarizability, αaα β , on a particular atom a. Consider a molecule
containing a set of charges, qa , on each atom. �e induced dipole at a contains two terms

∆µaγ = α
a
αγ

(
Eaα +

∑
b,a

Tα β∆µ
b
β

)
, (1.20)

where we sum over repeated indices α , β . �e �rst term in the �eld, E, comes from the
permanent charges at the other atoms and the second term comes from the dipoles that
have been induced at these atoms. We ignore contributions from the �eld gradient at atom
a by se�ing the higher-order polarizabilities to zero. Eqn (1.20) can be formally solved for
the induced dipoles

∆µaα =
∑
bβ

Aα βE
b
β (1.21)
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Example 1.1 Water, water everywhere

�e earliest simulations of molecular liquids focused on water (Barker and Wa�s,
1969; Rahman and Stillinger, 1971) and, since then, there have been over 80 000
published simulations of the liquid. Considerable e�ort and ingenuity have gone into
developing models of the intermolecular potential between water molecules. �ere
are three types of classical potential models in use: rigid, �exible, and polarizable.
�e simplest rigid models use a single Lennard-Jones site to represent the oxygen
atom and three partial charges: at the centre of the oxygen and the position of the
hydrogen atoms. �ere are no speci�c dispersion interactions involving the H atoms
and the charges are set to model the e�ective condensed-phase dipole moment of
water, 2.2 D–2.35 D. Examples include the the spc and the spc/e models (Berendsen
et al., 1981; 1987) used in the gromos force �eld, and the tip3p model (Jorgensen
et al., 1983) implemented in amber and charmm. �e precise geometry and the size of
the charges are di�erent in each of these models. �ey predict the experimental liquid
densities at a �xed pressure but tend to overestimate the di�usivity. �e addition of
a fourth negative charge along the bisector of the H–O–H bond creates the tip4p
model (Jorgensen et al., 1983) and its generalization tip4p/2005 (Abascal and Vega,
2005). �ese models are capable of producing many of the qualitative features of
the complicated water phase diagram. �e tip5p potential model (Mahoney and Jor-
gensen, 2000) supplements the three charges on the atoms with two negative charges
at the position of the lone pairs. �is model correctly predicts the density maximum
near 4 ◦C at 1 bar, and the liquid structure obtained from di�raction experiments.
Flexibility can be included in models such as spc/e using the intramolecular potential
of Toukan and Rahman (1985), in which anharmonic oscillators are used to represent
the O–H and H–H stretches. �ese �exible models predict many of the features of
the vibrational spectrum of the liquid (Praprotnik et al., 2005).
A recent study by Shvab and Sadus (2013) indicates that rigid models underestimate
the water structure and H-bond network at temperatures higher than 400 K and that
none of the models so far discussed can predict the heat capacities or thermal expan-
sion coe�cients of the liquid. To improve on this position it is necessary to include
polarization in the potential. Li et al. (2007a) show that the Matsuoka–Clementi–
Yoshimine potential ��ed from quantum calculations can be adapted to include
three-body dispersion interactions for O atoms and �uctuating charges to create the
more accurate mcyna model (Shvab and Sadus, 2013). �ese enhancements produce
good agreement with experimental data over the entire liquid range of temperatures.
Jones et al. (2013) have taken a di�erent approach by embedding a quantum Drude
oscillator (qdo) and using adiabatic path-integral molecular dynamics to simulate
4000 water molecules. Sokhan et al. (2015) show that this approach can produce ac-
curate densities, surface tensions, and structure over a range of temperatures. Models
of water in terms of pseudo-potentials to describe the nuclei and core electrons, and
a model of the exchange correlation function to describe the non-classical electron
repulsion between the valence electrons will be described in Chapter 13.
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where the relay matrix A = B−1 and

Bα β =



(αa )−1 if a = b
−Tα β if a , b .

(1.22)

Here A and B have dimensions of the number of sites involved in the polarization; this
can be a large matrix, so practically eqn (1.20) is solved in a simulation by iterating the
induced dipoles until convergence is achieved (Warshel and Levi�, 1976). �is method
can also be used with the distributed multipole analysis where the �eld at a polarizable
atom might contain terms from the charge, dipole and quadrupole at a neighbouring atom,
while the induction still occurs through the dipole polarizability (Ponder et al., 2010).

�ere is a well-known problem with these point polarizability models in which the
elements of A diverge at short separations: the so-called polarization catastrophe. �is is
caused by the normal breakdown in the multipole expansion at these distances. It can
be mitigated by smearing the charges on a particular site (�ole, 1981). �e e�ect of this
modi�cation is to change the interaction tensor to

T̃α β =
3ft (rab )α (rab )β − fer

2
abδα β

4πϵ0r
5
ab

(1.23)

where fe and ft are two, simple, damping functions. A useful discussion of the various
possible choices for these damping functions is given by Stone (2013). �e modi�ed tensor
T̃α β can now be used in eqn (1.20) to calculate the induced moments. Once the induced
dipole at atom a has been consistently determined then the induction energy associated
with that atom is

v
ind
a = −

1
2E

a
α∆µ

a
α . (1.24)

�e second method of including polarization in a model is the �uctuating charge
model, sometimes referred to as the electronegativity equalization model. �e partial
charges are allowed to �uctuate as dynamical quantities. We can illustrate this approach
by considering a model for water (Sprik, 1991). In addition to the three permanent charges
normally used to represent the electrostatic moments, four additional �uctuating charges
are disposed in a tetrahedron around the central oxygen atom (see Fig. 1.9). �e magnitudes
of the charges qi (t ) �uctuate in time, but they preserve overall charge neutrality

4∑
i=1

qi (t ) = 0 (1.25)

and they produce an induced dipole

∆µ =
4∑
i=1

qi (t )ri (1.26)

where ri are the vectors describing the positions of the tetrahedral charges with respect to
the O atom. If |ri | � rOH then the higher moments of the �uctuating charge distribution
can be neglected. �e potential energy from the four charges is the sum of the electrostatic
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q1 (t )q2 (t )

q3 (t )
q4 (t )

+q

H
+q

H

−2q

O

Fig. 1.9 A polarizable model for water (Sprik, 1991). �e oxygen nucleus, O, is at the centre of
the small tetrahedron. �e three permanent charges +q, +q and −2q, at the �lled black spheres,
are arranged to model the permanent electrostatic potential of water. �e four �uctuating charges,
qi (t ), located at the white spheres, respond to the surrounding �eld and can be used to model the
polarization of the molecule.

energy (−∆µ · E) and a self energy term (∆µ2/2αO) where αO is the dipole polarizability
associated with the oxygen atom. �e �uctuating charges in this model can be determined
by minimizing the potential energy in a given con�guration subject to the constraint of
charge neutrality, eqn (1.25),

∂

∂qi

( ���
∑4

i=1 qiri
���
2

2αO
−

4∑
i=1

qiri · E
)
= 0. (1.27)

�is approach can be extended to more complicated molecules by adding the appropriate
number of �uctuating charges; and simpli�ed to study spherical ions by including just
two �uctuating charges within the spherical core. In these models, the �uctuating charges,
qi , are a crude representation of the electronic charge density and these can be usefully
replaced by more realistic Gaussian charge distributions of width σ

ρi (r) = qi

(
1

2πσ 2

)3/2
exp

(
−

���r − ri
���
2

2σ 2

)
. (1.28)

�is improves the description of the polarization, particularly at short intermolecular
separations (Sprik and Klein, 1988). We note that these models can be readily included
in a molecular dynamics simulation by se�ing up separate equations of motions for the
�uctuating charges (Sprik and Klein, 1988; Rick et al., 1994), and we shall consider this
approach in Section 3.11.

�e third approach is the Drude oscillator model or shell model. A polarizable site
is represented as a heavy core particle of charge qd and a massless or light shell particle
of charge −qd. �ese two particles are connected by a harmonic spring with a spring
constant k . �e minimum in the spring potential is obtained when the core and shell are
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coincident. �e small charge qd is in addition to the permanent charge at a particular site.
�e shell and core can separate to produce an induced dipole moment

∆µ = −qd∆r (1.29)

where ∆r is the vector from the core to the shell. �e repulsion–dispersion interactions
associated with a particular site are normally centred on the shell part of the site.

In the adiabatic implementation the shell is massless and at each step of a simulation
the positions of the shells are adjusted iteratively to achieve the minimum energy con�g-
uration. In the dynamic model the shells are given a low mass (0.5 u) and an extended
Lagrangian approach is used to solve the dynamics for short timesteps. In this case the
shell particles are coupled to a heat bath at a low temperature (see Section 3.11). For these
models, the atomic polarizability is isotropic and given by αa = q2

d/k . Procedures are avail-
able for parameterizing the shell models to produce the correct molecular polarizabilities
and electrostatic moments (Anisimov et al., 2005).

�e model for water, shown in Fig. 1.9, begs the question as to whether we need to
use a separate intermolecular potential to represent the hydrogen bond between two
molecules. �e hydrogen bond, between an H atom in one molecule and a strongly
electronegative atom in another, is part permanent electrostatic interaction, part induced
interaction, and some charge transfer. �e evidence as reviewed by Stone (2013) indicates
that the a�ractive electrostatic interaction is the most important term in determining
the structure of the hydrogen-bonded dimer but that induced interactions will make an
important contribution in condensed phases. It should be possible to avoid a separate
hydrogen-bond potential by including an accurate representation of the electrostatic
interactions (by using, for example, the distributed multipole approach) and by including
polarization.

For larger molecules it may not be reasonable to ‘�x’ all the internal degrees of freedom.
In particular, torsional motion about bonds, which gives rise to conformational inter-
conversion in, for example, alkanes, cannot in general be neglected (since these motions
involve energy changes comparable with normal thermal energies). An early simulation
of n-butane, CH3CH2CH2CH3 (Ryckaert and Bellemans, 1975; Maréchal and Ryckaert,
1983), provides a good example of the way in which these features are incorporated in
a simple model. Butane can be represented as a four-centre molecule, with �xed bond
lengths and bond-bending angles, derived from known experimental (structural) data (see
Fig. 1.10). A very common simplifying feature is built into this model: whole groups of
atoms, such as CH3 and CH2, are condensed into spherically symmetric e�ective ‘united
atoms’. In fact, for butane, the interactions between such groups may be represented quite
well by the ubiquitous Lennard-Jones potential, with empirically chosen parameters. In
a simulation, the C1−C2, C2−C3 and C3−C4 bond lengths are held �xed by a method of
constraints, which will be described in detail in Chapter 3. �e angles θ and θ ′ may be
�xed by additionally constraining the C1−C3 and C2−C4 distances; that is, by introducing
‘phantom bonds’. If this is done, just one internal degree of freedom, namely the rotation
about the C2−C3 bond, measured by the angle ϕ, is le� unconstrained; for each molecule,
an extra term in the potential energy, vtorsion (ϕ), appears in the Hamiltonian. �is potential
would have a minimum at a value of ϕ corresponding to the trans conformer of butane,
and secondary minima at the gauche conformations. It is easy to see how this approach
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Fig. 1.10 (a) Geometry of a model of butane de�ning bending angles θ , θ ′ and the torsional angle
ϕ (Ryckaert and Bellemans, 1975). (b) �e torsional potential, in the aua(2) model of Padilla and
Toxvaerd (1991) as reviewed in Dysthe et al. (2000).

may be extended to much larger �exible molecules. �e consequences of constraining
bond lengths and angles will be treated in more detail in Chapters 2 and 4.

As the molecular model becomes more complicated, so too do the expressions for the
potential energy, forces, and torques, due to molecular interactions. In Appendix C, we
give some examples of these formulae, for rigid and �exible molecules, interacting via
site–site pairwise potentials, including multipolar terms. We also show how to derive the
forces from a simple three-body potential.

1.3.4 Coarse-grained potential models

Coarse graining a potential involves avoiding the full atomic representation of the
molecules to �nd a description of the interaction at a longer or coarser length scale.
We have already seen one simple example of this in the use of a united-atom potential for
the methylene and methyl groups in butane. Coarse graining will reduce the number of
explicit pairs that are needed for the calculation of the energy and force for a particular
system and will reduce the computer time or, alternatively, allow us to study a much
larger system. Normally an increase in the characteristic length scale in the model goes
hand in hand with an increase in the timestep that we can use in a dynamical simulation
of the problem. Coarse graining will allow us to use a longer timestep and to cover more
‘real’ time in our simulation.

One �avour of coarse-grained model has been widely used to study liquid crystalline
systems, exhibiting some long-range orientational order. For example, for the nematogen
quinquaphenyl, a large rigid molecule that forms a nematic phase, a substantial number
of sites would be required to model the repulsive core. A crude model, which represented
each of the �ve benzene rings as a single Lennard-Jones site, would necessitate 25 site–site
interactions between each pair of molecules; sites based on each carbon atom would be
more realistic but require 900 site–site interactions per pair. An alternative coarse-grained
representation of intermolecular potential, introduced by Corner (1948), involves a single
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site–site interaction between a pair of molecules, characterized by energy and length
parameters that depend on the relative orientation of the molecules.

A version of this family of molecular potentials that has been used in computer
simulation studies is the Gay–Berne potential (Gay and Berne, 1981). �is is an extension
of the Gaussian overlap model generalized to a Lennard-Jones form (Berne and Pechukas,
1972). �e basic potential acting between two linear molecules is

v
GB (ri j , êi , êj ) = 4ϵ (r̂, êi , êj )

[
(σs/ρi j )

12 − (σs/ρi j )
6

]
, (1.30a)

where ρi j = ri j − σ (r̂, êi , êj ) + σs. (1.30b)

Here, ri j is the distance between the centres of i and j, and r̂ = ri j/ri j is the unit vector
along ri j , while êi and êj are unit vectors along the axis of the molecules. �e molecule
can be considered (approximately) as an ellipsoid characterized by two diameters σs and
σe, the separations at which the side-by-side potential, and the end-to-end potential,
respectively, become zero. �us

σ (r̂, êi , êj ) = σs

[
1 − χ

2

(
(êi · r̂ + êj · r̂)2

1 + χ (êi · êj )
+

(êi · r̂ − êj · r̂)2

1 − χ (êi · êj )

)]−1/2

(1.31a)

where χ =
κ2 − 1
κ2 + 1 , and κ = σe/σs. (1.31b)

κ is the elongation and χ is the shape anisotropy parameter (κ = 1, χ = 0 for spherical
particles, κ → ∞, χ → 1 for very long rods, and κ → 0, χ → −1 for very thin disks).

�e energy term is the product of two functions

ϵ (r̂, êi , êj ) = ϵ0 ϵ
ν
1 (êi , êj ) ϵ

µ
2 (r̂, êi , êj ) (1.32a)

where

ϵ1 (êi , êj ) =
(
1 − χ 2 (êi · êj )2

)−1/2
(1.32b)

ϵ2 (r̂, êi , êj ) = 1 − χ ′

2

(
(êi · r̂ + êj · r̂)2

1 + χ ′(êi · êj )
+

(êi · r̂ − êj · r̂)2

1 − χ ′(êi · êj )

)
(1.32c)

and the energy anisotropy parameter is

χ ′ =
κ ′1/µ − 1
κ ′1/µ + 1

, where κ ′ = ϵss/ϵee. (1.32d)

ϵss and ϵee are the well depths of the potentials in the side-by-side and end-to-end con-
�gurations respectively. �e potential is illustrated for these arrangements, as well as
for T-shaped and crossed con�gurations, in Fig. 1.11. �e original model, with exponents
µ = 2, ν = 1, and parametersκ = 3,κ ′ = 5, was used to mimic four collinear Lennard-Jones
sites (Gay and Berne, 1981). �e potential and corresponding force and torque can be
readily evaluated and the functional form is rich enough to create mesogens of di�erent
shapes and energy anisotropies that will form the full range of nematic, smectic, and
discotic liquid crystalline phases (Luckhurst et al., 1990; Berardi et al., 1993; Allen, 2006a;
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Fig. 1.11 �e Gay-Berne potential, with parameters µ = 1, ν = 3, κ = 3, κ ′ = 5 (Berardi et al.,
1993), as a function of centre–centre separation, for various molecular orientations.

Luckhurst, 2006). It is discussed further in Appendix C. Extensions of the potential, and
its use in modelling liquid crystals, are discussed by Zannoni (2001).

�e martini approach is a coarse-grained potential developed for modelling lipid
bilayers (Marrink et al., 2004; 2007) and proteins (Monticelli et al., 2008). In this model
the bonded hydrogen atoms are included with their heavier partners, such as C, N, or
O. �ese united atoms are then further combined using a 4:1 mapping to create larger
beads (except in the case of rings where the mapping is normally 3:1). For these larger
beads, there are four di�erent bead types: charged (Q), polar (P), nonpolar (N), and apolar
(C). Each of these types is further subdivided depending on the bead’s hydrogen-bond
forming propensities or its polarity. Overall there are 18 bead-types and each pair of
beads interacts through a Lennard-Jones potential where the σ and ϵ parameters are
speci�c to the atom types involved. Charged beads also interact through Coulombic
potentials. �e intramolecular interactions (bonds, angles, and torsions) are derived from
atomistic simulations of crystal structures. �is kind of moderate coarse graining has
been successfully applied to simulations of the clustering behaviour of the membrane
bound protein syntaxin-1A (van den Bogaart et al., 2011) and the simulation of the domain
partitioning of membrane peptides (Schäfer et al., 2011).

It is possible to coarse grain potentials in a way that results in larger beads, that might
contain 1–3 Kuhn chain-segments of a polymer or perhaps ten solvent molecules. We will
consider this approach more fully in Chapter 12. However, at this point, we mention a
very simple coarse-grained model of polymer chains due to Kremer and Grest (1990) and
termed the �nitely extensible nonlinear elastic (fene) model. �e bonds between beads
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Fig. 1.12 �e potential between bonded atoms in a coarse-grained polymer (solid line) together
with its component parts (dashed lines): the a�ractive fene potential, eqn (1.33) with R0 = 1.5σ
and k = 30ϵ/σ 2, and the repulsive Lennard-Jones potential, eqn (1.10a). Also shown (do�ed line)
is a harmonic potential, ��ed to the curvature at the minimum. See Kremer and Grest (1990) for
details.

within the chain are represented by the potential energy

v
FENE (r ) =




− 1
2kR

2
0 ln

(
1 − (r/R0)

2
)

r < R0

∞ r ≥ R0.
(1.33)

�is is combined with the potential vRLJ (r ) of eqn (1.10a), representing the e�ects of
excluded volume between every pair of beads (including those that are bonded together).
�e key feature of this potential is that it cannot be extended beyond r = R0. �is is
important when studying entanglement e�ects: the simpler harmonic potential could, in
principle, extend enough to let chains pass through one another, in some circumstances.

Finally, there has been considerable e�ort to develop a simple, single-site coarse-
grained potential for water. One approach (Molinero and Moore, 2009; Moore and Mo-
linero, 2011) has been to abandon the long-range electrostatics conventionally associated
with hydrogen bonds, and use instead short-range directional interactions, of the kind
previously used to model silicon (Stillinger and Weber, 1985). �e resulting monatomic
water (mW) model is very cheap to simulate but surprisingly successful in reproducing
experimental structural and thermodynamic properties. Can one go further? It is di�cult
to imagine that a spherical, isotropic potential will be able to capture the strong association
interactions in the �uid. Nevertheless, Lobanova et al. (2015) have used a Mie potential, a
versatile form of the standard Lennard-Jones potential, where

vMie (r ) = Cϵ

[(
σ

r

)n
−

(
σ

r

)m ]
, with C =

(
n

n −m

) (
n

m

)m/(n−m)

. (1.34)
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A potential with n = 8 andm = 6 can be used with temperature-dependent energy and
length parameters to represent the thermophysical properties of water over a broad range
of conditions. However, a simpler form where ϵ and σ are independent of temperature
can be used to represent water in the calculation of mixture phase diagrams such as
CO2/H2O (Müller and Jackson, 2014). We brie�y discuss this approach to coarse graining
in Section 12.7.3. �e examples just given are two amongst many a�empts to model water
in a coarse-grained way (for a review see Hadley and McCabe, 2012).

1.3.5 Calculating the potential

�is is an appropriate point to introduce a piece of computer code, which illustrates
the calculation of the potential energy in a system of Lennard-Jones atoms. Simulation
programs are wri�en in a range of languages: Fortran, C, and C++ are the most common,
sometimes with a wrapper wri�en in Python or Java. Here we shall use Fortran, which
has a compact notation for arrays and array operations, and is simple enough to be
read as a ‘pseudo-code’. Appendix A contains some discussion of di�erent programming
approaches, and a summary of some of the issues a�ecting e�ciency. We suppose that
the coordinate vectors of our atoms are stored in an array r of rank two, with dimensions
(3,n), where the �rst index covers the x , y , and z components, and the second varies
from 1 to n (equal to N , the number of particles). �e potential energy will be stored in a
variable pot, which is zeroed initially, and is then accumulated in a double loop over all
distinct pairs of atoms, taking care to count each pair only once. �is is shown in Code 1.2.
�e Lennard-Jones parameters ϵ and σ are assumed to be stored in the variables epslj and
sigma respectively. �e colon ‘:’ is short for an implied loop over the corresponding index,
so the statement rij(:) = r(:,i) - r(:,j) stands for the vector assignment ri j = ri−rj .
�e SUM function simply adds the components of its (array) argument, which in this case
gives r 2

i j = x2
i j + y

2
i j + z

2
i j . Code 1.2 takes no account of periodic boundary conditions (we

return to this in Section 1.6.2). Some measures have been taken here to avoid unnecessary
use of computer time. �e value of σ 2 is computed once beforehand, and stored in the
variable sigma_sq; the factor 4ϵ , which appears in every pair potential term, is multiplied
in once, at the very end. �e aim is to avoid many unnecessary operations within the
crucial ‘inner loop’ over index j. �e more general questions of time-saving tricks in this
part of the program are addressed in Chapter 5. �e extension of this type of double loop to
deal with other forms of the pair potential, and to compute forces in addition to potential
terms, is straightforward, and examples will be given in later chapters. For molecular
systems, the same general principles apply, but additional loops over the di�erent sites or
atoms in a molecule may be needed. For example, consider the site–site diatomic model
of eqn (1.12) and Fig. 1.6. �en the intermolecular interactions might be computed as in
Code 1.3. Note that, apart from the dependence of the range of the j loop on the index
i, the order of nesting of loops is a ma�er of choice. Here, we have placed a loop over
molecular indices innermost; assuming that n is relatively large, and depending on the
machine architecture, this may improve the e�ciency of fetching the relevant coordinates
from memory (in Fortran, the arrays are stored so that the �rst indices vary rapidly, and
the last indices vary slowly, so there is usually an advantage in accessing contiguous
blocks of memory, or cache, in sequence). Simulations of molecular systems may also
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Code 1.2 Double loop for Lennard-Jones potential
�is code snippet illustrates the calculation of the potential energy for a system of
Lennard-Jones atoms, using a double loop over the atomic indices. �e declarations
at the start are given just to remind us of the types and sizes of variables and arrays
(some notes on precision of variables appear in Appendix A).

INTEGER :: n, i, j
REAL , DIMENSION(3,n) :: r
REAL , DIMENSION (3) :: rij
REAL :: epslj , sigma , sigma_sq
REAL :: pot , rij_sq , sr2 , sr6 , sr12
sigma_sq = sigma ** 2
pot = 0.0
DO i = 1, n-1

DO j = i+1, n
rij(:) = r(:,i) - r(:,j)
rij_sq = SUM ( rij ** 2 )
sr2 = sigma_sq / rij_sq
sr6 = sr2 ** 3
sr12 = sr6 ** 2
pot = pot + sr12 - sr6

END DO
END DO
pot = 4.0 * epslj * pot

involve the calculation of intramolecular energies, which, for site–site potentials, will
necessitate a triple summation (over i, a, and b).

�ese examples are essentially summations over pairs of interaction sites in the system.
Any calculation of three-body interactions will, of course, entail triple summations over
distinct triplets of indices i, j, and k; these will be much more time consuming than the
double summations described here. Even for pairwise-additive potentials, the energy or
force calculation is the most expensive part of a computer simulation. We will return to
this crucial section of the program in Chapter 5.

1.4 Constructing an intermolecular potential from �rst
principles

1.4.1 Introduction

�ere are two approaches to constructing an intermolecular potential for use in a sim-
ulation. For small, simple molecules and their mixtures, it is possible to customize a
model, with considerable freedom in choosing the functional form of the potentials and in
adjusting the parameters for the problem at hand. For larger molecules such as polymers,
proteins, or dna, either in solution or at a surface, or for multi-component mixtures
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Code 1.3 Site–site potential energy calculation
�e coordinates ria of site a in molecule i are stored in the elements r(:,i,a) of a
rank-3 array; for a system of diatomic molecules na=2.

INTEGER :: n, i, j, a, b
REAL , DIMENSION(3,n,na) :: r
REAL , DIMENSION (3) :: rij
DO a = 1, na

DO b = 1, na
DO i = 1, n - 1

DO j = i + 1, n
rij(:) = r(:,i,a) - r(:,j,b)
... calculate the i-j interaction ...

END DO
END DO

END DO
END DO

containing many di�erent types of molecule, then it will be more usual to employ one of
the standard force �elds (consisting of �xed functional forms for the potentials combined
with parameters corresponding to the many di�erent atom types in the simulation). We
will cover the �rst aspect of model building in this section and consider force �elds in
Section 1.5.

�ere are essentially two stages in se�ing up a model for a realistic simulation of
a given system. �e �rst is ‘ge�ing started’ by constructing a �rst guess at a potential
model. �is will allow some preliminary simulations to be carried out. �e second is to
use the simulation results, in comparison with experiment, to re�ne the potential model
in a systematic way, repeating the process several times if necessary. We consider the
two phases in turn.

1.4.2 Building the model potential

To illustrate the process of building up an intermolecular potential from �rst principles,
we consider a small molecule, such as N2, OCS, or CH4, which can be modelled using the
interaction site potentials discussed in Section 1.3. �e essential features of this model
will be an anisotropic repulsive core, to represent the shape, an anisotropic dispersion
interaction, and some partial charges or distributed multipoles to model the permanent
electrostatic e�ects. �is crude e�ective pair potential can then be re�ned by using it
to calculate properties of the gas, liquid, and solid, and comparing with experiment.
Each short-range site–site interaction can be modelled using a Lennard-Jones potential.
Suitable energy and length parameters for interactions between pairs of identical atoms
in di�erent molecules are available from a number of simulation studies. Some of these
are given in Table 1.1. �e energy parameter ϵ increases with atomic number as the
polarizability goes up; σ also increases down a group of the Periodic Table, but decreases
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Table 1.1 Atom–atom interaction parameters

Atom Source ϵ/kB (K) σ (nm)
H Murad and Gubbins (1978) 8.6 0.281
He Maitland et al. (1981) 10.2 0.228
C Tildesley and Madden (1981) 51.2 0.335
N Cheung and Powles (1975) 37.3 0.331
O English and Venables (1974) 61.6 0.295
F Singer et al. (1977) 52.8 0.283
Ne Maitland et al. (1981) 47.0 0.272
S Tildesley and Madden (1981) 183.0 0.352
Cl Singer et al. (1977) 173.5 0.335
Ar Maitland et al. (1981) 119.8 0.341
Br Singer et al. (1977) 257.2 0.354
Kr Maitland et al. (1981) 164.0 0.383

from le� to right across a period with the increasing nuclear charge. For elements which
do not appear in Table 1.1, a guide to ϵ and σ might be provided by the polarizability
and van der Waals radius respectively. �ese values are only intended as a reasonable
�rst guess: they take no regard of chemical environment and are not designed to be
transferable. For example, the carbon atom parameters in CS2 given in the table are quite
di�erent from the values appropriate to a carbon atom in graphite (Crowell, 1958).

Interactions between unlike atoms in di�erent molecules can be approximated using
the venerable Lorentz–Berthelot combining rules. For example, in CS2 the cross-terms are

σCS =
1
2

(
σCC + σSS

)
, ϵCS =

(
ϵCCϵSS

)1/2
. (1.35)

�ese rules are approximate; the ϵ cross-term expression, especially, is not expected to be
appropriate in the majority of cases (Delhommelle and Millié, 2001; Haslam et al., 2008).

In tackling larger molecules, it may be necessary to model several atoms as a uni�ed
site. We have seen this for butane in Section 1.3, and a similar approach has been used in a
model of benzene (Evans and Wa�s, 1976). �e speci�cation of an interaction site model
is made complete by de�ning the positions of the sites within the molecule. Normally,
these are located at the positions of the nuclei, with the bond lengths obtained from a
standard source (CRC, 1984).

Rapid progress has been made in ��ing the parameters for many classical pair poten-
tials using ab initio quantum mechanical calculations. For example, symmetry-adapted
perturbation theory, based on a density-functional approach, can be used to calculate
separable and transferable parameters for the dispersion and electrostatic interactions
(McDaniel and Schmidt, 2013). Calculations on monomers are used to estimate asymptotic
properties such as charge and polarizability, while dimer calculations are used to estimate
the parameters depending on charge density overlaps. �e resulting parameters can be
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used with simple functional forms in simulations and the technique has recently been
applied to the parameterization and simulation of an ionic liquid (Son et al., 2016).

�e site–site Lennard-Jones potentials include an anisotropic dispersion which has
the correct r−6 radial dependence at long range. However, this is not the exact result for
the anisotropic dispersion from second-order perturbation theory. �e correct formula, in
an appropriate functional form for use in a simulation, is given by Burgos et al. (1982). Its
implementation requires an estimate of the polarizability and polarizability anisotropy of
the molecule.

It is also possible to improve the accuracy of the overall repulsion–dispersion interac-
tion by considering an anisotropic site–site potential in place of vab (rab ) in eqn (1.12). In
other words, in a diatomic model of a chlorine molecule, the interatomic potential between
chlorine atoms in di�erent molecules would depend on rab and the angles between rab
and intramolecular bonds. �is type of model has been used to rationalize the liquid and
solid structures of liquid Cl2, Br2, and I2 (Rodger et al., 1988a,b).

�e most straightforward way of representing electrostatic interactions is through
partial charges as discussed in Section 1.3. To minimize the calculation of site–site distances
they can be made to coincide with the Lennard-Jones sites, but this is not always desirable
or possible; the only physical constraint on partial charge positions is that they should not
lie outside the repulsive core region, since the potential might then diverge if molecules
came too close. �e magnitudes of the charges can be chosen to duplicate the known
gas-phase electrostatic moments (Gray and Gubbins, 1984, Appendix D). Alternatively,
the moments may be taken as adjustable parameters. For example, in a simple three-site
model of N2 representing only the quadrupole–quadrupole interaction, the best agreement
with condensed phase properties is obtained with charges giving a quadrupole 10 %–15 %
lower than the gas-phase value (Murthy et al., 1980). However, a sensible strategy is to
begin with the gas-phase values, and alter the repulsive core parameters ϵ and σ before
changing the partial charges.

Partial charges can also be developed using theoretical calculations. Bayly et al. (1993)
have developed the widely used restrained electrostatic potential (resp) method. In this
technique:

(a) a molecule is placed in a 3D grid of points;
(b) the electrostatic potential is calculated at each grid point, outside the repulsive core,

using a quantum mechanical calculation;
(c) a charge at each atom of the molecules is adjusted to reproduce the electrostatic

potential at the grid points as accurately as possible.

Typically, accurate enough quantum mechanical estimates of the electrostatic �eld can
be obtained using the 6-31G∗ level of the Gaussian code (Frisch et al., 2009). In order to
make this ��ing procedure robust and to obtain charges that are transferable between
di�erent molecules, it is necessary to minimize the magnitude of the charges that will �t
the �eld. �is is achieved using a hyperbolic restraint function in the minimization that
pulls the magnitude of the charges towards zero.

Distributed multipoles and polarizabilities, for molecules containing up to about 60
atoms, can be calculated from �rst principles using the camcasp package developed by
Stone and co-workers (Misqui�a and Stone, 2013).



Force �elds 29

1.4.3 Adjusting the model potential

�e �rst-guess potential can be used to calculate a number of properties in the gas, liquid,
and solid phases; comparison of these results with experiment may be used to re�ne the
potential, and the cycle can be repeated if necessary. �e second virial coe�cient is given
by

B (T ) = −
2π
Ω2

∫ ∞

0
r 2
i jdri j

∫
dΩi

∫
dΩj exp

[
−v(ri j , Ωi , Ωj )/kBT

]
− 1 (1.36)

where Ω = 4π for a linear molecule and Ω = 8π2 for a non-linear one. �is multidi-
mensional integral (four-dimensional for a linear molecule and six-dimensional for a
non-linear one) is easily calculated using a non-product algorithm (Murad, 1978). Experi-
mental values of B (T ) have been compiled by Dymond and Smith (1980). Trial and error
adjustment of the Lennard-Jones ϵ and σ parameters should be carried out, with any
bond lengths and partial charges held �xed, so as to produce the closest match with the
experimental B (T ). �is will produce an improved potential, but still one that is based on
pair properties.

�e next step is to carry out a series of computer simulations of the liquid state,
as described in Chapters 3 and 4. �e densities and temperatures of the simulations
should be chosen to be close to the orthobaric curve of the real system, that is, the liquid–
vapour coexistence line. �e output from these simulations, particularly the total internal
energy and the pressure, may be compared with the experimental values. �e coexisting
pressures are readily available (Rowlinson and Swinton, 1982), and the internal energy
can be obtained approximately from the known latent heat of evaporation. �e energy
parameters ϵ are adjusted to give a good �t to the internal energies along the orthobaric
curve, and the length parameters σ altered to �t the pressures. If no satisfactory �t is
obtained at this stage, the partial charges may be adjusted. It is also possible to adjust
potential parameters to reproduce structural properties of the liquid, such as the site–site
pair distribution functions (see Section 2.6), which can be extracted from coherent neutron
di�raction studies using isotopic substitution (Cole et al., 2006; Zeidler et al., 2012).

Although the solid state is not the province of this book it o�ers a sensitive test
of any potential model. Using the experimentally observed crystal structure, and the
re�ned potential model, the la�ice energy at zero temperature can be compared with the
experimental value (remembering to add a correction for quantum zero-point motion).
In addition, the la�ice parameters corresponding to the minimum energy for the model
solid can be compared with the values obtained by di�raction, and also la�ice dynamics
calculations (Neto et al., 1978) used to obtain phonons, librational modes, and dispersion
curves of the model solid. Finally, we can ask if the experimental crystal structure is
indeed the minimum energy structure for our potential. �ese constitute severe tests of
our model-building skills (Price, 2008).

1.5 Force �elds
In approaching the simulation of a complicated system, there might be 30 di�erent atom
types to consider and several hundred di�erent intra- and inter-molecular potentials to �t.
One would probably not want to build the potential model from scratch. Fortunately, it is
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possible to draw on the considerable body of work that has gone into the development of
consistent force �elds over the last 50 years (Bixon and Lifson, 1967; Lifson and Warshel,
1968; Ponder and Case, 2003).

A force �eld, in the context of a computer simulation, refers to the functional forms
used to describe the intra- and inter-molecular potential energy of a collection of atoms,
and the corresponding parameters that will determine the energy of a given con�guration.
�ese functions and parameters have been derived from experimental work on single
molecules and from accurate quantum mechanical calculations. �ey are o�en re�ned by
the use of computer simulations to compare calculated condensed phase properties with
experiment. �is is precisely the same approach described in Section 1.4.3, but on a bigger
scale, so that the transferable parameters developed can be used with many di�erent
molecules. Some examples of widely used force �elds are given in Table 1.2. �is list is
representative and not complete. �e individual force �elds in the table are constantly
being updated and extended. For example, the opls force �eld has been re�ned to allow
for the modelling of carbohydrates (Kony et al., 2002) and the opls and amber force �elds
have been used as the basis of a new �eld for ionic liquids (Lopes et al., 2004). Extensions
and versions are o�en denoted by the �XX speci�cation following the force �eld name. A
short search of the websites of the major force �elds will establish the latest version and
the most recent developments.

Force �elds are o�en divided into three classes. Class I force �elds normally have a
functional form of the type

V =
∑

bonds

1
2kr (ri j − r0)

2 +
∑

angles

1
2kθ (θi jk − θ0)

2

+
∑

torsions

∑
n

kϕ,n[cos(nϕi jk` + δn ) + 1] +
∑

non-bonded
pairs

[
qiqj

4πϵ0ri j
+
Ai j

r 12
i j
−
Bi j

r 6
i j

]
. (1.37)

�e �rst term in eqn (1.37) is a sum over all bonds, with an equilibrium bond-length
r0. �ere is one term for every pair ij of directly connected atoms. In some force �elds
the harmonic potential can be replaced by a more realistic functional form, such as
the Morse potential, or the bonds can be �xed at their equilibrium values. �e second
term is a sum over all bond angles. �ere is one term for each set of three connected
atoms ijk and it usually has a quadratic form. �e third term is the sum over all torsions
involving four connected atoms ijk`. In principle, this is an expansion in trigonometric
functions with di�erent values of n, the multiplicity (i.e. the number of minima in a
rotation of 2π around the j–k bond); many force �elds �x n = 3. �is term can also
include improper torsions, where the four atoms de�ning the angle are not all connected
by covalent bonds; such terms serve primarily to enforce planarity around sp2 centres
and use a variety of functional forms (Tuzun et al., 1997). �e fourth term is a sum over
the non-bonded interactions (between molecules and within molecules). In particular, it
describes the electrostatic and repulsion–dispersion interactions. It invariably excludes
1–2 and 1–3 pairs in the same molecule. Some force �elds do include a non-bonded 1–4
interaction but the parameters A′i j , B′i j describing this interaction can be di�erent from
the values for atoms separated by more than three bonds (a scaling factor of 0.4 is used
in the param19 force �eld of charmm (Brooks et al., 1983)). In some force �elds, the r−12

i j
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Table 1.2 Force �elds and their domains of application. �is list is not complete and simply includes representative
examples of some of the force �elds commonly used in liquid-state simulations.

Force �eld Class Domain of Application Source
opls I peptides, small organics Jorgensen et al. (1996)
charmm22 I proteins with explicit water Mackerell et al. (1998)
charmm27 I dna, rna, and lipids Mackerell et al. (1998)
amber �99 I peptides, small organics, resp charges Wang et al. (2000)
gaff I small organics, drug design Wang et al. (2004)
gromos �G45a3 I lipids, micelles Schuler et al. (2001)
compass II small molecules, polymers Sun (1998)
clayff II hydrated minerals Cygan et al. (2004)
mm4 II small organics, coordination compounds Allinger et al. (1996)
uff II full Periodic Table (including actinides) Rappe et al. (1992)
amber �02 III polarizable atoms Cieplak et al. (2001)
amoeba III polarizable multipoles, distributed multipoles Ponder et al. (2010)
martini III coarse-grained, proteins, lipids, polymers Marrink et al. (2007)
reaxff III chemical reactions van Duin et al. (2001)
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repulsion (associated with the Lennard-Jones potential) is replaced by an r−9
i j repulsion

which can produce be�er agreement with direct quantum calculations of the repulsion
(Hagler et al., 1979; Halgren, 1992). �e exponential form of the repulsion (A exp(−Bri j ))
was used in earlier versions of the amber force �elds (mm2 and mm3) but has now been
replaced by the r−12

i j repulsion. �e cross-interactions for the parameters in the repulsion–
dispersion potential are o�en described using the Lorentz–Berthelot combining rules or
an alternative such as the Slater–Kirkwood formula (Slater and Kirkwood, 1931). If these
crossed interactions are important in the model they can be determined directly by ��ing
to experiment. In class I force �elds, a simple Coulombic term is used to describe the
interaction between the partial charges, which represent the electrostatic interactions
between molecules.

Di�erent parameters are required for di�erent atoms in di�erent environments, and
all of the atom types in the model must be speci�ed. For example, in the gromos force
�eld �G45a3 (Schuler et al., 2001), there are 12 types of C atoms, six Os, six Ns, four Cls,
three Hs, two Ss, two Cus and one type for each of the remaining common atoms. �e
parameters {kr ,kθ ,kϕ,n ,δn ,qi ,qj ,Ai j ,Bi j } are then speci�ed for combinations of the atom
types. For example, in a peptide chain, which contains C, N, and Cα atom types along
the backbone (where C is a carbon additionally double-bonded to an oxygen and Cα is a
carbon additionally connected to a hydrogen and a side chain) we would require kr for
the C–N stretch, a di�erent kr for the N–Cα stretch, kθ for the C–N–Cα bend, kϕ,n , for
the C–N–Cα–C torsion, and additional parameters for the other bends and torsion in the
backbone.

All-atom force �elds provide parameters for every type of atom in a system, including
hydrogen, while united-atom force �elds treat the hydrogen and carbon atoms in each
terminal methyl and each methylene bridge as a single interaction centre.

A class II force �eld normally adds cubic or anharmonic terms to the stretching
potentials and de�nes explicit o�-diagonal elements in the force constant matrix. �us,
the force �eld will contain terms of the form

v
str–str (r12, r23) = k12,23 (r12 − r12,0) (r23 − r23,0)

v
bend–str (θ123, r12) = k123,12 (θ123 − θ123,0) (r12 − r12,0) (1.38)

where r12 and r23 are two adjacent bonds in the molecule, which include the angle θ123.
�ese additional potentials represent the fact that bonds, angles and torsions are not inde-
pendent in molecules. Most cross-terms involve two internal coordinates and Dinur and
Hagler (1991) have used quantum mechanical calculations to show that the stretch–stretch,
stretch–bend, bend–bend, stretch–torsion, and bend–bend–torsion are the important
coupling terms. �e cross-terms are essential to include in models when a�empting to
calculate accurate vibrational frequencies. Despite the additional complexity, Class II force
�elds, such as compass and cff, have been used to good e�ect in liquid-state simulations
(Peng et al., 1997; Sun, 1998).

Class III force �elds go beyond the basic prescription to include more accurate rep-
resentations of the electrostatic interactions between molecules and the inclusion of
polarizability (as discussed in Section 1.3.3). For example, the amoeba force �eld includes
distributed multipoles and the atom polarizabilities with the �ole modi�cation of the
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interaction tensor. �is class would also include coarse-grained force �elds such as mar-
tini used to model lipids, proteins, and carbohydrates (see Section 1.3.4) and force �elds
speci�cally designed to model chemical reactions such as reaxff. reaxff includes a set of
relationships between the bond distance and the bond order of a particular covalent bond.
Once the bond order is determined, the associated bond energy can be calculated. �is
procedure results in proper dissociation of bonds to separated atoms at the appropriate
distances.

A�er many decades of force �eld development, there are still considerable di�erences
between the predictions from even the Class I force �elds. In an excellent review of the �eld,
Ponder and Case (2003) compare simulations of a solvated dipeptide using charmm27,
amber94, and opls-aa force �elds to map the free energy of the dipeptide as a function of
the two torsional angles,ψ and ϕ. All three force �elds exhibitψ–ϕ maps that are di�erent
from one another and di�erent from the results of an ab initio simulation of the same
problem. In contrast, in considering the liquid-state properties for butane, methanol, and
N-methylacetamide, Kaminski and Jorgensen (1996) demonstrated reasonable agreement
between the amber94 and opls force �eld, both of which had been ��ed to liquid-state
properties. In this study the mmff94 force �eld, that had been optimized for gas-phase
geometries, needed to be adjusted to obtain the same level of agreement when applied
to the liquids. One important point is that it is not possible to mix and match di�erent
force �elds. �ey have been optimized as a whole and one should not a�empt to use parts
of one �eld with parts of another. �is means that devising force �elds to simulate very
di�erent materials interacting with each other is a particular challenge. As an illustration,
the steps taken to model the adsorption of biomolecules on the surface of metallic gold,
in water, are discussed in Example 1.2.

It is di�cult to make blanket recommendations concerning the use of particular force
�elds. Individual researchers will need to understand the kind of problems for which the
force �eld has been optimized to know if it can be applied to their particular problem.
One sensible strategy would be to check the e�ect of using a few of the more common
force �elds on the problem to understand the sensitivity of the results to this choice.

An important advantage of the force-�eld approach is that that particular �elds are
o�en associated with large simulation programs. �e acronyms charmm, amber, and
gromos can also stand for large molecular dynamics codes which have been designed
to work with the particular forms of a �eld and there are many examples of other codes
such as lammps (Plimpton, 1995) and dl poly (Todorov and Smith, 2011) that can take
standard force �elds with some adjustments. �ere is also a huge industry of analysis and
data manipulation programmes that have grown with the major force �elds and codes.

Of course, using these programmes as black-boxes is never a good idea and we plan in
this book to dig into the principles behind such codes. Equally, if one can take advantage
of the many years of careful development that have gone into producing these packages
in an informed way, an enormous range of complicated and important applications can
be tackled fairly quickly.
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Example 1.2 Peptide–gold potentials

Peptides, short chains of amino acids, may be designed so as to speci�cally favour
adsorption on certain material surfaces. �is underpins a range of possible bio-
nanotechnology applications (Care et al., 2015). Understanding this selectivity and
speci�city is a great challenge to molecular simulation: clearly the adsorption free
energy depends on many factors, including changes in peptide �exibility, its solvation,
and displacement of the water layer at the surface. Measurement of adsorption free
energies requires advanced simulation techniques (see Chapters 4 and 9); modelling
the potential energy of interaction between the surface and individual amino acids is
itself challenging, involving the cross-interaction between two very di�erent materi-
als (Di Felice and Corni, 2011; Heinz and Ramezani-Dakhel, 2016). Here we focus on
recent a�empts to model peptide interactions with the surface(s) of metallic gold.
A simple Lennard-Jones force �eld for a range of fcc metals, including gold, has been
proposed (Heinz et al., 2008): ϵAuAu and σAuAu are chosen to reproduce various exper-
imental bulk and surface properties, under ambient conditions. Water and peptide
atom–Au parameters are obtained by standard combining rules. Feng et al. (2011)
have used this potential to study the adsorption of individual amino acids on gold,
while Cannon et al. (2015) have used it to highlight solvent e�ects in peptide adsorp-
tion. A di�erent parameterization, similar in spirit, has been derived independently
(Vila Verde et al., 2009; 2011). �e whole method has been generalized to cover a
range of other materials (Heinz et al., 2013). Compatibility with standard force �elds,
such as charmm, is an advantage of this approach; polarization of the metal, and
chemisorption, however, are neglected.
A purely dispersive potential of this kind may have limitations when one considers
structure: adsorption (of water molecules or peptide atoms) onto hollow sites on
the surface is strongly favoured. On metallic surfaces, however, adsorption on top
of surface atoms is o�en preferred, as indicated by �rst-principles simulations. In
the golp force �eld (Iori et al., 2009), dynamical polarization of gold atoms is repre-
sented by a rotating dipole, and virtual interaction sites are introduced to tackle the
hollow-site adsorption problem. golp is parameterized using extensive �rst-principles
calculations and experimental data, with special consideration given to surface inter-
actions with sp2-hybridized carbons. An extension, golp–charmm, reparameterized
for compatibility with charmm, also allows consideration of di�erent gold surfaces
(Wright et al., 2013b,a), opening up the study of facet selectivity (Wright et al., 2015).
In golp, the gold atoms are held �xed during the simulation.
Tang et al. (2013) have compared golp results with experimental studies of peptide
adsorption, and with the force �eld of Heinz et al. (2008). While both models perform
reasonably well in describing the trend in amino acid adsorption energies, there are
areas such as the prediction of water orientation in the surface layer where golp–
charmm agrees be�er with �rst-principles simulations (Nadler and Sanz, 2012). �is
approach may allow one to separate the enthalpic contributions to the binding free
energy, and ascribe them to individual residues (Corni et al., 2013; Tang et al., 2013).
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1.6 Studying small systems
1.6.1 Introduction

Simulations are usually performed on a small number of molecules, 10 ≤ N ≤ 10 000. �e
size of the system is limited by the available storage on the host computer, and, more
crucially, by the speed of execution of the program. �e time taken for a double loop
used to evaluate the forces or potential energy is proportional to N 2. Special techniques
(see Chapter 5) may reduce this dependence to O (N ), for very large systems, but the
force/energy loop almost inevitably dictates the overall speed and, clearly, smaller systems
will always be less expensive. If we are interested in the properties of a very small liquid
drop, or a microcrystal, then the simulation will be straightforward. �e cohesive forces
between molecules may be su�cient to hold the system together unaided during the
course of a simulation, otherwise our set of N molecules may be con�ned by a potential
representing a container, which prevents them from dri�ing apart (see Chapter 13). �ese
arrangements, however, are not satisfactory for the simulation of bulk liquids. A major
obstacle to such a simulation is the large fraction of molecules which lie on the surface of
any small sample; for 1000 molecules arranged in a 10 × 10 × 10 cube, 83 = 512 lie in the
interior, leaving 488 (nearly half!) on the cube faces. Even for N = 1003 = 106 molecules,
6 % of them will lie on the surface. Whether or not the cube is surrounded by a containing
wall, molecules on the surface will experience quite di�erent forces from those in bulk.

1.6.2 Periodic boundary conditions.

�e problem of surface e�ects can be overcome by implementing periodic boundary
conditions (Born and von Karman, 1912). �e cubic box is replicated throughout space
to form an in�nite la�ice. In the course of the simulation, as a molecule moves in the
original box, its periodic image in each of the neighbouring boxes moves in exactly the
same way. �us, as a molecule leaves the central box, one of its images will enter through
the opposite face. �ere are no walls at the boundary of the central box, and no surface
molecules. �is box simply forms a convenient axis system for measuring the coordinates
of the N molecules. A two-dimensional version of such a periodic system is shown in
Fig. 1.13. �e duplicate boxes are labeled A, B, C, etc., in an arbitrary fashion. As particle 1
moves through a boundary, its images 1A, 1B, etc. (where the subscript speci�es in which
box the image lies) move across their corresponding boundaries. �e number density
in the central box (and hence in the entire system) is conserved. It is not necessary to
store the coordinates of all the images in a simulation (an in�nite number!), just the
molecules in the central box. When a molecule leaves the box by crossing a boundary,
a�ention may be switched to the image just entering. It is sometimes useful to picture
the basic simulation box (in our two-dimensional example) as being rolled up to form
the surface of a three-dimensional torus or doughnut, when there is no need to consider
an in�nite number of replicas of the system, nor any image particles. �is correctly
represents the topology of the system, if not the geometry. A similar analogy exists for a
three-dimensional periodic system, but this is more di�cult to visualize!

It is important to ask if the properties of a small, in�nitely periodic, system and the
macroscopic system which it represents are the same. �is will depend both on the range
of the intermolecular potential and the phenomenon under investigation. For a �uid of



36 Introduction

D C B
E A
F G H

5
3

4

2

1

L

Fig. 1.13 A two-dimensional periodic system. Molecules can enter and leave each box across each
of the four edges. In a three-dimensional example, molecules would be free to cross any of the six
cube faces.

Lennard-Jones atoms it should be possible to perform a simulation in a cubic box of side
L ≈ 6σ without a particle being able to ‘sense’ the symmetry of the periodic la�ice. If
the potential is long range (i.e. v(r ) ∼ r−ν where ν is less than the dimensionality of the
system) there will be a substantial interaction between a particle and its own images in
neighbouring boxes, and consequently the symmetry of the cell structure is imposed on a
�uid which is in reality isotropic. �e methods used to cope with long-range potentials, for
example in the simulation of charged ions (v(r ) ∼ r−1) and dipolar molecules (v(r ) ∼ r 3),
are discussed in Chapter 5. We know that even in the case of short-range potentials the
periodic boundary conditions can induce anisotropies in the �uid structure (Mandell,
1976; Impey et al., 1981). �ese e�ects are pronounced for small system sizes (N = 100)
and for properties such as the д2 light sca�ering factor (see Chapter 2), which has a
substantial long-range contribution. Pra� and Haan (1981) have developed theoretical
methods for investigating the e�ects of boundary conditions on equilibrium properties.

�e use of periodic boundary conditions inhibits the occurrence of long-wavelength
�uctuations. For a cube of side L, the periodicity will suppress any density waves with
a wavelength greater than L. �us, it would not be possible to simulate a liquid close
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Fig. 1.14 Non-cubic, space-�lling, simulation boxes. (a) �e truncated octahedron and its containing
cube; (b) the rhombic dodecahedron and its containing cube. �e axes are those used in Code 1.4
and Code 1.5 of Section 1.6.4.

to the gas–liquid critical point, where the range of critical �uctuations is macroscopic.
Furthermore, transitions which are known to be �rst order o�en exhibit the characteristics
of higher-order transitions when modelled in a small box, because of the suppression of
�uctuations. Examples are the nematic–isotropic transition in liquid crystals (Luckhurst
and Simpson, 1982) and the solid–plastic-crystal transition for N2 adsorbed on graphite
(Mouritsen and Berlinsky, 1982). �e same limitations apply to the simulation of long-
wavelength phonons in model solids, where in addition, the cell periodicity picks out
a discrete set of available wavevectors (i.e. k = (nx ,ny ,nz )2π/L, where nx , ny , nz , are
integers) in the �rst Brillouin zone (Klein and Weis, 1977). Periodic boundary conditions
have also been shown to a�ect the rate at which a simulated liquid nucleates and forms a
solid or glass when it is rapidly cooled (Honeycu� and Andersen, 1984).

Despite the preceding remarks, the common experience in simulation work is that
periodic boundary conditions have li�le e�ect on the equilibrium thermodynamic prop-
erties and structures of �uids away from phase transitions and where the interactions
are short-ranged. It is always sensible to check that this is true for each model studied.
If the resources are available, it should be standard practice to increase the number of
molecules (and the box size, so as to maintain constant density) and rerun the simulations.
�e cubic box has been used almost exclusively in computer simulation studies because
of its geometrical simplicity. Of the four remaining semi-regular space-�lling polyhedra,
the rhombic dodecahedron (Wang and Krumhansl, 1972), and the truncated octahedron
(Adams, 1979; 1980) have also been studied. �ese boxes are illustrated in Fig. 1.14. �ey
are more nearly spherical than the cube, which may be useful for simulating liquids,
whose structure is spatially isotropic. In addition, for a given number density, the distance
between periodic images is larger than in the cube. �is property is useful in calculating
distribution functions and structure factors (see Chapters 2 and 8). As we shall see in
Section 1.6.4, they are only slightly more complicated to implement in simulations than
cubic boxes.
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(a)
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Fig. 1.15 Periodic boundary conditions used in the simulation of adsorption (see e.g. Severin
and Tildesley, 1980). (a) A side view of the box. �ere is a re�ecting boundary at height Lz . (b) A
top view, showing the rhombic shape (i.e. the same geometry as the underlying graphite la�ice).
Periodic boundary conditions in this geometry are implemented in Code 1.6.

So far, we have tacitly assumed that there is no external potential, that is, no v1, term
in eqns (1.4) and (1.5). If such a potential is present, then either it must have the same
periodicity as the simulation box, or the periodic boundaries must be abandoned. In some
cases, it is not appropriate to employ periodic boundary conditions in each of the three
coordinate directions. In the simulation of CH4 on graphite (Severin and Tildesley, 1980)
the simulation box, shown in Fig. 1.15, is periodic in the plane of the surface. In the
z-direction, the graphite surface forms the lower boundary of the box, and the bulk of
the adsorbate is in the region just above the graphite. Any molecule in the gas above
the surface is con�ned by reversing its velocity should it cross a plane at a height Lz
above the surface. If Lz is su�ciently large, this re�ecting boundary will not in�uence the
behaviour of the adsorbed monolayer. In the plane of the surface, the shape of the periodic
box is a rhombus of side L. �is conforms to the symmetry of the underlying graphite.
Similar boxes have been used in the simulation of the electrical double layer (Torrie and
Valleau, 1979), of the liquid–vapour surface (Chapela et al., 1977), and of �uids in small
pores (Subramanian and Davis, 1979).
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Fig. 1.16 �e minimum image convention in a two-dimensional system. �e central ‘box’ contains
�ve molecules. �e dashed ‘box’ constructed with molecule 1 at its centre also contains �ve molecules.
�e dashed circle represents the cuto�.

1.6.3 Potential truncation

Now we must turn to the question of calculating properties of systems subject to periodic
boundary conditions. �e heart of the mc and md programs involves the calculation
of the potential energy of a particular con�guration, and, in the case of md, the forces
acting on all molecules. Consider how we would calculate the force on molecule 1, or
those contributions to the potential energy involving molecule 1, assuming pairwise
additivity. We must include interactions between molecule 1 and every other molecule
i in the simulation box. �ere are N − 1 terms in this sum. However, in principle, we
must also include all interactions between molecule 1 and images iA, iB, etc. lying in the
surrounding boxes. �is is an in�nite number of terms, and of course is impossible to
calculate in practice. For a short-range potential-energy function, we may restrict this
summation by making an approximation. Consider molecule 1 to rest at the centre of
a region which has the same size and shape as the basic simulation box (see Fig. 1.16).
Molecule 1 interacts with all the molecules whose centres lie within this region, that is,
with the closest periodic images of the other N − 1 molecules. �is is called the ‘minimum
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image convention’: for example, in Fig. 1.16, molecule 1 could interact with molecules 2,
3D, 4E, and 5C. �is technique, which is a natural consequence of the periodic boundary
conditions, was �rst used in simulation by Metropolis et al. (1953).

In the minimum image convention, then, the calculation of the potential energy due
to pairwise-additive interactions involves 1

2N (N − 1) terms. �is may still be a very
substantial calculation for a system of (say) 1000 particles. A further approximation
signi�cantly improves this situation. �e largest contribution to the potential and forces
comes from neighbours close to the molecule of interest, and for short-range forces we
normally apply a spherical cuto�. �is means se�ing the pair potential v(r ) to zero for
r ≥ rc, where rc is the cuto� distance. �e dashed circle in Fig. 1.16 represents a cuto�, and
in this case molecules 2, 4E and 5C contribute to the force on 1, since their centres lie inside
the cuto�, whereas molecule 3D does not contribute. In a cubic simulation box of side L,
the number of neighbours explicitly considered is reduced by a factor of approximately
4πr 3

c /3L3, and this may be a substantial saving. �e introduction of a spherical cuto�
should be a small perturbation, and the cuto� distance should be su�ciently large to
ensure this. As an example, in the simulation of Lennard-Jones atoms the value of the pair
potential at the boundary of a cuto� sphere of typical radius rc = 2.5σ is just 1.6 % of the
well depth. Of course, the penalty of applying a spherical cuto� is that the thermodynamic
(and other) properties of the model �uid will no longer be exactly the same as for (say)
the non-truncated, Lennard-Jones �uid. As we shall see in Chapter 2, it is possible to
apply long-range corrections to such results so as to recover, approximately, the desired
information.

�e cuto� distance must be no greater than 1
2L for consistency with the minimum

image convention. In the non-cubic simulation boxes of Fig. 1.14, for a given density and
number of particles, rc may take somewhat larger values than in the cubic case. Looked
at another way, an advantage of non-cubic boundary conditions is that they permit
simulations with a given cuto� distance and density to be conducted using fewer particles.
As an example, a simulation in a cubic box, with rc set equal to 1

2L, might involve N = 256
molecules; taking the same density, the same cuto� could be used in a simulation of 197
molecules in a truncated octahedron, or just 181 molecules in a rhombic dodecahedron.

1.6.4 Computer code for periodic boundaries

How do we handle periodic boundaries and the minimum image convention in a simulation
program? Let us assume that, initially, the N molecules in the simulation lie within a
cubic box of side L, with the origin at its centre, that is, all coordinates lie in the range
(− 1

2L,
1
2L). As the simulation proceeds, these molecules move about the in�nite periodic

system. When a molecule leaves the box by crossing one of the boundaries, it is usual
to switch a�ention to the image molecule entering the box by simply adding L to, or
subtracting L from, the appropriate coordinate. One simple way to do this uses an IF
statement to test the positions immediately a�er the molecules have been moved (whether
by mc or md). For example,

IF ( r(1,i) > box2 ) r(1,i) = r(1,i) - box
IF ( r(1,i) < -box2 ) r(1,i) = r(1,i) + box
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where the �rst index 1 selects the x coordinate. Similar statements are applied to the y
and z coordinates, or a vector assignment may be applied to all components at once

WHERE ( r(:,i) > box2 ) r(:,i) = r(:,i) - box
WHERE ( r(:,i) < -box2 ) r(:,i) = r(:,i) + box

Here, box is a variable containing the box length L, and box2 is just 1
2L. An alternative

to the IF statement is to use arithmetic functions to calculate the correct number of box
lengths to be added or subtracted. For example,

r(:,i) = r(:,i) - box * ANINT ( r(:,i) / box )

�e function ANINT(x) returns the nearest integer to x, converting the result back to type
REAL; thus ANINT(-0.49) has the value 0.0, whereas ANINT(-0.51) is −1.0. In Fortran, this
function returns an array-valued result, computed component by component, if given
an array argument. As we shall see in Chapter 5, there are faster ways of coding this up,
especially for large system sizes.

By using these methods, we always have available the coordinates of the N molecules
that currently lie in the ‘central’ box. It is not strictly necessary to do this; we could,
instead, use uncorrected coordinates, and follow the motion of the N molecules that were
in the central box at the start of the simulation. Indeed, as we shall see in Chapters 2
and 8, for calculation of transport coe�cients it may be most desirable to have a set of
uncorrected positions on hand. If it is decided to do this, however, care must be taken that
the minimum image convention is correctly applied, so as to work out the vector between
the two closest images of a pair of molecules, no ma�er how many ‘boxes’ apart they
may be. �is means, in general, adding or subtracting an integer number of box lengths
(rather than just one box length).

�e minimum image convention may be coded in the same way as the periodic
boundary adjustments. Of the two methods just mentioned, the arithmetic formula is
usually preferable, being simpler; the use of IF statements inside the inner loop may reduce
program e�ciency (see Appendix A). Immediately a�er calculating a pair separation
vector, the following statements should be applied:

rij(:) = rij(:) - box * ANINT ( rij(:) / box )

�is code is guaranteed to yield the minimum image vector, no ma�er how many ‘box
lengths’ apart the original images may be. For cuboidal, rather than cubic, boxes, the
variable box may be an array of three elements, holding the x , y , and z box lengths,
without essentially changing the code.

�e calculation of minimum image distances is simpli�ed by the use of reduced units:
the length of the box is taken to de�ne the fundamental unit of length in the simulation.
By se�ing L = 1, with particle coordinates nominally in the range (− 1

2 , +
1
2 ), the minimum

image correction becomes

rij(:) = rij(:) - ANINT ( rij(:) )

which is simpler, and faster, than the code for a general box length. �is approach is
an alternative to the use of the pair potential to de�ne reduced units as discussed in
Appendix B, and is more generally applicable. For this reason a simulation box of unit
length is adopted in most of the examples given in this book.
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Code 1.4 Periodic boundaries for truncated octahedron
�is code snippet applies the truncated octahedron periodic boundary correction to a
position vector ri , or equivalently the minimum image convention to a displacement
vector ri j , provided as the array r. �e box is centred at the origin and the containing
cube is of unit length (see Fig. 1.14(a)). �e Fortran AINT function rounds towards
zero, producing a real-valued integer result: for example AINT(-0.51) and AINT(0.51)
both have the value 0.0, whereas AINT(-1.8) is −1.0. �e result of the Fortran SIGN
function has the absolute value of its �rst argument and the sign of its second.

REAL , DIMENSION (3) :: r
REAL :: corr
REAL , PARAMETER :: r75 = 4.0 / 3.0

r(:) = r(:) - ANINT ( r(:) )
corr = 0.5 * AINT ( r75 * SUM ( ABS ( r(:) ) ) )
r(:) = r(:) - SIGN ( corr , r(:) )

Code 1.5 Periodic boundaries for rhombic dodecahedron
�is code snippet applies the rhombic dodecahedron periodic boundary correction to
a position vector ri , or equivalently the minimum image convention to a displacement
vector ri j , provided as the array r. �e box is centred at the origin and the side of the
containing cube is

√
2 (see Fig. 1.14(b)).

REAL , DIMENSION (3) :: r
REAL :: corr
REAL , PARAMETER :: rt2 = SQRT (2.0), rrt2 = 1.0 / rt2

r(1) = r(1) - ANINT ( r(1) )
r(2) = r(2) - ANINT ( r(2) )
r(3) = r(3) - rt2 * ANINT ( rrt2 * r(3) )
corr = 0.5 * AINT ( ABS(r(1)) + ABS(r(2)) + rt2*ABS(r(3)) )
r(1) = r(1) - SIGN ( corr , r(1) )
r(2) = r(2) - SIGN ( corr , r(2) )
r(3) = r(3) - SIGN ( corr , r(3) ) * rt2

�ere are several alternative ways of coding the minimum image corrections, some of
which rely on the images being in the same, central box (i.e. on the periodic boundary
correction being applied whenever the molecules move). Some of these methods, for
cubic boxes, are discussed in Appendix A. We have also mentioned the possibility of
conducting simulations in non-cubic periodic boundary conditions. An implementation
of the minimum image correction for the truncated octahedron (Adams, 1983a) is given
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Code 1.6 Periodic boundaries for rhombus
Here we apply corrections for the rhombic box in two dimensions x , y . In most
applications the molecules will be con�ned in the z direction by real walls rather than
by periodic boundaries, so we assume that this coordinate may be le� unchanged.
�e box is centred at the origin. �e x axis lies along one side of the rhombus, which
is of unit length (see Fig. 1.15). �e acute angle of the rhombus is 60°.

REAL , DIMENSION (3) :: r
REAL , PARAMETER :: rt3 = SQRT (3.0), rrt3 = 1.0 / rt3
REAL , PARAMETER :: rt32 = rt3 / 2.0, rrt32 = 1.0 / rt32

r(1) = r(1) - ANINT ( r(1) - rrt3 * r(2) ) &
& - ANINT ( rrt32 * r(2) ) * 0.5

r(2) = r(2) - ANINT ( rrt32 * r(2) ) * rt32

in Code 1.4. A similar correction for the rhombic dodecahedron (Smith, 1983) appears in
Code 1.5. �is is a li�le more complicated than the code for the truncated octahedron,
and the gain small, so that the la�er is usually preferable. We also give in Code 1.6 the
code for the two-dimensional rhombic box o�en used in surface simulation.

Now we turn to the implementation of a spherical cuto�, that is, we wish to set the
pair potential (and all forces) to zero if the pair separation lies outside some distance rc. It
is easy to compute the square of the particle separation ri j and, rather than waste time
taking the square root of this quantity, it is fastest to compare this with the square of rc
which might be computed earlier and stored in a variable r_cut_sq. A�er computing the
minimum image intermolecular vector, the following statements would be employed:

rij_sq = SUM ( rij(:) ** 2 )
IF ( rij_sq < r_cut_sq ) THEN

... compute i-j interaction ...
END IF

In a large system, it may be worthwhile to apply separate tests for the x , y , and z directions
or some similar scheme.

IF ( ABS ( rij(1) ) < r_cut ) THEN
IF ( ABS ( rij(2) ) < r_cut ) THEN

IF ( ABS ( rij(3) ) < r_cut ) THEN
rij_sq = SUM ( rij(:) ** 2 )
IF ( rij_sq < r_cut_sq ) THEN

... compute i-j interaction ...
END IF

END IF
END IF

END IF
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�e time saved in dropping out of this part of the program at any early stage must be
weighed against the overheads of extra calculation and testing. In Chapter 5 we discuss
the more complicated time-saving tricks used in the simulations of large systems.

1.6.5 Spherical boundary conditions

As an alternative to the standard periodic boundary conditions for simulating bulk liquids,
a two-dimensional system may be embedded in the surface of a sphere without introducing
any physical boundaries (Hansen et al., 1979), and the idea may be extended to consider a
three-dimensional system as being the surface of a hypersphere (Kratky, 1980; Kratky and
Schreiner, 1982). �e spherical or hyperspherical system is �nite: it cannot be considered
as part of an in�nitely repeating periodic system. In this case, non-Euclidean geometry
is an unavoidable complication, and distances between particles are typically measured
along the great circle geodesics joining them. However, the e�ects of the curved geometry
will decrease as the system size increases, and such ‘spherical boundary conditions’ are
expected to be a valid method of simulating bulk liquids. Interesting di�erences from
the standard periodic boundary conditions, particularly close to any solid–liquid phase
transition, will result from the di�erent topology. Periodic boundaries will be biased in
favour of the formation of a solid with a la�ice structure which matches the simulation
box. Spherical boundaries, on the other hand, are not consistent with periodic la�ices,
so the liquid state will be thermodynamically favoured in most simulations using this
technique, and crystalline phases will inevitably contain defects. Similar considerations
may apply to liquid-crystalline phases.

1.6.6 Periodic boundary conditions for three-body potentials

Finally, we note that some care is required when using the minimum image convention
with three-body potentials such as the Axilrod–Teller potential (see Appendix C). �is
problem is illustrated in Fig. 1.17. In Fig. 1.17(a), atom 1 is at the centre of its box, of
side L, and atoms 2 and 3E are the two minimum images used in the calculation of the
pair potential. However atom 3 is the minimum image of atom 2 and a straightforward
application of the minimum image algorithm will lead to the incorrect triplet 123 rather
than 123E.

A�ard (1992) has shown that this problem can be solved using the following statements
for the separation vector

REAL , DIMENSION (3) :: rij , rik , rjk , tij , tik
tij(:) = box * ANINT ( rij(:) / box )
tik(:) = box * ANINT ( rik(:) / box )
rij(:) = rij(:) - tij(:)
rik(:) = rik(:) - tik(:)
rjk(:) = rjk(:) + tij(:) - tik(:)

Normally the three-body potential is set to zero if one side of the triangle is greater than
L/2.

Some workers have taken a more brute-force approach (Sadus and Prausnitz, 1996;
Marcelli and Sadus, 2012). If the potential cuto� rc is set to L/4, the only triplets that
contribute to the potential are those where all of the three atoms are within a box of side
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(a)

E 1

2 33E
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Fig. 1.17 Periodic boundary conditions and the minimum image convention for a triplet interaction:
(a) an inconsistency in the triplet con�guration for a cuto� of L/2; (b) a consistent triplet with a
cuto� of L/4.

L/2 (as shown in Fig. 1.17(b)). Each of the atoms is then always the unique minimum
image of the other two and the triplet is unambiguously determined with the normal
minimum image calculation. �is method works well. However, at a �xed density the
simulation will need to include eight times as many atoms in circumstances where the
additional calculation of the three-body force is particularly expensive.



2
Statistical mechanics

Computer simulation generates information at the microscopic level (atomic and molecu-
lar positions, velocities, etc.) and the conversion of this very detailed information into
macroscopic terms (pressure, internal energy, etc.) is the province of statistical mechanics.
It is not our aim to provide a text in this �eld since many excellent sources are available
(Hill, 1956; Mc�arrie, 1976; Landau and Lifshitz, 1980; Friedman, 1985; Chandler, 1987;
Tuckerman, 2010; Swendsen, 2012; Hansen and McDonald, 2013). In this chapter, our aim
is to summarize those aspects of the subject which are of most interest to the computer
simulator.

2.1 Sampling from ensembles
Let us consider, for simplicity, a one-component macroscopic system; extension to a
multicomponent system is straightforward. �e thermodynamic state of such a system
is usually de�ned by a small set of parameters (such as the number of particles N , the
temperatureT , and the pressure P ). Other thermodynamic properties (density ρ, chemical
potential µ, heat capacity CV , etc.) may be derived through knowledge of the equations
of state and the fundamental equations of thermodynamics. Even quantities such as
the di�usion coe�cient D, the shear viscosity η, and the structure factor S (k ) are state
functions: although they clearly say something about the microscopic structure and
dynamics of the system, their values are completely dictated by the few variables (e.g.
NPT ) characterizing the thermodynamic state, not by the very many atomic positions and
momenta that de�ne the instantaneous mechanical state. �ese positions and momenta
can be thought of as coordinates in a multidimensional space: phase space. For a system of
N atoms, this space has 6N dimensions. Let us use the abbreviation Γ for a particular point
in phase space, and suppose that we can write the instantaneous value of some property
A (it might be the potential energy) as a function A (Γ). �e system evolves in time so
that Γ, and hence A (Γ) will change. It is reasonable to assume that the experimentally
observable ‘macroscopic’ property Aobs is really the time average of A (Γ) taken over a
long time interval:

Aobs = 〈A〉time =
〈
A

(
Γ(t )

)〉
time
= lim

tobs→∞

1
tobs

∫ tobs

0
A

(
Γ(t )

)
dt . (2.1)

�e equations governing this time evolution, Newton’s equations of motion in a simple
classical system, are of course well known. �ey are just a system of ordinary di�erential
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equations: solving them on a computer, to a desired accuracy, is a practical proposition
for, say, 105 particles, although not for a truly macroscopic number (e.g. 1023). So far
as the calculation of time averages is concerned, we clearly cannot hope to extend the
integration of eqn (2.1) to in�nite time, but might be satis�ed to average over a long
�nite time τobs. �is is exactly what we do in a molecular dynamics simulation. In fact,
the equations of motion are usually solved on a step-by-step basis, that is, a large �nite
number τobs of timesteps, of length δt = tobs/τobs, are taken. In this case, we may rewrite
eqn (2.1) in the form

Aobs =
〈
A

〉
time
=

1
τobs

τobs∑
τ=1
A

(
Γ(t )

)
. (2.2)

In the summation, τ simply stands for an index running over the succession of timesteps.
�is analogy between the discrete τ and the continuous t is useful, even when, as we shall
see in other examples, τ does not correspond to the passage of time in any physical sense.

�e practical questions regarding the method are whether or not a su�cient region
of phase space is explored by the system trajectory to yield satisfactory time averages
within a feasible amount of computer time, and whether thermodynamic consistency can
be a�ained between simulations with identical macroscopic parameters (density, energy,
etc.) but di�erent initial conditions (atomic positions and velocities). �e answers to these
questions are that such simulation runs are indeed within the power of modern computers,
and that thermodynamically consistent results for liquid state properties can indeed be
obtained, provided that a�ention is paid to the selection of initial conditions. We will turn
to the technical details of the method in Chapter 3.

�e calculation of time averages by md is not the approach to thermodynamic prop-
erties implicit in conventional statistical mechanics. Because of the complexity of the
time evolution of A

(
Γ(t )

)
for large numbers of molecules, Gibbs suggested replacing the

time average by the ensemble average. Here, we regard an ensemble as a collection of
points Γ in phase space. �e points are distributed according to a probability density ρ (Γ).
�is function is determined by the chosen �xed macroscopic parameters (NPT , NVT ,
etc.), so we use the notation ρNPT , ρNVT , or, in general, ρens. Each point represents a
typical system at any particular instant of time. Each system evolves in time, according
to the usual mechanical equations of motion, quite independently of the other systems.
Consequently, in general, the phase space density ρens (Γ) will change with time. However,
no systems are destroyed or created during this evolution, and Liouville’s theorem, which
is essentially a conservation law for probability density, states that dρ/dt = 0 where d/dt
denotes the total derivative with respect to time (following a state Γ as it moves). As an
example, consider a set of N atoms with Cartesian coordinates ri , and momenta pi , in the
classical approximation. �e total time derivative is

d
dt =

∂

∂t
+

∑
i

ṙi · ∇ri +
∑
i

ṗi · ∇pi (2.3a)

=
∂

∂t
+ ṙ · ∇r + ṗ · ∇p. (2.3b)

In eqn (2.3a), ∂/∂t represents di�erentiation, with respect to time, of a function; ∇ri , and
∇pi , are derivatives with respect to atomic position and momentum respectively; and ṙi ,
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ṗi , signify the time derivatives of the position and momentum. Equation (2.3b) is the same
equation wri�en in a more compact way, and the equation may be further condensed by
de�ning the Liouville operator L

iL = *
,

∑
i

ṙi · ∇ri +
∑
i

ṗi · ∇pi
+
-
=

(
ṙ · ∇r + ṗ · ∇p

)
(2.4)

so that d/dt = ∂/∂t + iL and, using Liouville’s theorem, we may write

∂ρens (Γ, t )

∂t
= −iLρens (Γ, t ). (2.5)

�is equation tells us that the rate of change of ρens at a particular �xed point in phase
space is related to the �ows into and out of that point. �is equation has a formal solution

ρens (Γ, t ) = exp(−iLt ) ρens (Γ, 0) (2.6)

where the exponential of an operator really means a series expansion

exp(−iLt ) = 1 − iLt − 1
2L

2t2 + · · · . (2.7)

�e equation of motion of a function like A (Γ), which does not depend explicitly on
time, takes a conjugate form (Mc�arrie, 1976):

Ȧ
(
Γ(t )

)
= iLA

(
Γ(t )

)
(2.8)

or
A

(
Γ(t )

)
= exp(iLt )A

(
Γ(0)

)
. (2.9)

To be quite clear: in eqns (2.5) and (2.6) we consider the time-dependence of ρens at a �xed
point Γ in phase space; in eqns (2.8) and (2.9),A

(
Γ(t )

)
is time-dependent because we are

following the time evolution Γ(t ) along a trajectory. �is relationship is analogous to that
between the Schrödinger and Heisenberg pictures in quantum mechanics.

If ρens (Γ) represents an equilibrium ensemble, then its time-dependence completely
vanishes, ∂ρens/∂t = 0. �e system evolution then becomes quite special. As each system
leaves a particular state Γ(τ ) and moves on to the next, Γ(τ + 1), another system arrives
from state Γ(τ − 1) to replace it. �e motion resembles a long and convoluted conga line
at a crowded party (see Fig. 2.1). �ere might be several such processions, each passing
through di�erent regions of phase space. However, if these are all connected into just one
trajectory that passes through all the points in phase space for which ρens is non-zero (i.e.
the procession forms a single, very long, closed circuit) then each system will eventually
visit all the state points. Such a system is termed ‘ergodic’ and the time taken to complete
a cycle (the Poincaré recurrence time) is immeasurably long for a many-particle system
(and for many parties as well it seems).

One way of answering the question ‘was it a good party?’ would be to interview
one of the participants, and ask for their time-averaged impressions. �is is essentially
what we do in a molecular dynamics simulation, when a representative system evolves
deterministically in time. However, as indicated in Fig. 2.1, this time average might not
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Fig. 2.1 A schematic representation of phase space. �e circles represent di�erent state points
(q, p), and they are connected by a path representing the classical trajectory, analogous to a conga
line at a party. Each state is characterized by some property (e.g. ‘happiness’ at the party). In an
ergodic system, the single long trajectory would eventually pass through (or arbitrarily near) all
states; in the bo�om le� corner of the diagram we symbolically indicate a disconnected region of
six states which may or may not be practically important.

be representative of the whole trajectory: to be sure, it would have to be long enough to
sample all the states. An alternative route to the average properties of our partygoers,
would be to take photographs of all of them at the same time, assemble the complete
collection of ‘happy’ and ‘sad’ faces, and take an average over them. �is corresponds to
replacing the time average in eqn (2.1) by an average taken over all the members of the
ensemble, ‘frozen’ at a particular time:

Aobs = 〈A〉ens =
〈
A

��� ρens
〉
=

∑
Γ

A (Γ)ρens (Γ). (2.10)

�e 〈A|ρ〉 notation reminds us of the dependence of the average on bothA and ρ: this is
important when taking a thermodynamic derivative of Aobs (we must di�erentiate both
parts) or when considering time-dependent properties (when the Schrödinger–Heisenberg
analogy may be exploited). Actually, we will be concerned with the practical question
of e�cient and thorough sampling of phase space, which is not quite the same as the
rigorous de�nition of ergodicity (for a fuller discussion, see Tolman, 1938). In terms of
our analogy of conga lines, there should not be a preponderance of independent closed
circuits (‘cliques’) in which individuals can become trapped and fail fully to sample the
available space (this is important in parties as well as in simulations). An md simulation
which started in the disconnected six-state region of Fig. 2.1, for example, would be
disastrous. On the other hand, small non-ergodic regions are less likely to be dangerous
and more likely to be recognized if they are unfortunately selected as starting points for
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a simulation. In a similar way, regions of phase space which act as barriers and cause
bo�lenecks through which only a few trajectories pass can result in poor sampling by the
relatively short simulation runs carried out in practice, even if the system is technically
ergodic.

Finally, we might use a di�erent kind of evolution to sample the states of the system:
a random walk. �is is the Monte Carlo approach: it may be more or less e�cient than
molecular dynamics. It also �ts quite well the analogy of a party, in which the participants
sample the di�erent situations randomly, rather than systematically. Once again, trajectory
averages are calculated over a �nite duration, so these are not necessarily identical to full
ensemble averages, and the approach might or might not alleviate some of the ergodicity
issues.

It is sometimes convenient to use, in place of ρens (Γ), a ‘weight’ function wens (Γ),
which satis�es the following equations:

ρens (Γ) = Q
−1
ens wens (Γ) (2.11)

Qens =
∑
Γ

wens (Γ) (2.12)

〈A〉ens =
∑
Γ

wens (Γ)A (Γ)
/ ∑

Γ

wens. (2.13)

�e weight function is essentially a non-normalized form of ρens (Γ), with the partition
function Qens (also called the sum over states) acting as the normalizing factor. Both wens
and Qens contain an arbitrary multiplicative constant, whose choice corresponds to the
de�nition of a zero of entropy. Qens is simply a function of the macroscopic properties
de�ning the ensemble, and connection with classical thermodynamics is made by de�ning
a thermodynamic potential Ψens (see e.g. Mc�arrie, 1976)

Ψens = − lnQens. (2.14)

�is is the function that has a minimum value at thermodynamic equilibrium. For example,
Ψens might be the negative of the entropy S for a system at constant NVE, where V is
the volume and E the total internal energy, or the Gibbs function G for a constant-NPT
system, where P is the pressure and T the temperature.

�roughout the foregoing discussion, although we have occasionally used the language
of classical mechanics, we have assumed that the states are discrete (e.g. a set of quantum
numbers) and that we may sum over them. If the system were enclosed in a container,
there would be a countably in�nite set of quantum states. In the classical approximation,
Γ represents the set of (continuously variable) particle positions and momenta, and we
should replace the summation by a classical phase-space integral. wens and Qens are then
usually de�ned with appropriate factors included to make them dimensionless, and to
match up with the usual semiclassical ‘coarse-grained’ phase-space volume elements.
On a computer, of course, all numbers are held to a �nite precision and so, technically,
positions and momenta are represented by discrete, not continuous, variables; we now
have a countable and �nite set of states. We assume that the distinction between this case
and the classical limit is of no practical importance, and will use whichever representation
is most convenient.
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One conceivable approach to the computation of thermodynamic quantities, therefore,
would be a direct evaluation of Qens for a particular ensemble, using eqn (2.12). �is
summation, over all possible states, is not feasible for many-particle systems: there are too
many states, most of which have a very low weight due to non-physical overlaps between
the repulsive cores of the molecules, rendering them unimportant. We would like to
conduct the summation so as to exclude this large number of irrelevant states, and include
only those with a high probability. Unfortunately, it is generally not possible to estimate
Qens directly in this way. However, the underlying idea, that of generating (somehow) a
set of states in phase space that are sampled from the complete set in accordance with
the probability density ρens (Γ), is central to the Monte Carlo technique.

We proceed by analogy with molecular dynamics in the sense that the ensemble
average of eqn (2.13) is replaced by a trajectory average like eqn (2.2). Newton’s equations
generate a succession of states in accordance with the distribution function ρNV E for
the constant-NVE or microcanonical ensemble. Suppose we wish to investigate other
ensembles; experiments in the laboratory, for example, are frequently performed under
conditions of constant temperature and pressure, while it is o�en very convenient to
consider inhomogeneous systems at constant chemical potential. For each such case, let
us invent a kind of equation of motion, that is, a means of generating, from one state point
Γ(τ ), a succeeding state point Γ(τ + 1). �is recipe need have no physical interpretation,
and it could be entirely deterministic or could involve a stochastic, random, element. It
might be derived by modifying the true equations of motion in some way, or it may have
no relation whatever with normal dynamics.

To be useful, this prescription should satisfy some sensible conditions:
(a) the probability density ρens (Γ) for the ensemble of interest should not change as the

system evolves;
(b) any ‘reasonable’ starting distribution ρ (Γ) should tend to this stationary solution as

the simulation proceeds;
(c) we should be able to argue that ergodicity holds, even though we cannot hope to

prove this for realistic systems.
If these conditions are satis�ed, then we should be able to generate, from an initial state,
a succession of state points which, in the long term, are sampled in accordance with the
desired probability density ρens (Γ). In these circumstances, the ensemble average will be
equal to a kind of ‘time average’:

Aobs = 〈A〉ens =
1
τobs

τobs∑
τ=1
A

(
Γ(τ )

)
. (2.15)

Here τ is an index running over the succession of τobs states or trials generated by our
prescription; in a practical simulation, τobs would be a large �nite number. �is is exactly
what we do in Monte Carlo simulations. �e trick, of course, lies in the generation of the
trajectory through phase space, and the di�erent recipes for di�erent ensembles will be
discussed in Chapter 4. In general, because only a �nite number of states can be generated
in any one simulation, Monte Carlo results are subject to the same questions of initial
condition e�ects and satisfactory phase space exploration as are molecular dynamics
results.
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2.2 Common statistical ensembles
Let us consider four ensembles in common use: the microcanonical, or constant-NVE,
ensemble just mentioned, the canonical, or constant-NVT , ensemble, the isothermal–
isobaric constant-NPT ensemble, and the grand canonical constant-µVT ensemble. For
each ensemble, the aforementioned thermodynamic variables are speci�ed, that is, �xed.
Other thermodynamic quantities must be determined by ensemble averaging and, for any
particular state point, the instantaneous values of the appropriate phase function will
deviate from this average value, that is, �uctuations occur.

�e probability density for the microcanonical ensemble is proportional to

δ [H (Γ) − E]

where Γ represents the set of particle positions and momenta (or quantum numbers), and
H (Γ) is the Hamiltonian. �e delta function selects those states of an N -particle system in
a container of volumeV that have the desired energy E. When the set of states is discrete,
δ is just the Kronecker delta, taking values of 0 or 1; when the states are continuous, δ is
the Dirac delta function. �e microcanonical partition function may be wri�en:

QNV E =
∑
Γ

δ [H (Γ) − E] (2.16)

where the summation takes due note of indistinguishability of particles. In the quasi-
classical expression for QNV E , for an atomic system, the indistinguishability is handled
using a factor of 1/N !

QNV E =
1
N !

1
h3N

∫
dr dpδ [H (r, p) − E]. (2.17)

Here,
∫

dr dp stands for integration over all 6N phase space coordinates. �e appropriate
thermodynamic potential is the negative of the entropy

−S/kB = − lnQNV E . (2.18)

�e factor involving Planck’s constant h in eqn (2.17) corresponds to the usual zero of
entropy for the ideal gas (the Sackur–Tetrode equation).

For a classical system, Newton’s equations of motion conserve energy and so pro-
vide a suitable method (but not the only method (Severin et al., 1978; Creutz, 1983)) for
generating a succession of state points sampled from this ensemble, as discussed in the
previous section. In fact, for a system not subjected to external forces, these equations
also conserve total linear momentum P, and so molecular dynamics probes a subset of the
microcanonical ensemble, namely the constant-NVEP ensemble (for technical reasons,
as we shall see in Chapter 3, total angular momentum is not conserved in most md sim-
ulations). Since it is easy to transform into the centre-of-mass frame, the choice of P is
not crucial, and zero momentum is usually chosen for convenience. Di�erences between
the constant-NVE and constant-NVEP ensembles are minor: for the la�er, an additional
three constraints exist in that only (N − 1) particle momenta are actually independent of
each other.
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�e probability density for the canonical ensemble is proportional to

exp[−H (Γ)/kBT ]

and the partition function is

QNVT =
∑
Γ

exp[−H (Γ)/kBT ] (2.19)

or, in quasi-classical form, for an atomic system

QNVT =
1
N !

1
h3N

∫
dr dp exp[−H (r, p)/kBT ]. (2.20)

�e appropriate thermodynamic function is the Helmholtz free energy A

A/kBT = − lnQNVT . (2.21)

In the canonical ensemble, all values of the energy are allowed, and energy �uctuations are
non-zero. �us, although ρNVT (Γ) is indeed a stationary solution of the Liouville equation,
the corresponding mechanical equations of motion are not a satisfactory method of
sampling states in this ensemble, since they conserve energy: normal time evolution occurs
on a set of independent constant-energy surfaces, each of which should be appropriately
weighted, by the factor exp[−H (Γ)/kBT ]. Our prescription for generating a succession of
states must make provision for transitions between the energy surfaces, so that a single
trajectory can probe all the accessible phase space, and yield the correct relative weighting.
We shall encounter several ways of doing this in the later chapters.

Because the energy is always expressible as a sum of kinetic (p-dependent) and
potential (q-dependent) contributions, the partition function factorizes into a product of
kinetic (ideal gas) and potential (excess) parts

QNVT =
1
N !

1
h3N

∫
dp exp(−K /kBT )

∫
dq exp(−V/kBT ) = Q

id
NVT Q

ex
NVT . (2.22)

Again, for an atomic system, we see (by takingV = 0)

Q id
NVT =

V N

N !Λ3N (2.23)

Λ being the thermal de Broglie wavelength

Λ = (h2/2πmkBT )
1/2. (2.24)

�e excess part is
Qex
NVT = V

−N
∫

dr exp[−V (r)/kBT ]. (2.25)

Instead of Qex
NVT , we o�en use the con�guration integral

ZNVT =

∫
dr exp[−V (r)/kBT ]. (2.26)

Some workers include a factor N ! in the de�nition of ZNVT . Although Q id
NVT and Qex

NVT
are dimensionless, the con�guration integral has dimensions of V N . As a consequence
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of the separation of QNVT , all the thermodynamic properties derived from A can be
expressed as a sum of ideal gas and con�gurational parts. In statistical mechanics, it is
easy to evaluate ideal gas properties (Rowlinson, 1963), and we may expect most a�ention
to focus on the con�gurational functions. In fact, it proves possible to probe just the
con�gurational part of phase space according to the canonical distribution, using standard
Monte Carlo methods. �e corresponding trajectory through phase space has essentially
independent projections on the coordinate and momentum sub-spaces. �e ideal gas
properties are added onto the results of con�guration-space Monte Carlo simulations
a�erwards.

�e probability density for the isothermal–isobaric ensemble is proportional to

exp[−(H + PV )/kBT ].

Note that the quantity appearing in the exponent, when averaged, gives the thermody-
namic enthalpy H = 〈H〉 + P〈V 〉. Now the volume V has joined the list of microscopic
quantities (r and p) comprising the state point. �e appropriate partition function is

QNPT =
∑
Γ

∑
V

exp[−(H + PV )/kBT ] =
∑
V

exp(−PV /kBT )QNVT . (2.27)

�e summation over possible volumes may also be wri�en as an integral, in which case
some basic unit of volume V0 must be chosen to render QNPT dimensionless. �is choice
is not practically important for our purposes, but has been discussed in detail elsewhere
(Wood, 1968b; A�ard, 1995; Koper and Reiss, 1996; Corti and Soto-Campos, 1998; Han
and Son, 2001). In quasi-classical form, for an atomic system, we write:

QNPT =
1
N !

1
h3N

1
V0

∫
dV

∫
dr dp exp[−(H + PV )/kBT ]. (2.28)

�e corresponding thermodynamic function is the Gibbs free energy G

G/kBT = − lnQNPT . (2.29)

�e prescription for generating state points in the constant-NPT ensemble must clearly
provide for changes in the sample volume as well as energy. Once more, it is possible
to separate con�gurational properties from kinetic ones, and to devise a Monte Carlo
procedure to probe con�guration space only. �e con�guration integral in this ensemble
is

ZNPT =

∫
dV exp(−PV /kBT )

∫
dr exp[−V (r)/kBT ]. (2.30)

Again some de�nitions include N ! and V0 as normalizing factors.
�e density function for the grand canonical ensemble is proportional to

exp[−(H − µN )/kBT ]

where µ is the speci�ed chemical potential. Now the number of particles N is a variable,
along with the coordinates and momenta of those particles. �e grand canonical partition
function is

QµVT =
∑
N

∑
Γ

exp[−(H − µN )/kBT ] =
∑
N

exp(µN /kBT )QNVT . (2.31)
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In quasi-classical form, for an atomic system,

QµVT =
∑
N

1
N !

1
h3N exp(µN /kBT )

∫
dr dp exp(−H /kBT ). (2.32)

Although it is occasionally useful to pretend that N is a continuous variable, for most
purposes we sum, rather than integrate, in eqns (2.31) and (2.32). �e appropriate thermo-
dynamic function is just −PV /kBT :

−PV /kBT = − lnQµVT . (2.33)

Whatever scheme we employ to generate states in the grand ensemble, clearly it must
allow for addition and removal of particles. Once more, it is possible to invent a Monte
Carlo method to do this and, moreover, to probe just the con�gurational part of phase
space; however, it turns out to be necessary to include the form of the kinetic partition
function in the prescription used.

So far the discussion has been limited to one-component systems but each of the
ensembles considered can be readily extended to multi-component mixtures. For example
in the grand ensemble, the density function for a c-component mixture containing Ni
particles of type i is proportional to



c∏
i=1

exp
(
µiNi/kBT

)
Ni !


exp(−H /kBT ) (2.34)

where µi is the chemical potential of species i andH is the Hamiltonian of the c-component
mixture. In quasi-classical form, for an atomic system, the grand partition function is

Qµ1,µ2, ...µnVT =
∑

N1,N2 ...Nn

1
h3N



c∏
i=1

1
Ni !

exp(µiNi/kBT )


∫
dr dp exp(−H /kBT ).

(2.35)
�e appropriate thermodynamic function is

−PV /kBT = − lnQµ1,µ2, ...µnVT . (2.36)

It is also useful to study mixtures in the semi-grand ensemble (Ko�e and Glandt,
1988). Here the total number of particles is �xed at N but the identities of the individual
particles can change. �e chemical potential of an arbitrary species, say 1, is de�ned as
µ1 and the c − 1 chemical potential di�erences, (µ2 − µ1) . . . (µn − µ1), are �xed. When V
and T are also �xed, the probability density is proportional to



c∏
i=1

exp[(µi − µ1)Ni/kBT ]


exp(−H /kBT )

where H is the Hamiltonian for a system of N particles (N = ∑
i Ni ) and where each

particle is de�ned to have a speci�c identity from 1 to c . In quasi-classical form, for an
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atomic system, the semi-grand partition function is

Q {µi |i,1}NVT =

c∑
i1=1
· · ·

c∑
iN =1

1
N !h3N



c∏
i=1

exp
(
(µi − µ1)Ni/kBT

)

∫
dr dp exp(−H /kBT ) (2.37)

where the sums are now over the particle identities (e.g. i1 is the identity of particle 1).
�e corresponding thermodynamic potential is

−(PV − µ1N )/kBT = − lnQ {µi |i,1}NVT . (2.38)

It is also possible to develop a semi-grand ensemble at constant pressure rather than
constant volume. In this case, the chemical potential di�erence is conveniently replaced
by the fugacity fraction as the independent variable, as discussed in Section 4.7 (Ko�e
and Glandt, 1988; Frenkel and Smit, 2002). An important advantage of the semi-grand
ensemble is that the chemical potential di�erence can be de�ned as a continuous function.
For example, in a polydisperse �uid of hard spheres, the distribution µ (σ )−µ1 as a function
of the hard-sphere diameter σ would be �xed, and through the semi-grand ensemble we
could predict the distribution of particle sizes.

It is possible to construct many more ensembles, some of which are of interest in
computer simulation. When comparing molecular dynamics with Monte Carlo, it may
be convenient to add the constraint of constant (zero) total momentum, that is, �xed
centre of mass, to the constant-NVT ensemble. It is also permissible to constrain certain
degrees of freedom (e.g. the total kinetic energy (Hoover, 1983b,a), or the energy in a
particular chemical bond (Freasier et al., 1979)) while allowing others to �uctuate. Also,
nonequilibrium ensembles may be set up (see Chapter 11). �e possibilities are endless,
the general requirements being that a phase-space density ρens (Γ) can be wri�en down,
and that a corresponding prescription for generating state points can be devised. �e
remaining questions are ones of practicality.

Not all ensembles are of interest to the computer simulator. �e properties of gener-
alized ensembles, such as the constant-µPT ensemble, have been discussed (Hill, 1956).
Here, only intensive parameters are speci�ed: the corresponding extensive quantities
show unbounded �uctuations, that is, the system size can grow without limit. Also, µ, P ,
and T are related by an equation of state, so, although this equation may be unknown,
they are not independently variable. For these reasons, the simulation of the constant-
µPT ensemble and related pathological examples is not a practical proposition. In all the
ensembles dealt with in this book, at least one extensive parameter (usually N or V ) is
�xed to act as a limit on the system size.

Finally, it is by no means guaranteed that a chosen prescription for generating phase-
space trajectories will correspond to any ensemble at all. It is easy to think of extreme
examples of modi�ed equations of motion for which no possible function ρens (Γ) is a
stationary solution. In principle, some care should be taken to establish which ensemble,
if any, is probed by any novel simulation technique.
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Example 2.1 Entropy and disorder

At the very least, molecular simulations provide an experimental route to check the
predictions of statistical mechanics, as indicated in Fig. 1.2. In addition, however,
simulations have provided the impetus to revise some basic ideas, especially in
connection with the concept of entropy. Some of the earliest simulations (Wood
and Jacobson, 1957; Alder and Wainwright, 1957) demonstrated that the hard-sphere
system exhibited a phase transition between solid and liquid phases. Because there
are no energetic terms in this model, the thermodynamic driving force must be the
entropy: at su�ciently high density, the ordered, solid, phase has a higher entropy
than the liquid. �is result was not immediately accepted, as it required a rethinking
of the de�nition of disorder, and its connection to the entropy. Roughly speaking, the
loss in entropy, associated with the localization of particles around positions on a
regular la�ice, is more than compensated by the entropy gain associated with the
increased free volume that may be explored by each particle around its la�ice site.
On compressing a disordered hard-sphere system, when the volume occupied by the
spheres reaches η ≈ 64 %, the free volume becomes zero (random close packing); the
freezing transition occurs before this, at η ≈ 49 % (for comparison, in the fcc structure,
close packing occurs at η ≈ 74 %). Recent computer simulations of polyhedral hard
particles have shown that shape-related entropic e�ects alone can give rise to a huge
variety of solid structures (Damasceno et al., 2012; van Anders et al., 2014).
A more fundamental debate concerns the factorN ! appearing in eqns (2.17), (2.20), and
usually associated with particle indistinguishability. In quantum mechanics, identical
particles are indistinguishable as a ma�er of principle. However, our simulations
are of classical, distinguishable (i.e. labelled) particles! Also, statistical mechanics is
applied successfully to colloidal systems, for which the constituent particles are of
mesoscopic size and clearly distinguishable, even when nearly monodisperse. Should
the factor N ! be included or not? �e question arises whenever two systems, under
identical conditions, in a classical simulation or a colloidal experiment, are brought
into contact and allowed to exchange particles: is the entropy additive (i.e. extensive)
or is there an entropy of mixing term? �e answer is that the factor N ! should be
present, for N very similar but distinguishable particles, in order to obtain extensive
entropy and Helmholtz free energy functions, and hence it is not intimately connected
with quantum mechanics. �is has been discussed in the context of simulations by
Swendsen (2002) and for colloidal systems by Warren (1998) and Swendsen (2006)
(see also Frenkel, 2014, and references therein). �ese considerations come from �rst
principles, not computer experiments. However, interestingly, they are crucial in
practical a�empts to quantify the entropy of a granular system, in terms of the number
of ways of realizing a jammed structure, extending ideas of Edwards and Oakesho�
(1989) and Edwards (1990). Computer simulations (Asenjo et al., 2014) involving the
preparation of jammed con�gurations by quenching equilibrated nearly-hard-sphere
liquids, have con�rmed the need to include the N ! term in order to de�ne an extensive
granular entropy, even for systems of distinguishable particles.
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2.3 Transforming between ensembles
Since the ensembles are essentially arti�cial constructs, it would be reassuring to know
that they produce average properties which are consistent with one another. In the ther-
modynamic limit (for an in�nite system size) and as long as we avoid the neighbourhood
of phase transitions, this is believed to be true for the commonly used statistical ensem-
bles (Fisher, 1964). Since we will be dealing with systems containing a �nite number of
particles, it is of some interest to see, in a general way, how this result comes about. �e
method of transformation between ensembles is standard (Hill, 1956; Lebowitz et al., 1967;
Münster, 1969; Landau and Lifshitz, 1980) and a useful summary for several ensembles
of interest has appeared (Graben and Ray, 1993). We merely outline the procedure here;
nonetheless, the development is rather formal, and this section could be skipped on a �rst
reading.

We shall be interested in transforming from an ensemble in which an extensive
thermodynamic variable F is �xed to one in which the intensive conjugate variable f
is constant. Typical conjugate pairs are (β,E), (βP ,V ), (−βµ,N ), where β = 1/kBT . If
the old partition function and characteristic thermodynamic potential are QF , and ΨF ,
respectively, then the new quantities are given by

Qf =

∫
dF ′ exp(−F ′ f )QF ′ (2.39)

Ψf = ΨF + F f . (2.40)

Equations (2.19)–(2.33) provide speci�c examples of these relations. Equation (2.40) corre-
sponds to the Legendre transformation of classical thermodynamics. For example, when
moving from a system at constant energy to one at constant temperature (i.e. constant
β), the characteristic thermodynamic potential changes from −S/kB to −S/kB + βE = βA.
Similarly, on going to constant temperature and pressure, the thermodynamic potential
becomes βA + βPV = βG.

�e average 〈A〉f calculated in the constant-f ensemble is related to the average
〈A〉F calculated at constant F by (Lebowitz et al., 1967)

〈A〉f = exp(Ψf )
∫

dF ′ exp(−ΨF ′ − F
′ f ) 〈A〉F ′ . (2.41)

�e equivalence of ensembles relies on the behaviour of the integrand of this equation
for a large system: it becomes very sharply peaked around the mean value F ′ = 〈F 〉f . In
the thermodynamic limit of in�nite system size, we obtain simply

〈A〉f = 〈A〉F (2.42)

where it is understood that F = 〈F 〉f . �us, the averages of any quantity calculated in,
say, the constant-NVE ensemble and the constant-NVT ensemble, will be equal in the
thermodynamic limit, as long as we choose E and T consistently so that E = 〈E〉NVT . In
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fact, there are some restrictions on the kinds of functions A for which eqn (2.42) holds.
A should be, essentially, a sum of single-particle functions,

A =

N∑
i=1
Ai (2.43)

or, at least, a sum of independent contributions from di�erent parts of the �uid, which
may be added up in a similar way. All of the thermodynamic functions are of this short-
ranged nature, insofar as they are limited by the range of intermolecular interactions.
For long-ranged (e.g. dielectric) properties and long-ranged (e.g. Coulombic) forces, this
becomes a more subtle point.

�e situation for a �nite number of particles is treated by expanding the integrand
of eqn (2.41) about the mean value 〈F 〉f . If we write F ′ = 〈F 〉f + δF

′ then we obtain
(Lebowitz et al., 1967):

〈A〉f = 〈A〉F=〈F 〉f +
1
2

(
∂2

∂F 2 〈A〉F

)
F=〈F 〉f

〈δF 2〉f + · · · . (2.44)

�e correction term, which is proportional to the mean-square �uctuations 〈δF 2〉 of
the quantity F in the constant-f ensemble, is expected to be relatively small since, as
mentioned earlier, the distribution of F values should be very sharply peaked for a
many-particle system. �is �uctuation term may be expressed as a straightforward ther-
modynamic derivative. Since F and f are conjugate variables, we have

〈F 〉f = −∂Ψf /∂ f (2.45)

〈δF 2〉f = ∂
2Ψf /∂ f

2 = −∂〈F 〉f /∂ f . (2.46)

We may write this simply as −(∂F/∂ f ). Equation (2.44) is most usefully rearranged by
taking the last term across to the other side, and treating it as a function of f through the
relation F = 〈F 〉f . �us

〈A〉F = 〈A〉f −
1
2 〈δF

2〉f
∂2

∂F 2 〈A〉f (2.47)

= 〈A〉f +
1
2
∂F

∂ f

∂2

∂F 2 〈A〉f

= 〈A〉f +
1
2
∂

∂ f

∂

∂F
〈A〉f

= 〈A〉f +
1
2
∂

∂ f

(
∂ f

∂F

)
∂

∂ f
〈A〉f .

Bearing in mind that F is extensive and f intensive, the small relative magnitude of the
correction term can be seen explicitly: it decreases as O (N −1).

Although the �uctuations are small, they are nonetheless measurable in computer
simulations. �ey are of interest because they are related to thermodynamic derivatives
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(like the speci�c heat or the isothermal compressibility) by equations such as eqn (2.46).
In general, we de�ne the root mean square (rms) deviation σ (A) by the equation

σ 2 (A) = 〈δA2〉ens = 〈A
2〉ens − 〈A〉

2
ens (2.48)

where

δA = A − 〈A〉ens. (2.49)

It is quite important to realize that, despite the 〈δA2〉 notation, we are not dealing here
with the average of a mechanical quantity likeA; the best we can do is to write σ 2 (A) as
a di�erence of two terms, as in eqn (2.48). �us, the previous observations on equivalence
of ensembles do not apply: �uctuations in di�erent ensembles are not the same. As an
obvious example, energy �uctuations in the constant-NVE ensemble are (by de�nition)
zero, whereas in the constant-NVT ensemble, they are not. �e transformation technique
may be applied to obtain an equation analogous to eqn (2.47) (Lebowitz et al., 1967). In
the general case of the covariance of two variables A and B the result is

〈δAδB〉F = 〈δAδB〉f +

(
∂ f

∂F

) (
∂

∂ f
〈A〉f

) (
∂

∂ f
〈B〉f

)
. (2.50)

Now the correction term is of the same order as the �uctuations themselves. Consider,
once more, energy �uctuations in the microcanonical and canonical ensembles, that is,
let A = B = F = E and f = β = 1/kBT . �en on the le� of eqn (2.50) we have zero,
and on the right we have σ 2 (E) at constant-NVT and a combination of thermodynamic
derivatives which turn out to equal (∂E/∂β ) = −kBT

2CV whereCV is the constant-volume
heat capacity.

2.4 Simple thermodynamic averages
A consequence of the equivalence of ensembles is that, provided a suitable phase function
can be identi�ed in each case, the basic thermodynamic properties of a model system
may be calculated as averages in any convenient ensemble. Accordingly, we give in
this section expressions for common thermodynamic quantities, omi�ing the subscripts
which identify particular ensembles. �ese functions are usually derivatives of one of
the characteristic thermodynamic functions Ψens. Examples are P = −(∂A/∂V )NT and
β = (1/kBT ) = (1/kB) (∂S/∂E)NV .

�e kinetic, potential, and total internal energies may be calculated using the phase
functions of eqns (1.1)–(1.3).

E = 〈H〉 = 〈K 〉 + 〈V〉. (2.51)

�e kinetic energy is a sum of contributions from individual particle momenta, while
evaluation of the potential contribution involves summing over all pairs, triplets, etc. of
molecules, depending upon the complexity of the function as discussed in Chapter 1.
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�e temperature and pressure may be calculated using the virial theorem, which we
write in the form of ‘generalized equipartition’ (Münster, 1969):

〈pk∂H /∂pk 〉 = kBT (2.52a)
〈qk∂H /∂qk 〉 = kBT (2.52b)

for any generalized coordinate qk or momentum pk . �ese expressions are valid (to
O (N −1)) in any ensemble.

Equation (2.52a) is particularly simple when the momenta appear as squared terms in
the Hamiltonian. For example, in the atomic case, we may sum up 3N terms of the form
p2
iα /mi , to obtain 〈 N∑

i=1

���pi
���
2
/mi

〉
= 2〈K 〉 = 3NkBT . (2.53)

�is is the familiar equipartition principle: an average energy of kBT /2 per degree of
freedom. It is convenient to de�ne an instantaneous ‘kinetic temperature’ function

T = 2K /3NkB =
1

3NkB

N∑
i=1

���pi
���
2
/mi (2.54)

whose average is equal to T . Obviously, this is not a unique de�nition. For a system of
rigid molecules, described in terms of centre-of-mass positions and velocities together
with orientational variables, the angular velocities may also appear in the de�nition
of T . Alternatively, it may be useful to de�ne separate ‘translational’ and ‘rotational’
temperatures each of which, when averaged, gives T . In eqn (2.52a) it is assumed that the
independent degrees of freedom have been identi�ed and assigned generalized coordinates
qk , and momenta pk . For a system of N atoms, subject to internal molecular constraints,
the number of degrees of freedom will be 3N − Nc where Nc is the total number of
independent internal constraints (�xed bond lengths and angles) de�ned in the molecular
model. �en, we must replace eqn (2.54) by

T =
2K

(3N − Nc)kB
=

1
(3N − Nc)kB

N∑
i=1

���pi
���
2
/mi . (2.55)

We must also include in Nc, any additional global constraints on the ensemble. For
example, in the ‘molecular dynamics’ constant-NVEP ensemble, we must include the
three extra constraints on centre-of-mass motion.

Equations (2.52) are examples of the general form〈
A
∂H

∂qk

〉
= kBT

〈
∂A

∂qk

〉
,

〈
A
∂H

∂pk

〉
= kBT

〈
∂A

∂pk

〉
,

valid for any dynamical variableA, which may be easily derived in the canonical ensemble
(see e.g. Landau and Lifshitz, 1958, p100, eqn (33.14)). �ese are generally termed ‘hyper-
virial’ relations (Hirschfelder, 1960). Se�ingA = ∂H /∂qk = ∂V/∂qk gives an alternative
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way of calculating the temperature from purely con�gurational properties, independent
of the momenta. For example, for a simple atomic system

kBT =

〈
(∂V/∂riα )

2
〉

〈∂2V/∂r 2
iα 〉

=
〈f 2
iα 〉

〈∂2V/∂r 2
iα 〉
. (2.56)

Naturally, in a simulation it is usual to average this expression over all atoms i and
all coordinate directions α , when the numerator becomes the mean-square force and
the denominator becomes the average Laplacian of the potential. �is ‘con�gurational
temperature’ is useful in Monte Carlo simulations, in which the momenta do not appear
(Rugh, 1997), and comparing it with the usual kinetic expression, (2.54), or with the
prescribed temperature, is a useful check that a simulation is working properly (Butler
et al., 1998). More details of how to calculate the con�gurational temperature appear in
Appendix F.

�e pressure may be calculated via eqn (2.52b). If we choose Cartesian coordinates, and
use Hamilton’s equations of motion (see Chapter 3), it is easy to see that each coordinate
derivative in eqn (2.52b) is the negative of a component of the force f i on some molecule
i , and we may write, summing over N molecules,

− 1
3

〈 N∑
i=1

ri · ∇riV

〉
= 1

3

〈 N∑
i=1

ri · f tot
i

〉
= −NkBT . (2.57)

We have used the symbol f tot
i because this represents the sum of intermolecular forces

and external forces. �e la�er are related to the external pressure, as can be seen by
considering the e�ect of the container walls on the system:

1
3

〈 N∑
i=1

ri · fext
i

〉
= −PV . (2.58)

If we de�ne the ‘internal virial’W

− 1
3

N∑
i=

ri · ∇riV =
1
3

N∑
i=1

ri · f i =W (2.59)

where now we restrict a�ention to intermolecular forces, then

PV = NkBT + 〈W〉. (2.60)

�is suggests that we de�ne an instantaneous ‘pressure’ function (Cheung, 1977)

P = ρkBT +W/V = P
id + Pex (2.61)

whose average is simply P . Again, this de�nition is not unique; apart from the di�erent
ways of de�ningW which we shall see later, it may be most convenient (say in a constant-
temperature ensemble) to use

P ′ = ρkBT +W/V = 〈P
id〉 + Pex (2.62)

instead. Both P and P ′ give P when averaged, but their �uctuations in any ensemble
will, in general, be di�erent. Note that the preceding derivation is not really valid for the
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in�nite periodic systems used in computer simulation: there are no container walls and
no external forces. Nonetheless, the result is the same (Erpenbeck and Wood, 1977).

For pairwise interactions, W is more conveniently expressed in a form which is
explicitly independent of the origin of coordinates. �is is done by writing f i as the sum
of forces f i j on atom i due to atom j∑

i

ri · f i =
∑
i

∑
j,i

ri · f i j = 1
2

∑
i

∑
j,i

(
ri · f i j + rj · f ji

)
. (2.63)

�e second equality follows because the indices i and j are equivalent. Newton’s third
law f i j = −f ji is then used to switch the force indices∑

i

ri · f i = 1
2

∑
i

∑
j,i

ri j · f i j =
∑
i

∑
j>i

ri j · f i j (2.64)

where ri j = ri − rj and the �nal form of the summation is usually more convenient.
It is essential to use the ri j · f i j form in a simulation that employs periodic boundary
conditions. So we have at last

W = 1
3

∑
i

∑
j>i

ri j · f i j = − 1
3

∑
i

∑
j>i

ri j · ∇ri j v(ri j ) = −
1
3

∑
i

∑
j>i

w(ri j ) (2.65)

where the intermolecular pair virial function w(r ) is

w(r ) = r
dv(r )

dr . (2.66)

Like V , W is limited by the range of the interactions, and hence 〈W〉 should be a
well-behaved, ensemble-independent function in most cases.

For molecular �uids we may write

W = 1
3

∑
i

∑
j>i

ri j · f i j = − 1
3

∑
i

∑
j>i

ri j ·
(
∇ri jV

)
Ωi ,Ωj

= − 1
3

∑
i

∑
j>i

w(ri j ) (2.67)

where ri j is the vector between the molecular centres. Here we have made it clear that
the pair virial is de�ned as a position derivative at constant orientation of the molecules

w(ri j ) = ri j

(
∂ v(ri j ,Ωi ,Ωj )

∂ ri j

)
Ωi ,Ωj

. (2.68)

�e pressure function P is de�ned through eqn (2.61) as before. For interaction site
models, we may treat the system as a set of atoms, and use eqns (2.65), (2.66), with the
summations taken over distinct pairs of sites ia and jb (compare eqn (1.12)). When doing
this, however, it is important to include all intramolecular contributions (forces along the
bonds for example) in the sum. Alternatively, the molecular de�nition, eqns (2.67), (2.68)
is still valid. In this case, for computational purposes, eqn (2.68) may be rewri�en in the
form

w(ri j ) =
∑
a

∑
b

wab (rab )

r 2
ab

(rab · ri j ) (2.69)

where rab = ria −rjb is the vector between the sites and wab (rab ) is the site–site pair virial
function. �is is equivalent to expressing f i j in eqn (2.67) as the sum of all the site–site
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forces acting between the molecules. Whether the atomic or molecular de�nition of the
virial is adopted, the ensemble average 〈W〉 and hence 〈P〉 = P should be una�ected. In
inhomogeneous systems, the pressure is a tensor; see Section 2.12.

In systems with discontinuous interactions, such as the hard-sphere model, the usual
expressions for the pressure cannot be applied. As we shall see in Chapter 3, in md
simulations of hard particles, we solve the classical equations of motion for the motion
in between discrete collisions; at the moment of collision, an impulse acts between the
two colliding particles, and changes their momenta. �is is responsible for the non-ideal
contribution to the pressure. �e virial expression (2.65) can be recast into a form involving
a sum over collisions, by time-averaging it:

〈W〉 =
1
tobs

∫ tobs

0
dt

(
1
3

∑
i

∑
j>i

ri j · f i j

)
=

1
3tobs

∑
colls

ri j · δpi j (2.70a)

where i and j represent a pair of molecules colliding at time ti j , ri j is the vector between
the molecular centres at the time of collision, and

δpi j = δpi = −δpj =
∫ t+i j

t−i j

dt f i j (2.70b)

is the collisional impulse, that is, the change in momentum. �e sum in eqn (2.70a) is over
all collisions occurring in time tobs, and the integral in eqn (2.70b) is over an in�nitesimal
time interval around ti j . �is expression may also be wri�en in terms of the collision
rate and the average of ri j · δpi j per collision. Equation (2.70a) replaces eqn (2.65) in the
average pressure equation (2.60). Further details, including a discussion of the system-size
dependence of these formulae may be found elsewhere (Alder and Wainwright, 1960;
Hoover and Alder, 1967; Erpenbeck and Wood, 1977). In mc simulations of hard systems,
a less direct approach must be used to estimate P , and this is discussed in Section 5.5.

�antities such as 〈N 〉 and 〈V 〉 are easily evaluated in the simulation of ensembles
in which these quantities vary, and derived functions such as the enthalpy are straight-
forwardly calculated. Now we turn to the question of evaluating entropy-related (‘statisti-
cal’) quantities such as the Gibbs and Helmholtz functions, the chemical potential µ, and
the entropy itself. A direct approach is to conduct a simulation of the grand canonical
ensemble, in which µ, or a related quantity, is speci�ed. It must be said at the outset that
there are some technical di�culties associated with grand canonical ensemble simulations,
and we return to this in Chapter 4. �ere are also di�culties in obtaining these functions
in the other common ensembles, since they are related directly to the partition function
Q , not to its derivatives. To calculate Q would mean summing over all the states of the
system. It might seem that we could use the formula

exp
(
Aex/kBT

)
= Qex

NVT
−1 =

〈
exp(V/kBT )

〉
NVT

(2.71)

to estimate the excess statistical properties, but, in practice, the distribution ρNVT will be
very sharply peaked around the largest values of exp(−V/kBT ), that is, where exp(V/kBT )
is comparatively small. Consequently, any simulation technique that samples according to
the equilibrium distribution will be bound to give a poor estimate of A by this route. Spe-
cial sampling techniques have been developed to evaluate averages of this type (Valleau
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and Torrie, 1977) and we return to this in Chapter 9. It is comparatively easy to obtain
free-energy di�erences for a given system at two di�erent temperatures by integrating
the internal energy along a line of constant density:(

A

NkBT

)
2
−

(
A

NkBT

)
1
=

∫ β2

β1

(
E

NkBT

)
dβ
β
= −

∫ T2

T1

(
E

NkBT

)
dT
T
. (2.72)

Alternatively, integration of the pressure along an isotherm may be used:(
A

NkBT

)
2
−

(
A

NkBT

)
1
=

∫ ρ2

ρ1

(
PV

NkBT

)
dρ
ρ
= −

∫ V2

V1

(
PV

NkBT

)
dV
V
. (2.73)

To use these expressions, it is necessary to calculate ensemble averages at state points
along a reversible thermodynamic path. To calculate absolute free energies and entropies,
it is necessary to extend the thermodynamic integration far enough to reach a state point
whose properties can be calculated essentially exactly. In general, these calculations may
be expensive, since accurate thermodynamic information is required for many closely
spaced state points.

One fairly direct, and widely applicable, method for calculating µ is based on the
thermodynamic identities

exp(−µ/kBT ) = QN+1/QN = QN /QN−1 (2.74)

valid at large N for both the constant-NVT and constant-NPT ensembles. From these
equations we can obtain expressions for the chemical potential in terms of a kind of
ensemble average (Widom, 1963; 1982). If we de�ne the excess chemical potential µex =
µ − µ id then we can write

µex = −kBT ln
〈
exp(−Vtest/kBT )

〉
(2.75)

whereVtest is the potential energy which would result from the addition of a particle (at
random) to the system. �is is the ‘test particle insertion’ method of estimating µ. Eqn (2.75)
also applies in the constant-µVT ensemble (Henderson, 1983). A slightly di�erent formula
applies for constant-NVE because of the kinetic temperature �uctuations (Frenkel, 1986):

µex = −kB〈T 〉 ln
[〈
T

〉−3/2〈
T 3/2 exp(−Vtest/kBT )

〉]
(2.76a)

where T is the instantaneous kinetic temperature. Similarly, for the constant-NPT
ensemble, it is necessary to include the �uctuations in the volume V (Shing and Chung,
1987):

µex = −kBT ln
[
〈V 〉−1

〈
V exp(−Vtest/kBT )

〉]
. (2.76b)

In all these cases the ‘test particle’, the (N + 1)th, is not actually inserted: it is a ‘ghost’,
that is, the N real particles are not a�ected by its presence. �e Widom method can also
be applied to inhomogeneous systems, see Section 2.12.

�ere is an alternative formula which applies to the removal of a test particle (selected
at random) from the system (Powles et al., 1982). �is ‘test particle’ is not actually removed:
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it is a real particle and continues to interact normally with its neighbours. In practice, this
technique does not give an accurate estimate of µex, and for hard spheres (for example) it
is completely unworkable (Rowlinson and Widom, 1982). We defer a detailed discussion
of the applicability of these methods and more advanced techniques until Chapter 9.

2.5 Fluctuations
We now discuss the information that can be obtained from the rms �uctuations calculated
as indicated in eqn (2.48). �e quantities of most interest are the constant-volume speci�c
heat capacity CV = (∂E/∂T )V or its constant-pressure counterpart CP = (∂H/∂T )P ,
the thermal expansion coe�cient αP = V −1 (∂V /∂T )P , the isothermal compressibility
βT = −V

−1 (∂V /∂P )T , the thermal pressure coe�cient γV = (∂P/∂T )V , and the adiabatic
(constant-S) analogues of the last three. �e relationship αP = βTγV means that only two
of these quantities are needed to de�ne the third. In part, formulae for these quantities
can be obtained from standard theory of �uctuations (Landau and Lifshitz, 1980), but
in computer simulations we must be careful to distinguish between properly de�ned
mechanical quantities such as the energy or HamiltonianH , the kinetic temperature T
or the instantaneous pressure P, and thermodynamic concepts such as T and P , which
can only be described as ensemble averages or as parameters de�ning an ensemble. �us,
a standard formula such as σ 2 (E) = 〈δE2〉 = kBT

2CV can be used to calculate the speci�c
heat in the canonical ensemble (provided we recognize that E really meansH ), whereas
the analogous simple formula σ 2 (P ) = 〈δP2〉 = kBT /V βT will not be so useful (since P is
not the same as P).

Fluctuations are readily computed in the canonical ensemble, and accordingly we
start with this case. As just mentioned, the speci�c heat is given by the �uctuations in the
energy:

〈δH 2〉NVT = kBT
2CV . (2.77)

�is can be divided into kinetic and potential contributions which are uncorrelated (i.e.
〈δK δV〉NVT = 0):

〈δH 2〉NVT = 〈δV
2〉NVT + 〈δK

2〉NVT . (2.78)
�e kinetic part can be calculated easily, for example in the case of a system of N atoms:

〈δK 2〉NVT =
3N
2 (kBT )

2 = 3N /2β2 (2.79)

yielding the ideal gas part of the speci�c heatC id
V = (3/2)NkB. For this case, then, potential-

energy �uctuations are simply

〈δV2〉NVT = kBT
2
(
CV −

3
2NkB

)
. (2.80)

Consideration of the cross-correlation of the potential-energy and virial �uctuations
yields an expression for the thermal pressure coe�cient γV (Rowlinson, 1969)

〈δVδW〉NVT = kBT
2
(
VγV − NkB

)
(2.81)

whereW is de�ned in eqns (2.65)–(2.69). In terms of the pressure function de�ned in
eqn (2.61) this becomes

〈δVδP〉NVT = kBT
2
(
γV − ρkB

)
(2.82)
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once more valid for a system of N atoms. Equation (2.82) also applies if P is replaced
by P ′ or by Pex (eqn (2.82)), which is more likely be available in a (con�guration-space)
constant-NVT Monte Carlo calculation. Similar formulae may be derived for molecular
systems. When we come to consider �uctuations of the virial itself, we must de�ne a
further ‘hypervirial’ function

X = 1
9

∑
i

∑
j>i

∑
k

∑
`>k

(
ri j · ∇ri j

) (
rk` · ∇rk`

)
V (2.83)

which becomes, for a pairwise additive potential

X = 1
9

∑
i

∑
j>i

x (ri j ) (2.84)

where
x (r ) = r

dw(r )
dr (2.85)

w(r ) being the intermolecular viral de�ned in eqn (2.66). It is then easy to show that

〈δW2〉NVT = kBT
(
NkBT + 〈W〉NVT − β

−1
T V + 〈X〉NVT

)
(2.86)

or
〈δP2〉NVT =

kBT

V

(
2NkBT

3V + 〈P〉NVT − β
−1
T +

〈X〉NVT

V

)
. (2.87)

�e average 〈X〉 is a non-thermodynamic quantity. Nonetheless, it can be calculated
in a computer simulation, so eqns (2.86) and (2.87) provide a route to the isothermal
compressibility βT . Note that Cheung (1977) uses a di�erent de�nition of the hypervirial
function. In terms of the �uctuations of P ′, the analogous formula is

〈δPex2
〉NVT = 〈δP

′2〉NVT =
kBT

V

(
〈P ′〉NVT − β

−1
T +

〈X〉NVT

V

)
(2.88)

and this would be the formula used most in constant-NVT simulations.
�e desired �uctuation expressions for the microcanonical ensemble may best be

derived from the preceding equations, by applying the transformation formula, eqn (2.50)
(Lebowitz et al., 1967; Cheung, 1977) or directly (Ray and Graben, 1981). �e equivalence
of the ensembles guarantees that the values of simple averages (such as 〈X〉) are unchanged
by this transformation. In the microcanonical ensemble, the energy (of course) is �xed,
but the speci�c heat may be obtained by examining �uctuations in the separate potential
and kinetic components (Lebowitz et al., 1967). For N atoms,

〈δV2〉NV E = 〈δK
2〉NV E =

3
2Nk2

BT
2
(
1 − 3NkB

2CV

)
. (2.89)

Cross-correlation of the pressure function and (say) the kinetic energy may be used to
obtain the thermal pressure coe�cient:

〈δPδK〉NV E = 〈δPδV〉NV E =
Nk2

BT
2

V

(
1 − 3VγV

2CV

)
. (2.90)
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Finally the expression for �uctuations of P in the microcanonical ensemble yields the
isothermal compressibility, but the formula is made slightly more compact by introducing
the adiabatic compressibility βS , and using β−1

S = β
−1
T +TVγ

2
V /CV

〈δP2〉NV E =
kBT

V

(
2NkBT

3V + 〈P〉NV E − β
−1
S +

〈X〉NV E

V

)
. (2.91)

In eqns (2.89)–(2.91)T is short for 〈T 〉NV E . All these expressions are easily derived using
the transformation technique outlined earlier, and they are all valid for systems of N
atoms. �e same expressions (to leading order in N ) hold in the constant-NVEP ensemble
probed by molecular dynamics. Analogous formulae for molecular systems may be derived
in a similar way.

Conversion from the canonical to the isothermal–isobaric ensemble is easily achieved.
Most of the formulae of interest are very simple since they involve well-de�ned mechanical
quantities. At constant T and P , both volume and energy �uctuations may occur. �e
volume �uctuations are related to the isothermal compressibility

〈δV 2〉NPT = VkBT βT . (2.92)

�e simplest speci�c heat formula may be obtained by calculating the ‘instantaneous’
enthalpyH + PV , when we see〈

δ (H + PV )2
〉
NPT
= kBT

2CP . (2.93)

�is equation can be split into the separate terms involving 〈δH 2〉, 〈δV 2〉, and 〈δHδV 〉.
Finally the thermal expansion coe�cient may be calculated from the cross-correlations of
‘enthalpy’ and volume: 〈

δVδ (H + PV )
〉
NPT
= kBT

2VαP . (2.94)

Other quantities may be obtained by standard thermodynamic manipulations. Finally,
to reiterate, although P is �xed in these expressions, the functions P and P ′ de�ned in
eqns (2.61)–(2.62) will �uctuate around the average value P .

In the grand canonical ensemble, energy, pressure, and number �uctuations occur.
�e number �uctuations yield the isothermal compressibility

〈δN 2〉µVT = kBT (∂N /∂µ )VT =
N 2

V
kBT βT . (2.95)

Expressions for the other thermodynamic derivatives are a li�le more complicated
(Adams, 1975). �e simplest formula for a speci�c heat is obtained by considering (by
analogy with the enthalpy) a functionH − µN :〈

δ (H − µN )2
〉
µVT
= kBT

2CµV = kBT
2
(
∂〈H − µN 〉

∂T

)
µV

(2.96)

and the usual speci�c heat CV (i.e. CNV ) is obtained by thermodynamic manipulations:

CV =
3
2NkB +

1
kBT 2

*
,
〈δV2〉µVT −

〈δVδN 〉2µVT

〈δN 2〉µVT
+
-
. (2.97)
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�e thermal expansion coe�cient may be derived in the same way:

αP =
PβT
T
−
〈δVδN 〉µVT

NkBT 2 +
〈V〉µVT 〈δN

2〉µVT

N 2kBT 2 . (2.98)

Finally, the thermal pressure coe�cient is given by

γV =
NkB
V
+
〈δVδN 〉µVT

VT

(
1 − N

〈δN 2〉µVT

)
+
〈δVδW〉µVT

VkBT 2 . (2.99)

Except within brackets 〈· · · 〉, N in these equations is understood to mean 〈N 〉µVT and
similarly P means 〈P〉µVT . As emphasized by Adams (1975), when these formulae are used
in a computer simulation, it is advisable to cross-check them with the thermodynamic
identity αP = βTγV .

�e impression may arise that particular thermodynamic derivatives (such as αP ) are
best calculated by conducting a simulation in the corresponding ensemble (e.g. constant-
NPT ). �is is not the case, and Lustig (2012) has provided a systematic approach to
calculating such quantities in a wide variety of ensembles. Care must be taken in the
application of any formulae to the zero-momentum ensemble usually employed in molec-
ular dynamics (Çağin and Ray, 1988; Lustig, 1994a,b). Also, it is important to bear in mind
that signi�cant deviations from the thermodynamic limit will happen when the system
size is small (Ray and Graben, 1991; Shirts et al., 2006; Uline et al., 2008).

2.6 Structural quantities
�e structure of a simple monatomic �uid is characterized by a set of distribution functions
for the atomic positions, the simplest of which is the pair distribution function д2 (ri , rj ),
or д2 (ri j ) or simply д(r ). �is function gives the probability of �nding a pair of atoms a
distance r apart, relative to the probability for a completely random distribution at the
same density. To de�ne д(r ), we integrate the con�gurational distribution function over
the positions of all atoms except two, incorporating the appropriate normalization factors
(Mc�arrie, 1976; Hansen and McDonald, 2013). In the canonical ensemble

д(r1, r2) =
N (N − 1)
ρ2ZNVT

∫
dr3dr4 · · · drN exp[−βV (r1, r2, · · · rN )]. (2.100)

Obviously the choice i = 1 and j = 2 is arbitrary in a system of identical atoms. An
equivalent de�nition begins with the pair density

ρ (2) (r′ + r, r′) =
〈∑

i

∑
j,i

δ (r′ + r − ri )δ (r′ − rj )
〉

for positions separated by a vector r. �is is independent of r′ in a homogeneous system
(we discuss inhomogeneous systems in Section 2.12). д(r) is de�ned as the ratio

д(r) =
ρ (2) (r′ + r, r′)

ρ2 =
V 2

N 2
1
V

∫
dr′ ρ (2) (r′ + r, r′)
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Fig. 2.2 Pair distribution function for the Lennard-Jones �uid (shi�ed, rc = 2.5σ ) close to its triple
point (T ∗ = 0.8, ρ∗ = 0.8).

where we average over r′. �e result of integrating over the delta functions is an ensemble
average over pairs

д(r ) =
V

N 2

〈∑
i

∑
j,i

δ (r − ri j )
〉
, where ri j = ri − rj , (2.101)

and we note that the result depends only on r = |r| in an isotropic liquid. �e pair
distribution functions of simple model systems, such as hard spheres, may be predicted
accurately by integral equation theories, and are frequently used as a basis for modelling
the structure of a range of �uids (Hansen and McDonald, 2013); they may be easily
calculated (Smith et al., 2008).

Equation (2.101) may be used in the evaluation of д(r ) by computer simulation; in
practice, the delta function is replaced by a function which is non-zero in a small range
of separations, and a histogram is compiled of all pair separations falling within each
such range (see Chapter 8). Fig. 2.2 shows a typical pair distribution function for the
Lennard-Jones liquid close to its triple point.

�e pair distribution function is useful, not only because it provides insight into the
liquid structure, but also because the ensemble average of any pair function may be
expressed in the form 〈

a(ri , rj )
〉
=

1
V 2

∫
dridrj д(ri , rj )a(ri , rj ) (2.102a)

or, in an isotropic �uid,

〈A〉 =

〈∑
i

∑
j>i

a(ri j )
〉
= 1

2N ρ

∫ ∞

0
a(r )д(r )4πr 2 dr . (2.102b)
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For example, we may write the energy (assuming pair additivity)

E = 3
2NkBT + 2πN ρ

∫ ∞

0
r 2
v(r )д(r ) dr (2.103)

or the pressure

PV = NkBT −
2
3πN ρ

∫ ∞

0
r 2
w(r )д(r ) dr (2.104)

although in practice, a direct evaluation of these quantities, as discussed in Section 2.4,
will usually be more accurate. Even the chemical potential may be related to д(r )

µ = kBT ln(ρΛ3) + 4πρ
∫ 1

0
dξ

∫ ∞

0
r 2
v(r )д(r ; ξ )dr (2.105)

with Λ given by eqn (2.24). As usual with the chemical potential, there is a twist: the
formula involves a pair distribution function д(r , ξ ) which depends upon a parameter ξ
coupling the two atoms, and it is necessary to integrate over ξ (Mc�arrie, 1976).

�e de�nition of the pair distribution function may be extended to the molecular case
when the function д(ri j ,Ωi ,Ωj ) depends upon the separation between, and orientations
of the molecules. �is may be evaluated in a simulation by compiling histograms, as in the
atomic case, but of course there is now the problem that many more variables are involved,
and a very large, multidimensional table will be needed. A number of di�erent approaches
which give partial descriptions of the orientational ordering have been developed (Gray
and Gubbins, 1984):
(a) sections through д(ri j ,Ωi ,Ωj ) are calculated as a function of ri j for �xed relative

orientations (Haile and Gray, 1980);
(b) д(ri j ,Ωi ,Ωj ) can be expressed as a spherical harmonic expansion, where the coe�-

cients are functions of ri j (Stree� and Tildesley, 1976; Haile and Gray, 1980);
(c) a set of site–site distribution functions дab (rab ) can be calculated in the same way

as the atomic д(r ) for each type of site.
�e �rst method proceeds by compiling histograms, just as for д(r ), but restricting the
accumulation of data to pairs of molecules which are close to a few speci�c relative
orientations. �us for pairs of linear molecules, parallel con�gurations and T-shapes
might be of interest.

�e spherical harmonic expansion for a pair of linear molecules would take the form

д(ri j ,Ωi ,Ωj ) = 4π
∞∑
`=0

∞∑
`′=0

∑
m

д``′m (ri j )Y`m (Ωi )Y`′m̄ (Ωj ) (2.106)

where the functions Y`m (Ω) ≡ Y`m (θ ,ϕ) are spherical harmonic functions of the polar
angles de�ning the direction of the molecular axis, and m̄ = −m. �e range of the sum over
m values is either (−`, `) or (−`′, `′), whichever is the smaller. Note that the orientations
are measured relative to the vector ri j in each case. In a simulation, the coe�cients д``′m
would be evaluated by averaging a product of spherical harmonics over a spherical shell
around each molecule, as described in Chapter 8. �e function д000 (r ) is the isotropic
component, that is, the pair distribution function for molecular centres averaged over all
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orientations. �is approach is readily extended to non-linear molecules. �e expansion
can be carried out in a molecule-�xed frame (Stree� and Tildesley, 1976) or in a space-
�xed frame (Haile and Gray, 1980). �e coe�cients can be recombined to give the total
distribution function, but this is not pro�table for elongated molecules, since many terms
are required for the series to converge. Certain observable properties are related to limited
numbers of the harmonic coe�cients. �e angular correlation parameter of rank `, д` ,
may be expressed in the molecule-�xed frame

д` = 1 + 4πρ
2` + 1

∑̀
m=−`

(−1)m
∫ ∞

0
д``m (r )r 2dr = 1 + 1

N

〈∑
i

∑
j,i

P` (cosγi j )
〉

(2.107)

where P` (cosγ ) is a Legendre polynomial and γi j is the angle between the axis vectors of
molecules i and j. д1 is related to the dielectric properties of polar molecules, while д2
may be investigated by depolarized light sca�ering. Formulae analogous to eqns (2.106)
and (2.107) may be wri�en for non-linear molecules. �ese would involve the Wigner
rotation matrices D`

mm′ (Ωi ) instead of the spherical harmonics (Gray and Gubbins, 1984,
Appendix 7). In liquid crystals, where the isotropic rotational symmetry is broken, these
expansions involve many more terms (Zannoni, 2000).

As an alternative, a site–site description might be more appropriate. Pair distribution
functions дab (rab ) are de�ned for each pair of sites on di�erent molecules, using the same
de�nition as in the atomic case. �e number of independentдab (rab ) functions will depend
on the complexity of the molecule. For example, in a three-site model of OCS, the isotropic
liquid is described by six independent дab (rab ) functions (for OO, OC, OS, CC, CS, and SS
distances), whereas for a �ve-site model of CH4, the liquid is described by three functions
(CC, CH, HH). While less information is contained in these distribution functions than
in the components of д(ri j ,Ωi ,Ωj ), they have the advantage of being directly related
to the structure factor of the molecular �uid (Lowden and Chandler, 1974) and hence to
experimentally observable properties (for example neutron and X-ray sca�ering). We
return to the calculation of these quantities in Chapter 8.

Finally, we turn to the de�nitions of quantities that depend upon wavevector rather
than on position. In a simulation with periodic boundaries, we are restricted to wavevectors
that are commensurate with the periodicity of the system, that is, with the simulation box.
Speci�cally, in a cubic box, we may examine �uctuations for which k = (2π/L) (nx ,ny ,nz )
where L is the box length andnx ,ny ,nz are integers. �is is a severe restriction, particularly
at low k . One quantity of interest is the spatial Fourier transform of the number density

ρ (k) =
N∑
i=1

exp(−ik · ri ). (2.108)

Fluctuations in ρ (k) are related to the structure factor S (k )

S (k ) = N −1
〈
ρ (k)ρ (−k)

〉
(2.109)

which may be measured by neutron or X-ray sca�ering experiments, and depends only on
k = |k| in an isotropic system. �us, S (k ) describes the Fourier components of the density
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�uctuations in the liquid. It is related, through a three-dimensional Fourier transform (see
Appendix D) to the pair distribution function

S (k ) = 1 + ρĥ(k ) = 1 + ρд̂(k ) = 1 + 4πρ
∫ ∞

0
r 2 sinkr

kr
д(r ) dr (2.110)

where we have introduced the Fourier transform of the total correlation function h(r ) =
д(r ) − 1, and have ignored a delta function contribution at k = 0. In a similar way, k-
dependent orientational functions may be calculated and measured routinely in computer
simulations.

2.7 Time correlation functions and transport coe�cients
Correlations between two di�erent quantitiesA andB are measured in the usual statistical
sense, via the correlation coe�cient cAB

cAB = 〈δAδB〉/σ (A)σ (B) (2.111)

withσ (A) andσ (B) given by eqn (2.48). Schwartz inequalities guarantee that the absolute
value of cAB lies between 0 and 1, with values close to 1 indicating a high degree of
correlation. �e idea of the correlation coe�cient may be extended in a very useful way,
by consideringA and B to be evaluated at two di�erent times. For an equilibrium system,
the resulting quantity is a function of the time di�erence t : it is a ‘time correlation function’
cAB (t ). For identical phase functions, cAA (t ) is called an autocorrelation function and
its time integral (from t = 0 to t = ∞) is a correlation time tA . �ese functions are of
great interest in computer simulation because:
(a) they give a clear picture of the dynamics in a �uid;
(b) their time integrals tA may o�en be related directly to macroscopic transport

coe�cients;
(c) their Fourier transforms ĉAA (ω) may o�en be related to experimental spectra

measured as a function of frequency ω.
Useful discussions of time correlation functions may be found in the references (Steele,

1969; 1980; Berne and Harp, 1970; Mc�arrie, 1976; Hansen and McDonald, 2013). A few
comments may be relevant here. �e non-normalized correlation function is de�ned

CAB (t ) =
〈
δA (t )δB (0)

〉
ens
=

〈
δA

(
Γ(t )

)
δB

(
Γ(0)

)〉
ens

(2.112)

so that
cAB (t ) = CAB (t )/σ (A)σ (B) (2.113a)

or
cAA (t ) = CAA (t )/σ

2 (A) = CAA (t )/CAA (0). (2.113b)

Just like 〈δAδB〉,CAB (t ) is di�erent for di�erent ensembles, and eqn (2.50) may be used
to transform from one ensemble to another. �e computation of CAB (t ) may be thought
of as a two-stage process. First, we must select initial state points Γ(0), according to
the desired distribution ρens (Γ), over which we will subsequently average. �is may be
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done using any of the prescriptions mentioned in Section 2.1. Second, we must evaluate
Γ(t ). �is means solving the true (Newtonian) equations of motion. By this means, time-
dependent properties may be calculated in any ensemble. In practice, the mechanical
equations of motion are almost always used for both purposes, that is, we use molecular
dynamics to calculate the time correlation functions in the microcanonical ensemble.

Some a�ention must be paid to the question of ensemble equivalence, however, since
the link between correlation functions and transport coe�cients is made through linear
response theory, which can be carried out in virtually any ensemble. �is actually caused
some confusion in the original derivations of the expressions for transport coe�cients
(Zwanzig, 1965). In the following, we make some general observations, and refer the
reader elsewhere (Mc�arrie, 1976; Frenkel and Smit, 2002; Tuckerman, 2010; Hansen
and McDonald, 2013) for a fuller discussion.

Transport coe�cients such as the di�usion coe�cient, thermal conductivity, and shear
and bulk viscosities appear in the equations of hydrodynamics, such as the mass and
thermal di�usion equations and the Navier–Stokes equation. Accordingly, they describe
the relaxation of dynamical variables on the macroscopic scale. Provided the long-time
and large-length-scale limits are considered carefully, they can be expressed in terms of
equilibrium time correlation functions of microscopically de�ned variables. Such rela-
tions are generally termed Green–Kubo formulae (Hansen and McDonald, 2013). Linear
response theory can be used to provide an interpretation of these formulae in terms of the
response of the system to a weak perturbation. By introducing such perturbations into
the Hamiltonian, or directly into the equations of motion, their e�ect on the distribution
function ρens may be calculated. Generally, a time-dependent nonequilibrium distribu-
tion ρ (t ) = ρens + δρ (t ) is produced. Hence, any nonequilibrium ensemble average (in
particular, the desired response) may be calculated. By retaining the linear terms in the
perturbation, and comparing the equation for the response with a macroscopic transport
equation, we may identify the transport coe�cient.

�e Green–Kubo expression is usually wri�en as the in�nite time integral of an
equilibrium time correlation function of the form

γ =

∫ ∞

0
dt

〈
Ȧ (t )Ȧ (0)

〉
(2.114)

whereγ is the transport coe�cient, andA is the appropriate dynamical variable. Associated
with any expression of this kind, there is an ‘Einstein relation’〈(

A (t ) − A (0)
)2〉
= 2tγ , as t → ∞, or γ = lim

t→∞

d
dt

1
2
〈(
A (t ) − A (0)

)2〉
(2.115)

which holds at large t compared with the correlation time of A. �e connection between
eqns (2.114) and (2.115) may be easily established by integration by parts. Note that only
a few genuine transport coe�cients exist; that is, for only a few ‘hydrodynamic’ variables
A do eqns (2.114) and (2.115) give a non-zero γ (Mc�arrie, 1976).

In computer simulations, transport coe�cients may be calculated from equilibrium
correlation functions, using eqn (2.114), by observing Einstein relations, eqn (2.115), or
indeed going back to �rst principles and conducting a suitable nonequilibrium simulation.
�e details of the calculation via eqns (2.114), (2.115) will be given in Chapter 8, and we
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will examine nonequilibrium methods in Chapter 11. For use in equilibrium molecular
dynamics, we give here the equations for calculating thermal transport coe�cients in the
microcanonical ensemble, for a �uid composed of N identical molecules.

�e di�usion coe�cient D is given (in three dimensions) by

D =
1
3

∫ ∞

0
dt

〈
vi (t ) · vi (0)

〉
(2.116)

where vi (t ) is the centre-of-mass velocity of a single molecule. �e corresponding Einstein
relation, valid at long times, is

D = lim
t→∞

d
dt

1
6

〈���ri (t ) − ri (0)
���
2〉

(2.117)

where ri (t ) is the molecule position. �ere is also an equally valid ‘intermediate’ form:

D = lim
t→∞

1
3

〈
vi (0) ·

(
ri (t ) − ri (0)

)〉
. (2.118)

In practice, these averages would be computed for each of the N particles in the simulation,
the results added together, and divided by N , to improve statistical accuracy. Note that
in the computation of eqns (2.117), (2.118), it is important not to switch a�ention from
one periodic image to another, which is why it is sometimes useful to have available a set
of particle coordinates which have not been subjected to periodic boundary conditions
during the simulation (see Section 1.6 and Chapter 8).

�e shear viscosity is given by

η =
V

kBT

∫ ∞

0
dt

〈
Pα β (t )Pα β (0)

〉
(2.119)

or
η = lim

t→∞

d
dt

1
2

V

kBT

〈(
Qα β (t ) − Qα β (0)

)2〉
. (2.120)

Here
Pα β =

1
V

(∑
i

piαpiβ/mi +
∑
i

riα fiβ

)
(2.121)

or
Pα β =

1
V

(∑
i

piαpiβ/mi +
∑
i

∑
j>i

ri jα fi jβ

)
(2.122)

is an o�-diagonal (α , β) element of the pressure tensor (compare the virial expression
for the pressure function eqns (2.61) and (2.65)) and

Qα β =
1
V

∑
i

riαpiβ . (2.123)

�e negative of Pα β is o�en called the stress tensor. �ese quantities are multi-particle
properties, properties of the system as a whole, and no additional averaging over N
particles is possible. Consequently η is subject to much greater statistical imprecision than
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D. Some improvement is possible by averaging over di�erent components αβ = xy ,yz, zx ,
of Pα β . Just as for eqn (2.65), the origin-independent form, eqn (2.122), should be used
rather than eqn (2.121), in periodic boundaries, and similar care needs to be taken in the
calculation of Qα β (t ) − Qα β (0) in eqn (2.120).

�e bulk viscosity is given by a similar expression:

ηV =
V

9kBT

∑
α β

∫ ∞

0
dt

〈
δPαα (t )δPββ (0)

〉
=

V

kBT

∫ ∞

0
dt

〈
δP (t )δP (0)

〉
(2.124a)

where we sum over α , β = x ,y, z and note that P = 1
3 TrP = 1

3
∑
α Pαα . Rotational

invariance leads to the equivalent expression

ηV +
4
3η =

V

kBT

∫ ∞

0
dt

〈
δPαα (t )δPαα (0)

〉
. (2.124b)

Here the diagonal stresses must be evaluated with care, since a non-vanishing equilibrium
average must be subtracted:

δPαα (t ) = Pαα (t ) − 〈Pαα 〉 = Pαα (t ) − P (2.125a)
δP (t ) = P (t ) − 〈P〉 = P (t ) − P (2.125b)

with Pα β given by an expression like eqn (2.122). �e corresponding Einstein relation is
(Alder et al., 1970)

ηV +
4
3η = lim

t→∞

d
dt

1
2

V

kBT

〈(
Qαα (t ) − Qαα (0) − Pt

)2〉
. (2.126)

�e thermal conductivity λT can be wri�en (Hansen and McDonald, 2013)

λT =
V

kBT 2

∫ ∞

0
dt

〈
jϵα (t )j

ϵ
α (0)

〉
(2.127)

or
λT = lim

t→∞

d
dt

1
2

V

kBT 2

〈(
δϵα (t ) − δϵα (0)

)2〉
. (2.128)

Here jϵα is a component of the energy current, that is, the time derivative of

δϵα =
1
V

∑
i

riα
(
ϵi − 〈ϵi 〉

)
. (2.129)

�e term ∑
i riα 〈ϵi 〉 makes no contribution if ∑

i riα = 0, as is the case in a normal one-
component md simulation. In calculating the energy per molecule ϵi , the potential energy
of two molecules (assuming pairwise additive potentials) is taken to be divided equally
between them:

ϵi = p
2
i /2mi +

1
2

∑
j,i

v(ri j ). (2.130)

�ese expressions for ηV and λT are ensemble-dependent and the preceding equations
hold for the microcanonical case only. A fuller discussion may be found in the standard
texts (Mc�arrie, 1976; Zwanzig, 1965).
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Transport coe�cients are related to the long-time behaviour of correlation functions.
Short-time correlations, on the other hand, may be linked with static equilibrium ensemble
averages by expanding in a Taylor series. For example, the velocity of particle i may be
wri�en

vi (t ) = vi (0) + v̇i (0)t + 1
2 v̈i (0)t

2 + · · · . (2.131)

Multiplying by vi (0) and ensemble averaging yields〈
vi (t ) · vi (0)

〉
= 〈v2

i 〉 +
1
2 〈v̈i · vi 〉t

2 + · · · = 〈v2
i 〉 −

1
2 〈v̇

2
i 〉t

2 + · · · . (2.132)

�e vanishing of the term linear in t , and the last step, where we set 〈v̈i · vi 〉 = −〈v̇i · v̇i 〉,
follow from time-reversal symmetry and stationarity (Mc�arrie, 1976). �us, the short-
time velocity autocorrelation function is related to the mean-square acceleration, that is,
to the mean-square force. �is behaviour may be used to de�ne the Einstein frequency ωE

〈vi (t ) · vi (0)〉 = 〈v2
i 〉

(
1 − 1

2ω
2
Et

2 + · · ·
)
. (2.133)

�e analogy with the Einstein model, of an atom vibrating in the mean force �eld of its
neighbours, with frequency ωE in the harmonic approximation, becomes clear when we
replace the mean-square force by the average potential curvature using

〈f 2
iα 〉 = −

〈
fiα ∂V/∂riα

〉
= −kBT

〈
∂ fiα /∂riα

〉
= kBT

〈
∂2V/∂r 2

iα

〉
(2.134)

which is another application of 〈A ∂H /∂qk 〉 = kBT 〈∂A/∂qk 〉. �e result is

ω2
E =

〈
f 2
i

〉
m2

i

〈
v

2
i

〉 = 1
3mi

〈
∇2
riV

〉
. (2.135)

�is may be easily evaluated for, say, a pairwise additive potential. Short-time expansions
of other time correlation functions may be obtained using similar techniques. �e temporal
Fourier transform (see Appendix D) of the velocity autocorrelation function is proportional
to the density of normal modes in a purely harmonic system, and is o�en loosely referred
to as the ‘density of states’ in solids and liquids. �e velocity autocorrelation function for
the Lennard-Jones liquid near the triple point is illustrated in Fig. 2.3.

We can only mention brie�y some other autocorrelation functions of interest in
computer simulations. �e generalization of eqn (2.109) to the time domain yields the
intermediate sca�ering function I (k, t ).

I (k, t ) = N −1
〈
ρ (k, t )ρ (−k, 0)

〉
(2.136)

with ρ (k, t ) de�ned by eqn (2.108). �e temporal Fourier transform of this, the dynamic
structure factor S (k,ω), in principle may be measured by inelastic neutron sca�ering.
Spatially Fourier transforming I (k, t ) yields the van Hove functionG (r , t ), a generalization
of д(r ) which measures the probability of �nding a particle at position r at time t , given
that a particle was at the origin of coordinates at time 0. All of these functions may
be divided into parts due to ‘self’ (i.e. single-particle) motion and due to ‘distinct’ (i.e.
collective) e�ects. Other k-dependent variables may be de�ned, and their time correlation
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Fig. 2.3 �e velocity autocorrelation function for the Lennard-Jones �uid (shi�ed potential,
rc = 2.5σ ) close to its triple point (T ∗ = 0.8, ρ∗ = 0.8).

functions are of great interest (Hansen and McDonald, 2013). For example, longitudinal
and transverse momentum components may be de�ned

p ‖ (k, t ) =
1
V

∑
i

pix (t ) exp
(
ikxi (t )

)
(2.137a)

p⊥1 (k, t ) =
1
V

∑
i

piy (t ) exp
(
ikxi (t )

)
(2.137b)

p⊥2 (k, t ) =
1
V

∑
i

piz (t ) exp
(
ikxi (t )

)
(2.137c)

where for convenience we take k = (k, 0, 0) in the x direction, and xi = rix . �ese
quantities are useful for discussing hydrodynamic modes in liquids. �ese functions may
all be computed routinely in simulations, although, as always, the allowed k-vectors are
restricted by small system sizes and periodic boundary conditions.

For systems of rigid molecules, the angular velocityωi plays a role in reorientational
dynamics analogous to that of vi in translation (see Chapter 3). �e angular velocity
correlation function 〈ωi (t ) ·ωi (0)〉 may be used to describe rotation. Time-dependent
orientational correlations may be de�ned (Gordon, 1968; Steele, 1969; 1980) as straight-
forward generalizations of the quantities seen earlier. For a linear molecule, the time
correlation function of rank-` spherical harmonics is

c` (t ) = 4π
〈
Y`m

(
Ωi (t )

)
Y ∗`m

(
Ωi (0)

)〉
=

〈
P`

(
cosδγ (t )

)〉
(2.138)

where δγ (t ) is the magnitude of the angle turned through in time t . Note that, assuming
an isotropic system, there are 2` + 1 rank-` functions, all identical in form, corresponding
to the di�erent values ofm.
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Analogous formulae for non-linear molecules involve the Wigner rotation matrices.
�e starting point is the expansion of the probability density for rotation of the molecule
through a set of Euler angles δΩi in time t :

ρ (δΩi ; t ) =
∑
`mm′

2` + 1
8π2 c`mm′ (t )D

`∗
mm′ (δΩi )

which is equivalent to de�ning the key correlation functions

c`mm′ (t ) =
〈
D`

mm′
(
δΩi (t )

)〉
.

�e term on the right may be expressed in terms of the molecular orientations at time 0
and time t :

D`
mm′

(
δΩi (t )

)
=

∑̀
n=−`

D`∗
nm

(
Ωi (0)

)
D`

nm′
(
Ωi (t )

)
.

However, in an isotropic �uid, averaging over the initial distribution gives an identical
result for each of these terms〈

D`
mm′

(
δΩi (t )

)〉
= (2` + 1)

〈
D`∗

nm

(
Ωi (0)

)
D`

nm′
(
Ωi (t )

)〉
independent of n, and so (Steele, 1980)

c`mm′ (t ) = (2` + 1)
〈
D`∗

nm

(
Ωi (0)

)
D`

nm′
(
Ωi (t )

)〉
. (2.139)

When the symmetry of the phase is reduced, for example in liquid crystals, many more
non-equivalent time correlation functions exist (Zannoni, 1994). �ese quantities are
experimentally accessible and the relationships between them are of great theoretical
interest. For example, �rst-rank autocorrelation functions may be related to infrared
absorption, and second-rank functions to light sca�ering. Functions of all ranks contribute
to inelastic neutron sca�ering spectra from molecular liquids.

2.8 Long-range corrections
As explained in Section 1.6, computer simulations frequently use a pair potential with a
spherical cuto� at a distance rc. It becomes useful to correct the results of simulations to
compensate for the missing long-range part of the potential. Contributions to the energy,
pressure, etc. for r > rc are frequently estimated by assuming that д(r ) ≈ 1 in this region,
and using eqns (2.103)–(2.105)

Efull ≈ Ec + ELRC = Ec + 2πN ρ
∫ ∞

rc

r 2
v(r ) dr (2.140)

(PV )full = (PV )c + (PV )LRC = (PV )c −
2
3πN ρ

∫ ∞

rc

r 2
w(r ) dr (2.141)

µfull = µc + µLRC = µc + 4πρ
∫ ∞

rc

r 2
v(r ) dr (2.142)
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where Efull, (PV )full, µfull are the desired values for a liquid with the full potential, and Ec,
(PV )c, µc are the values actually determined from a simulation using a potential with a
cuto�. For the Lennard-Jones potential, eqn (1.6), these equations become

E∗LRC =
8
9πN ρ

∗r ∗c
−9
− 8

3πN ρ
∗r ∗c
−3 (2.143)

P∗LRC =
32
9 πρ

∗2r ∗c
−9
− 16

3 πρ
∗2r ∗c

−3 (2.144)
µ∗LRC =

16
9 πρ

∗r ∗c
−9
− 16

3 πρ
∗r ∗c
−3 (2.145)

where we use Lennard-Jones reduced units (see Appendix B). In the case of the constant-
NVE and constant-NVT ensembles, these corrections can be applied to the results a�er
a simulation has run. However, if the volume or the number of particles is allowed to
�uctuate (e.g. in a constant-NPT or constant-µVT simulation) it is important to apply the
corrections to the calculated instantaneous energies, pressures, etc. during the course
of a simulation, since they will change as the density �uctuates: it is far more tricky to
a�empt to do this when the simulation is over.

For three-body potentials such as the Axilrod–Teller potential, the potential energy
from the three-body term in a homogeneous �uid is

〈V3〉 =
ρ3

6

∫∫∫
dr1dr2dr3 v

(3) (r12, r13, r23) д
(3) (r1, r2, r3). (2.146)

In a simulation the three-body energy is calculated explicitly for

r12 ≤ rc and r13 ≤ rc and r23 ≤ rc. (2.147)

For the rest of the space, the long-range part, the three-body distribution function can be
approximated using the superposition approximation

д(3) (r1, r2, r3) ≈ д
(2) (r12) д

(2) (r13) д
(2) (r23). (2.148)

�ere are six equivalent parts to this region, and the long-range correction is thus

〈V3〉LRC = ρ
3
∫∫∫
r12>rc

r12>r13>r23

dr1dr2dr3 v
(3) (r12, r13, r23) д

(2) (r13) д
(2) (r23) (2.149)

where we have explicitly considered the region in which r12 > rc and thus д(r12) = 1
(Barker et al., 1971). �en transforming to bipolar coordinates we have

E3,LRC = 〈V3〉LRC = 8π2ρ2N

∫ ∞

rc

dr12 r12

∫ r12

0
dr13 r13∫ r13

r12−r13

dr23 r23 v
(3) (r12, r13, r23) д

(2) (r13)д
(2) (r23) (2.150)

which can be evaluated accurately using the kind of Monte Carlo integration method
described in Section 4.2. Note that the approximate estimate of the three-body long-range
correction requires the two-body radial distribution function for the �uid. �is cannot
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simply be set to one since both r13 and r23 can be less than rc. For the speci�c case of
the Axilrod–Teller potential, which is a homogeneous function of order 9 (Graben and
Fowler, 1969)

(PV )3,LRC = 3E3,LRC. (2.151)

For more general potentials the Monte Carlo evaluation of eqn (2.149) can be adapted to
calculate the long-range correction for the pressure and the chemical potential.

2.9 �antum corrections
Most of this book will deal with the computer simulation of systems within the classical
approximation, although we turn in Chapter 13 to the a�empts which have been made to
incorporate quantum e�ects in simulations. �antum e�ects in thermodynamics may be
measured experimentally via the isotope separation factor, while tunnelling, super�uidity,
etc. are clear manifestations of quantum mechanics.

Even within the limitations of a classical simulation, it is still possible to estimate
quantum corrections of thermodynamic functions. �is is achieved by expanding the
partition function in powers of Planck’s constant, ~ = h/2π (Wigner, 1932; Kirkwood,
1933). For a system of N atoms we have

QNVT =
1

Λ3NN !

∫
dr

(
1 − β~2

24m

N∑
i=1

[
∇ri βV (r)

]2)
exp[−βV (r)] (2.152)

where Λ is de�ned in eqn (2.24). �e expansion accounts for the leading quantum-
mechanical di�raction e�ects; other e�ects, such as exchange, are small for most cases of
interest. Additional details may be found elsewhere (Landau and Lifshitz, 1980; Mc�arrie,
1976). �is leads to the following correction to the Helmholtz free energy, ∆A = Aqu −Acl

∆Atrans =
1
24N~

2β2
〈
f 2
i

〉
/m. (2.153)

Here, as in Section 2.7, 〈f 2
i 〉 is the mean-square force on one atom in the simulation.

Obviously, be�er statistics are obtained by averaging over all N atoms. An equivalent
expression is

∆Atrans =
NΛ2ρ

48π

∫
drд(r )∇2

v(r )

=
NΛ2ρ

12

∫ ∞

0
r 2д(r )

(
d2
v(r )

dr 2 +
2
r

dv(r )
dr

)
dr (2.154)

assuming pairwise additive interactions. Additional corrections of order ~4 can be esti-
mated if the three-body distribution function д3 can be calculated in a simulation (Hansen
and Weis, 1969). Note that for hard systems, the leading quantum correction is of order
~: for hard spheres it amounts to replacing the hard sphere diameter σ by σ + Λ/

√
8

(Hemmer, 1968; Jancovici, 1969). By di�erentiating these equations, quantum corrections
for the energy, pressure, etc. can easily be obtained.

Equation (2.153) is also the translational correction for a system of N molecules where
it is understood thatm now stands for the molecular mass and 〈f 2

i 〉 is the mean-square
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force acting on the molecular centre of mass. Additional corrections must be applied for a
molecular system, to take account of rotational motion (St. Pierre and Steele, 1969; Powles
and Rickayzen, 1979). For linear molecules, with moment of inertia I , the additional term
is (Gray and Gubbins, 1984)

∆Arot =
1
24N~

2β2
〈
τ 2
i

〉
/I − N~2/6I (2.155)

where 〈τ 2
i 〉 is the mean-square torque acting on a molecule. �e correction for the general

asymmetric top, with three di�erent moments of inertia Ixx , Iyy , and Izz , is rather more
complicated

∆Arot =
1
24N~

2β2
( 〈τ 2

ix

〉
Ixx
+

〈
τ 2
iy

〉
Iyy

+

〈
τ 2
iz

〉
Izz

)
−

[
N~2

24
∑

cyclic

2
Ixx
−

Ixx
Iyy Izz

]
(2.156)

where the sum is over the three cyclic permutations of x , y , and z. �ese results are
independent of ensemble, and from them the quantum corrections to any other thermo-
dynamic property can be calculated. Moreover, it is easy to compute the mean-square
force and mean-square torque in a simulation.

Another, possibly more accurate, way of estimating quantum corrections has been
proposed (Berens et al., 1983). In this approach, the velocity autocorrelation function is
calculated and is Fourier transformed to obtain a spectrum, or density of states,

ĉ v v (ω) =

∫ ∞

−∞

dt exp(iωt )
〈
vi (t ) · vi (0)

〉
/
〈
v

2
i

〉
=

m

3kBT

∫ ∞

−∞

dt exp(iωt )
〈
vi (t ) · vi (0)

〉
. (2.157)

�en, quantum corrections are applied to any thermodynamic quantities of interest,
using the approximation that the system behaves as a set of harmonic oscillators, whose
frequency distribution is dictated by the measured velocity spectrum. For each thermo-
dynamic function a correction function, which would apply to a harmonic oscillator of
frequency ω, may be de�ned. �e total correction is then obtained by integrating over all
frequencies. For the Helmholtz free energy, the correction is given by

∆A = 3NkBT

∫ ∞

−∞

dω
2π ĉ v v (ω) ln *.

,

exp
(

1
2~ω/kBT

)
− exp

(
− 1

2~ω/kBT
)

~ω/kBT
+/
-

(2.158)

which agrees with eqn (2.153) to O (~2). �e rationale here is that the harmonic approxima-
tion is most accurate for the high-frequency motions that contribute the largest quantum
corrections, whereas the anharmonic motions are mainly of low frequency, and thus
their quantum corrections are less important. Simulations comparing the simulated and
experimental heat capacity (Waheed and Edholm, 2011) seem to con�rm this for liquid
water, but anharmonicity for ice near the melting point is signi�cant, and the method
overestimates the heat of vaporization. �is approach has also been applied to liquid
methanol (Hawlicka et al., 1989) and ammonia under extreme conditions (Bethkenhagen
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et al., 2013). An alternative approach, however, is to incorporate quantum e�ects associ-
ated with light nuclei, such as hydrogen, into the simulation method directly using the
path-integral approach (see Section 13.4).

�antum corrections may also be applied to structural quantities such as д(r ). �e
formulae are rather complex and will not be given here, but they are based on the same
formula eqn (2.152) for the partition function (Gibson, 1974). Again, the result is di�erent
for hard systems (Gibson, 1975a,b).

When it comes to time-dependent properties, there is one quantum correction which
is essential to bring the results of classical simulation in line with experiment. �antum
mechanical autocorrelation functions obey the detailed balance condition

ĈAA (ω) = exp(β~ω)ĈAA (−ω) (2.159)

whereas, of course, classical autocorrelation functions are even in frequency (Berne and
Harp, 1970). �e e�ects of detailed balance are clearly visible in experimental spectra, for
example in inelastic neutron sca�ering, which probes S (k,ω); in fact experimental results
are o�en converted to the symmetrized form exp( 1

2~βω)S (k,ω) for comparison with
classical theories. Simple empirical measures have been advocated to convert classical
time correlation functions into approximate quantum-mechanical ones. Both the ‘complex
time’ substitutions

CAA (t ) → CAA (t −
1
2i~β ) (Scho�eld, 1960) (2.160)

and CAA (t ) → CAA
(
(t2 − i~βt )1/2

)
(Egelsta�, 1961) (2.161)

result in functions which satisfy detailed balance. �e former is somewhat easier to apply,
since it equates the symmetrized experimental spectrum with the classical simulated one,
while the la�er satis�es some additional frequency integral relations.

2.10 Constraints
In modelling large molecules such as proteins it may be necessary to include constraints
in the potential model, as discussed in Section 1.3.3. �is introduces some subtleties into
the statistical mechanical description. �e system of constrained molecules moves on a
well-de�ned hypersurface in phase space. �e generalized coordinates corresponding to
the constraints and their conjugate momenta are removed from the Hamiltonian. �is
a�ects the form of the distribution function, and expressions for ensemble averages, in
Cartesian coordinates (see Ryckaert and Cicco�i, 1983, Appendix). �is system is not
equivalent to a �uid where the constrained degrees of freedom are replaced by harmonic
springs, even in the limit of in�nitely strong force constants (Fixman, 1974; Pear and
Weiner, 1979; Chandler and Berne, 1979).

To explore this di�erence more formally, we consider a set of N atoms grouped into
molecules in some arbitrary way by harmonic springs. �e Cartesian coordinates of the
atoms are the 3N values r = {riα }, i = 1, 2, · · ·N ,α = x ,y , z. �e system can be described
by 3N generalized coordinates q (i.e. the positions of the centre of mass of each molecule,
their orientations, and vibrational coordinates). �e potential energy of the system can
be separated into a part, Vs, associated with the ‘so�’ coordinates qs (the translations,
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rotations, and internal conversions) and a partVh associated with the ‘hard’ coordinates
qh (bond stretching and possibly bond angle vibrations)

V (q) = Vs (qs) +Vh (qh). (2.162)

If the force constants of the hard modes are independent of qs then the canonical ensemble
average of some con�gurational property A (qs) is (Berendsen and van Gunsteren, 1984)

〈A〉NVT =

∫
A (qs)

√
det(G) exp

[
−βVs (qs)

]
dqs∫ √

det(G) exp
[
−βVs (qs)

]
dqs

(2.163)

where det(G) is the determinant of the mass-weighted metric tensorG, which is associated
with the transformation from Cartesian to generalized coordinates

Gk` =

N∑
i=1

∑
α

mi
∂riα
∂qk

∂riα
∂q`
. (2.164)

G involves all the generalized coordinates and is a 3N × 3N matrix. If the hard degrees of
freedom are actually constrained they are removed from the matrix G:

〈A〉sNVT =

∫
A (qs)

√
det(Gs) exp

[
−βVs (qs)

]
dqs∫ √

det(Gs) exp
[
−βVs (qs)

]
dqs

(2.165)

where

Gs
k` =

N∑
i=1

∑
α

mi
∂riα
∂qs

k

∂riα
∂qs

`

. (2.166)

Gs is a sub-matrix of G and has the dimensions of the number of so� degrees of freedom.
�e simulation of a constrained system does not yield the same average as the simulation
of an unconstrained system unless det(G)/ det(Gs) is independent of the so� modes. In
the simulation of large �exible molecules, it may be necessary to constrain some of the
internal degrees of freedom, and in this case we would probably require an estimate of
〈A〉NVT rather than 〈A〉sNVT . Fixman (1974) has suggested a solution to the problem of
obtaining 〈A〉NVT in a simulation employing constrained variables. A term,

Vc =
1
2kBT ln det(H) (2.167)

is added to the potentialVs. det(H) is given by

det(H) = det(G)/ det(Gs). (2.168)

SubstitutingVs +Vc as the potential in eqn (2.165) we recover the unconstrained average
of eqn (2.163). �e separate calculation of G and Gs to obtain their determinants is di�cult.
However, det(H) is the determinant of a simpler matrix

Hk` =

N∑
i=1

∑
α

mi
∂qh

k

∂riα

∂qh
`

∂riα
(2.169)

which has the dimensions of the number of constrained (hard) degrees of freedom.
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As a simple example of the use of eqn (2.169) consider the case of a butane molecule
(see Fig. 1.10). In our simpli�ed butane, the four united atoms have the same mass m, the
bond angles and torsional angles are free to change but the three bond lengths, C1−C2,
C2−C3, and C3−C4 are �xed. �e 3 × 3 matrix H is

*.
,

2m −m cosθ 0
−m cosθ 2m −m cosθ ′

0 −m cosθ ′ 2m
+/
-

and
det(H) ∝

(
2 + sin2 θ + sin2 θ ′

)
. (2.170)

Since θ and θ ′ can change, H should be included through eqn (2.167). However, it is
possible to use a harmonic bond-angle potential, which keeps the bond angles very
close to their equilibrium values. In this case H is approximately constant and might be
neglected without seriously a�ecting 〈A〉NVT . If we had also constrained the bond angles
in our model of butane, then det(H) would have been a function of the torsional angle ϕ
as well as the θ angles. �us H can change signi�cantly when the molecule converts from
the trans to the gauche state and Vc must be included in the potential (van Gunsteren,
1980). In the case of a completely rigid molecule, det(H) is a constant and need not be
included. We shall discuss the consequences of constraining degrees of freedom at the
appropriate points in Chapters 3 and 4.

2.11 Landau free energy
�e idea of a free energy which depends on certain constrained ‘order parameters’, o�en
termed a ‘Landau’ free energy because of its prominence in the Landau theory of phase
transitions, is very common in molecular simulation. Consider a single parameter q(r), a
generalized coordinate, which can be wri�en as a function of all the atomic positions r.
(In the most general case, it might also depend on momenta, but the con�gurational case
is by far the most common). �en, quite generally, we may write the probability density
function for q in the canonical ensemble

ρ (q) =
〈
δ [q − q(r)]

〉
=

∫
drδ [q − q(r)] exp[−βV (r)]∫

dr exp[−βV (r)]
≡
Qex
NVT (q)

Qex
NVT

. (2.171)

Here we have de�ned the numerator Qex
NVT (q) as the excess partition function of a

system which is restricted to con�gurations for which the generalized coordinate q(r)
takes the value q. �e function ρ (q) is, of course, normalized such that

∫
dq ρ (q) = 1.

Taking logarithms, and identifying A = −kBT lnQex
NVT , we may use Qex

NVT (q) to de�ne a
q-dependent Helmholtz free energy, which we usually write as F (q):

F (q) = A − kBT ln ρ (q) = A − kBT ln〈
δ [q − q(r)]〉. (2.172)

�e thermodynamic Helmholtz free energy is frequently omi�ed from this equation,
since usually one is interested in changes in F (q) as a function of q. For example, in
discussing phase transitions in the Ising model of ferromagnetic systems, below the critical
point, q might be the overall magnetization of the system, and F (q) would typically have
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a double-minimum structure corresponding to stable states with positive and negative
values ofq (Landau and Lifshitz, 1980; Chandler, 1987). As another example,q might be the
coordinate of a molecule as it is moved from an aqueous phase into a non-aqueous phase,
or a measure of ‘crystallinity’ in a nucleus of solid phase growing within a melt (Lynden-
Bell, 1995). In many cases, the free-energy barrier between two states characterized by
di�erent values of q, is of primary interest. It is easy to extend these de�nitions to include
several order parameters {qi } characterizing the system, in which case one would be
interested in a Landau free-energy surface F ({qi }), and possibly in the typical trajectories
followed by a system as it makes transitions between basins in this surface. Later chapters
will give several examples of the use of simulations to measure these quantities, sometimes
using special sampling methods to improve the e�ciency. An interesting consequence of
eqns (2.171) and (2.172) is that one can de�ne a thermodynamic ‘force’

−
dF
dq =

kBT

ρ (q)

dρ (q)
dq =

〈
−

dV
dq

〉
q

where the average is to be taken in the restricted q(r) = q ensemble, and the quantity
being averaged is the ‘mechanical’ force (the negative of the derivative of the potential
energyV with respect to the coordinate q). Essentially the same de�nitions appear in
the development of coarse-grained e�ective potentials, discussed in Section 12.7. In that
case, the aim is to use the Landau free energy, wri�en as a function of a reduced set of
coordinates q, in place of the full potential-energy function.

O�en, phenomenological theories predict a particular form for F (q), which may be
tested by simulation. Taking this further, theories may be based on a proposed free-energy
functional F [q(r)] depending on an order parameter q(r) which varies from place to place.
Here, r is a position in the �uid, and to make contact with the microscopic description,
it is necessary to have a suitable de�nition of q. For instance, a local property qi of the
molecules may be used to de�ne a collective quantity

q(r) ∝
∑
i

qiδ (r − ri ).

Statistical mechanical theories of inhomogeneous systems o�en suppose that F depends
on q(r) through a local free-energy density f (r) = f (q(r)), together with terms involving
gradients of q with respect to position

F
[
q(r)

]
=

∫
dr f

(
q(r)

)
+ 1

2κ |∇q(r) |
2

where κ is a phenomenological constant, and we shall see examples of this kind in the
following sections.

2.12 Inhomogeneous systems
In most of this book, we will deal with homogeneous �uids, but the methods of liquid-
state simulation have been extended with great advantage to consider the gas–liquid and
solid–liquid interfaces in a variety of geometries. In this section we will illustrate the
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Fig. 2.4 (a) �e geometry of the planar interface. (b) Density pro�le: h is the position (Gibbs
dividing surface), and D the thickness, of the interface.

basic ideas with reference to the planar gas–liquid interface (see Fig. 2.4). For a more
detailed review of the statistical mechanics of inhomogeneous systems see Rowlinson
and Widom (1982), Nicholson and Parsonage (1982), Croxton (1980), and Safran (1994).

For an inhomogeneous �uid in the canonical ensemble, the singlet and pair density
distribution functions for a �uid of N atoms at a temperature T are

ρ (1) (r1) = N

∫
· · ·

∫
exp(−βV ) dr2dr3 · · · rN∫

· · ·
∫

exp(−βV ) dr1dr2dr3 · · · rN
(2.173)

and
ρ (2) (r1, r2) = N (N − 1)

∫
· · ·

∫
exp(−βV ) dr3 · · · rN∫

· · ·
∫

exp(−βV ) dr1dr2dr3 · · · rN
. (2.174)

For the planar gas–liquid interface, the cylindrical symmetry allows us to express these
distribution functions in terms of the height of an atom, zi , and the distance si j parallel to
the planar interface between the atoms (see Fig. 2.4). Unlike the homogeneous �uid, the
singlet particle density depends now on the position in the �uid.

In this case, ρ (1) and ρ (2) can be expressed in terms of the Dirac delta function as

ρ (1) (z) =
1
A

〈 N∑
i=1

δ (z − zi )

〉
(2.175)

and

ρ (2) (z, z ′, s ) =
1
A

〈 N∑
i=1

∑
j,i

δ (z − zi ) δ (z
′ − zj )δ (s − si j )

〉
(2.176)

where δ (s) is a two-dimensional delta function in the surface vector s = (x ,y ), s = |s|,
and A is the surface area. Note that from this point, we omit the superscript (1) for the
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single particle density. ρ (2) is simply related to the radial distribution function

ρ (2) (z1, z2, s12) = ρ (z1) ρ (z2) д
(2) (z1, z2, s12). (2.177)

In this geometry, ρ (2) (r1, r2) is o�en de�ned in terms of the variables {z1, z2, r12} where
r12 is the interatomic separation. In this case (Nicholson and Parsonage, 1982),

ρ (2) (z1, z2, s12)s12ds12dz1dz2 = ρ
(2) (z1, z2, r12)r12dr12dz1dz2. (2.178)

�e symmetry of the planar interface and the condition of hydrostatic equilibrium for
the �uid

∇ · P = 0 (2.179)

means that the pressure tensor P is diagonal and is a function only of z. �e independent
components are

Pzz (z) = PN, normal component, independent of z, and (2.180a)
Pxx (z) = Pyy (z) = PT (z), tangential component, dependent on z. (2.180b)

Usually we de�ne PT (z) =
1
2

(
Pxx (z) + Pyy (z)

)
in this geometry.

Extending the well-known virial equation for the pressure of a homogeneous �uid
is not straightforward. �ere is no unique way of deciding whether the force between
two atoms 1 and 2 contributes to the stress across a microscopic element of the �uid at
a particular z. An obvious choice (Irving and Kirkwood, 1950) is to say that the forces
contribute if the vector r12 intersects the element. �ere are in�nitely many other di�erent
possible choices for the contour joining two atoms (Scho�eld and Henderson, 1982). �ey
all lead to the same value of the normal pressure, but they give rise to di�erent values of
the tangential pressure.

With the Irving–Kirkwood (ik) choice, for a �uid with a pair additive potential v(r ),
an atom at r1 experiences a force −(r12/r12)v

′(r12) from an atom at r2. �e probability
of there being two atoms at these positions is ρ (2) (r1, r2), which may be rewri�en as
ρ (2) (r + αr12, r + (α − 1)r12) where α = |r − r2 |/r12. �en

P(r) = ρ (r)kBT1 − 1
2

∫
dr12

r12 r12
r12

v
′(r12)

∫ 1

0
dα ρ (2)

(
r + αr12, r + (α − 1)r12

)
= ρ (r)kBT1 − 1

2

∫
dr12

∫
dr1

r12 r12
r12

v
′(r12)

∫ 1

0
dα ρ (2) (r1, r2)δ (r + αr12 − r1)

(2.181)

where the �rst term is the ideal gas contribution and r12 = r1 − r2. Eqn (2.181) is general,
and for the planar interface, de�ning z12 = z1 − z2, it can be simpli�ed to

P(z) = ρ (z)kBT1−
1

2A

∫
dr1

∫
dr12

r12 r12
r12

v
′(r12)

∫ 1

0
dα δ (z+αz12−z1)ρ

(2) (z1, r12).

(2.182)



Inhomogeneous systems 89

�e surface tension, γ , and the position of the surface of tension, zs, can be calculated
from the pressure tensor.

γ =

∫ ∞

−∞

dz
[
PN (z) − PT (z)

]
(2.183a)

γzs =

∫ ∞

−∞

dz z
[
PN (z) − PT (z)

]
(2.183b)

where the integral will be across one interface from far inside the gas to far inside the
liquid. �e surface tension is independent of the choice of contour discussed earlier in
this section, whereas the surface of tension zs depends on this choice and is therefore
ill-de�ned from a microscopic perspective.

�e surface tension can be obtained directly by calculating the change in the Helmholtz
free energy, in the canonical ensemble (Bu�, 1952), or the grand potential, in the grand
canonical ensemble (Bu�, 1955), with surface area at constant volume. In these derivations,
all the particle coordinates are scaled as follows

xi → x ′i = (1 + ϵ )1/2xi ≈ (1 + 1
2ϵ )xi ,

yi → y ′i = (1 + ϵ )1/2yi ≈ (1 + 1
2ϵ )yi ,

zi → z ′i = (1 + ϵ )−1zi ≈ (1 − ϵ )zi ,

where ϵ � 1. �is means that, to �rst order, the volume is constant and the change in
interfacial area is ∆A = ϵA. For a pair potential the result for the surface tension is

γ =
1
4

∫ +∞
−∞

dz1

∫
dr12

(
r12 −

3z2
12

r12

)
v
′(r12) ρ

(2) (r1, r2)

=
1

2A

〈∑
i

∑
j>i

(
ri j −

3z2
i j

ri j

)
v
′(ri j )

〉
. (2.184)

Eqn (2.184) is formally equivalent to eqn (2.183a) for the surface tension.
Finally the chemical potential, µ, in the interface can be calculated by the particle

insertion method of Widom (1963)

µ = kBT lnΛ3ρ (z) − kBT ln
〈
exp[−βvtest (z)]

〉
(2.185)

where Λ is the de Broglie wavelength of the atom and the �rst term is the ideal gas
contribution to µ (compare with eqn (2.75)). vtest (z) is the potential energy of a test
particle that is inserted into the �uid at a particular value of z and a random position in
the xy plane. �is particle does not in�uence the behaviour of other atoms in the system.
Since the system is at equilibrium, µ must be independent of z (the potential distribution
theorem). �e density varies sharply around the interface, so that changes in the �rst and
second terms in eqn (2.185) with z must cancel.

�e interface between two phases will, in general, not be planar, due to �uctuations.
Its height, that is, its z-coordinate, will be a function of x and y : we denote this h(x ,y ).
�is is illustrated schematically in Fig. 14.3 and, as we shall see in Chapter 14, de�ning
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h(x ,y ) can be subtle. Suppose that this can be done. Capillary wave theory (Bu� et al.,
1965; Rowlinson and Widom, 1982; Safran, 1994) is based on a coarse-grained free energy,
re�ecting the increase in surface area associated with gradients of h:

F = 1
2γ

∫∫
dxdy

[(
∂h

∂x

)2
+

(
∂h

∂y

)2]
(2.186)

where γ is the surface tension; this is expected to be valid for small gradients. Expanding
in a Fourier series in the xy-plane, with k = (kx ,ky ), using Parseval’s theorem (see
Appendix D), and applying the equipartition principle to the resulting sum of independent
Fourier modes gives:

F =
γ

2A
∑
k

k2���ĥ(k)
���
2
⇒

〈���ĥ(k)
���
2〉
=
AkBT

γk2 . (2.187)

where A is the cross-sectional area. �e resulting distribution of heights is Gaussian and
the mean-square deviation is〈

δh(x ,y )2
〉
=

〈
h(x ,y )2

〉
−

〈
h(x ,y )

〉2
=

1
A

∫∫
A

dxdy
〈
h(x ,y )2

〉
=

1
A2

∑
kx ,ky

〈���ĥ(k)
���
2〉

≈
1

(2π)2

∫∫
dkxdky

kBT

γk2 ≈
kBT

2πγ

∫ 2π/a

2π/L

dk
k
=

kBT

2πγ ln
(L
a

)
. (2.188)

In the second line, the sum over wavevectors is replaced by an integral. It is assumed
that the coarse-grained description applies from a small length scale, a, usually taken
to be of the order of molecular dimensions, up to L, where A = L2 (we have assumed a
square cross-section). �is capillary-wave variation is a major contribution to the observed
density pro�le width D schematically indicated in Fig. 2.4(b); there is also an intrinsic
contribution D0 discussed further in Chapter 14. If one assumes that the two contributions
are convoluted together (Semenov, 1993; 1994) the result is

〈D〉2 = D2
0 +

π

2
〈
δh(x ,y )2

〉
= D2

0 +
kBT

4γ ln
(L
a

)
. (2.189)

Equation (2.189) shows how this width increases with increasing transverse box dimen-
sions. Observing these �uctuations gives us a way of determining the surface tension, as
an alternative to eqn (2.184).

�e ideas described in this section are readily extended to the solid–liquid interface,
where the solid can be represented as a static external �eld or in its full atomistic detail
using pair potentials, and for interfaces of di�erent symmetry such as the spherical droplet.
We return to this in Chapter 14.

2.13 Fluid membranes
Amphiphilic molecules, consisting of both hydrophobic and hydrophilic sections, may
spontaneously self-assemble in water. O�en the hydrophobic part consists of one or two
hydrocarbon tails, and the hydrophilic part is a charged or polar head group. A variety of
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phases may be observed, dependent upon composition and thermodynamic state: micelles,
hexagonal arrangements of cylindrical assemblies, bicontinuous cubic phases, and the
lamellar phase (Safran, 1994; Jones, 2002). �e building block in this last case is the bilayer,
consisting of two sheets of amphiphiles arranged tail-to-tail with the head groups on the
outside, facing into layers of water. �e bilayer itself is also found as the containing wall
of spherical vesicles, which have water inside as well as outside. �ese are sometimes
used as very simple models of biological cells, whose surrounding �uid membrane is
typically a bilayer of phospholipid molecules, and simulation of these systems is a very
active area (Sansom and Biggin, 2010).

�e properties of planar bilayer membranes are, therefore, of interest, particularly
their elasticity. Usually, a membrane is in a state of zero tension, and deformations away
from planarity may be described by a coarse-grained Helfrich free energy (Helfrich, 1973),
an integral over the membrane area A

F =

∫∫
A

dA 1
2κ

(
C1 +C2 −C0

)2
+ κ̄C1C2 (2.190)

where C0 is the spontaneous curvature (zero for a symmetrical bilayer), C1 and C2 are
the two principal curvatures of the membrane surface at a given point, κ is the bending
modulus, and κ̄ is the saddle splay modulus. In the limit of small gradients, a description
in terms of the membrane height h(x ,y ) may be adopted, and

F =

∫∫
dxdy 1

2κ
(
∇2h(x ,y )

)2
=

κ

2A
∑
k

k4���ĥ(k)
���
2

where the Laplacian, and the wavevector, are both taken in the xy-plane. Hence, by
equipartition of energy 〈���ĥ(k)

���
2〉
=
AkBT

κk4 . (2.191)

If the membrane is under tension, an appropriate term in k2 must be included, as in
eqn (2.187): however, this term would dominate at low k , so it is important that the
tensionless state be maintained (see Section 14.6).

�e moduli may also, in principle, be related to the pressure tensor pro�les, in a
manner analogous to equations (2.183) for the surface tension (Szleifer et al., 1990; Marsh,
2007; Ollila and Va�ulainen, 2010). For the bilayer as a whole

γ =

∫ ∞

−∞

dz
[
PN − PT (z)

]
= 0, (2.192a)

−κC0 =

∫ ∞

−∞

dz z
[
PN − PT (z)

]
= 0, (2.192b)

κ̄ =

∫ ∞

−∞

dz z2
[
PN − PT (z)

]
, (2.192c)

where the origin of coordinates z = 0 is chosen at the centre of the bilayer, and the
pressure components are de�ned in eqns (2.180). (In the literature, the negative of the
pressure, that is, the stress, is frequently used in these equations). �e zeroth moment of
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the pressure di�erence vanishes in the tensionless state, while the �rst moment vanishes
by symmetry. �e following equations apply to each monolayer constituting the bilayer

−κmCm
0 =

∫ ∞

0
dz (z − zm)

[
PN − PT (z)

]
, (2.193a)

κ̄m =

∫ ∞

0
dz (z − zm)2

[
PN − PT (z)

]
. (2.193b)

�e superscript ‘m’ indicates that these are properties of the separate monolayers. Here, zm

is the position of the monolayer ‘neutral plane’ relative to the mid-plane. �e integrals may,
in practice, be truncated once |z | exceeds the monolayer thickness, since PT (z) = PN in the
bulk. �e use of these formulae is limited by ambiguities in de�ning zm, approximations
needed to relate monolayer and bilayer properties, and by the fact that κ and C0 appear
together, not separately. Also, as mentioned earlier, the convention adopted for the
pressure tensor will a�ect the pro�les. As discussed further in Section 14.6, alternative
approaches to the membrane elastic moduli are more reliable.

2.14 Liquid crystals
For liquid crystalline phases, extra care may be needed in measuring some of the standard
properties discussed in previous sections, and there are some additional properties that
uniquely characterize these phases. For recent reviews see Zannoni (2000), Care and
Cleaver (2005), and Wilson (2005).

Liquid crystals have long-range orientational order, and some liquid crystal phases
have long-range positional order in certain directions. �e simplest case is the nematic

phase, typically formed by highly elongated (rod-like) or very �at (disk-like) molecules,
or by similarly shaped particles in colloidal suspension. �e orientational order is charac-
terized by both a magnitude S , the order parameter, and a direction, n, usually called the
director. �e molecules may be irregularly shaped, but we assume that it is possible to
identify a principal axis for each one, perhaps related to the inertia tensor, the polariz-
ability tensor, or some other molecular property, and that S and n will be insensitive to
this choice. Let ei be the unit vector pointing along this axis. Irrespective of whether the
molecules have head–tail symmetry or not, nematic ordering is a second-rank property,
and S is given by the average second Legendre polynomial of the cosine of the angle
between a typical molecule and the director:

S =
1
N

N∑
i=1

〈
P2 (ei · n)

〉
=

〈
1
N

N∑
i=1

3
2 (ei · n)

2 − 1
2

〉
= n ·

〈
Q
〉
· n,

where we have de�ned the second-rank orientational order tensor

Qα β =
1
N

N∑
i=1

Q i
α β , where Q i

α β =
3
2eiαeiβ −

1
2δα β , and α , β = x ,y , z. (2.194)

Typically n is unknown at the start of the calculation, but can be de�ned as the direction
that maximizes the value of S . �e problem is then reduced to a variational one, which
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is solved by diagonalizing Q (Zannoni, 1979): S turns out to be the largest of the three
eigenvalues, and n is the corresponding director. Because of the second-rank nature of
the order, −n is equivalent to n. Perfect orientational order corresponds to S = 1. For an
isotropic liquid, S = 0, although in practice �nite-size e�ects will result in �uctuations
which make S ∼ N −1/2. Since Q is traceless, in a uniaxial nematic phase the other two
eigenvalues will both be equal to − 1

2S ; once more, we expect �nite-size e�ects to cause
some small deviations (Eppenga and Frenkel, 1984).

Once the director has been determined, the single-particle orientational distribution
function

ρ (cosθ ) = ρ
(
e · n

)
=

〈
δ (cosθ − cosθi )

〉
, where

∫ 1

−1
d cosθ ρ (cosθ ) = 1

may be calculated by constructing a histogram of ei · n values, averaged over particle
index i . Alternatively, the function may be expanded in Legendre polynomials P`

ρ (cosθ ) =
∞∑

`=0,2, ...

2` + 1
2 S`P` (cosθ ) where S` =

〈
P` (cosθ )

〉
;

the coe�cients are simulation averages of the indicated quantities. Only components
with even values of ` are non-vanishing.

�e pressure tensor in a nematic liquid crystal is isotropic, that is, diagonal with
〈Pα β 〉 = Pδα β (Allen and Masters, 1993, appendix). Most other properties are a�ected by
the reduced symmetry. �e molecular centre–centre pair distribution function will be
a function of components of the separation vector ri j resolved along and perpendicular
to the director. �e orientation dependence of pair correlations may be expanded in
appropriate angular functions (Zannoni, 2000); the formula is more complicated than
eqn (2.106), for isotropic �uids, but similar in concept.

Director �uctuations can be described by a coarse-grained free energy (Oseen, 1933;
Frank, 1958) which involves the gradients of n:

F =

∫
V

dr 1
2K1

(
∇ · n

)2
+ 1

2K2
(
n · ∇ × n

)2
+ 1

2K3
����n ×

(
∇ × n

) ����
2
.

�e quantities of interest are the Frank elastic constants K1, K2, and K3. In a frame of
reference where the equilibrium director is n = (0, 0, 1), this may be rewri�en in terms of
the deviations from equilibrium, nx (r) and ny (r). Taking Fourier components (as for the
capillary waves of Section 2.12) with k = (kx , 0,kz ) chosen in the xz-plane:

F =
1
V

∑
kx ,ky

1
2

(
K1k

2
x + K3k

2
z

) ���n̂x (kx ,kz )
���
2
+ 1

2

(
K2k

2
x + K3k

2
z

) ���n̂y (kx ,kz )
���
2
.

Applying the equipartition principle

〈
|n̂x |

2
〉
=

VkBT

K1k
2
x + K3k

2
z
,

〈
|n̂y |

2
〉
=

VkBT

K2k
2
x + K3k

2
z
. (2.195)
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In practice, these �uctuations are determined by measuring �uctuations in Q. We de�ne

Qα β (r) =
V

N

N∑
i=1

Q i
α β δ (r − ri ), Q̂α β (k) =

V

N

N∑
i=1

Q i
α β exp(−ik · ri ).

For an axially symmetric phase it is easy to show Qα β (r) = 3
2S[nα (r)nβ (r) − 1

3δα β ], so
for the o�-diagonal elements of interest here n̂α (k) = Q̂zα (k)/( 3

2S ). �e Frank elastic
constants are obtained by ��ing the director �uctuations to eqn (2.195) in the low-k limit
(Allen et al., 1996; Humpert and Allen, 2015a).

Transport coe�cients may be evaluated using time correlation functions or Einstein
relations in the usual way, but taking into account the di�erent symmetry cases (Sarman
and Laaksonen, 2011); it is also possible to use nonequilibrium methods, of the general
kind discussed in Chapter 11 (Sarman and Laaksonen, 2009a; 2015). �e hydrodynamics
of nematics is more complicated than that of simple liquids, and in particular the coupling
between shear �ow and director rotation is of great interest (Sarman and Laaksonen,
2009b; Humpert and Allen, 2015a,b).



3
Molecular dynamics

3.1 Equations of motion for atomic systems
In this chapter, we deal with the techniques used to solve the classical equations of motion
for a system of N molecules interacting via a potentialV as in eqn (1.4). �ese equations
may be wri�en down in various ways (Goldstein, 1980). Perhaps the most fundamental
form is the Lagrangian equation of motion

d
dt (∂L/∂q̇k ) − (∂L/∂qk ) = 0 (3.1)

where the Lagrangian functionL (q, q̇) is de�ned in terms of kinetic and potential energies

L = K −V (3.2)

and is considered to be a function of the generalized coordinates qk and their time
derivatives q̇k . If we consider a system of atoms, with Cartesian coordinates ri and the
usual de�nitions of K andV (eqns (1.3) and (1.4)) then eqn (3.1) becomes

mi r̈i = f i (3.3)

wheremi is the mass of atom i and

f i = ∇riL = −∇riV (3.4)

is the force on that atom. �ese equations also apply to the centre of mass motion of a
molecule, with f i representing the total force on molecule i; the equations for rotational
motion may also be expressed in the form of eqn (3.1), and will be dealt with in Sections 3.3
and 3.4.

�e generalized momentum pk conjugate to qk is de�ned as

pk = ∂L/∂q̇k . (3.5)

�e momenta feature in the Hamiltonian form of the equations of motion

q̇k = ∂H /∂pk (3.6a)
ṗk = −∂H /∂qk . (3.6b)

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
© M. P. Allen and D. J. Tildesley 2017. Published in 2017 by Oxford University Press.
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�e Hamiltonian is strictly de�ned by the equation

H (p, q) =
∑
k

q̇kpk − L (q, q̇) (3.7)

where it is assumed that we can write q̇k on the right as some function of the momenta p.
For our immediate purposes (involving a potentialV which is independent of velocities
and time) this reduces to eqn (1.2), andH is automatically equal to the energy (Goldstein,
1980, Chapter 8). For Cartesian coordinates, Hamilton’s equations become

ṙi = pi/mi (3.8a)
ṗi = −∇riV = f i . (3.8b)

Computing centre of mass trajectories, then, involves solving either a system of 3N second-
order di�erential equations, eqn (3.3), or an equivalent set of 6N �rst-order di�erential
equations, eqns (3.8a), (3.8b). Before considering how to do this, we can make some very
general remarks regarding the equations themselves.

A consequence of eqn (3.6b), or equivalently eqns (3.5) and (3.1), is that in certain
circumstances a particular generalized momentum pk may be conserved, that is, ṗk =
0. �e requirement is that L, and hence H in this case, shall be independent of the
corresponding generalized coordinate qk . For any set of particles, it is possible to choose
six generalized coordinates, changes in which correspond to translations of the centre of
mass, and rotations about the centre of mass, for the system as a whole (changes in the
remaining 3N − 6 coordinates involving motion of the particles relative to one another).
If the potential functionV depends only on the magnitudes of particle separations (as is
usual) and there is no external �eld applied (i.e. the term v1 in eqn (1.4) is absent) thenV ,H
and L are manifestly independent of these six generalized coordinates. �e corresponding
conjugate momenta, in Cartesian coordinates, are the total linear momentum

P =
∑
i

pi (3.9)

and the total angular momentum

L =
∑
i

ri × pi =
∑
i

miri × ṙi (3.10)

where we take the origin at the centre of mass of the system. �us, these are conserved
quantities for a completely isolated set of interacting molecules. In practice, we rarely
consider completely isolated systems. A more general criterion for the existence of these
conservation laws is provided by symmetry considerations (Goldstein, 1980, Chapter 8).
If the system (i.e.H ) is invariant to translation in a particular direction, then the corre-
sponding momentum component is conserved. If the system is invariant to rotation about
an axis, then the corresponding angular momentum component is conserved. �us, we
occasionally encounter systems enclosed in a spherical box, and so a spherically symmet-
rical v1 term appears in eqn (1.4); all three components of total angular momentum about
the centre of symmetry will be conserved, but total translational momentum will not be. If
the surrounding walls formed a cubical box, none of these quantities would be conserved.
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In the case of the periodic boundary conditions described in Chapter 1, it is easy to see
that translational invariance is preserved, and hence total linear momentum is conserved.
Several di�erent box geometries were considered in Chapter 1, but none of them were
spherically symmetrical; in fact it is impossible (in Euclidean space) to construct a spheri-
cally symmetric periodic system. Hence, despite the fact that there may be no v1-term in
eqn (1.4), total angular momentum is not conserved in most molecular dynamics simula-
tions. In the case of the spherical boundary conditions discussed in Section 1.6.5, a kind
of angular momentum conservation law does apply. When we embed a two-dimensional
system in the surface of a sphere, the three-dimensional spherical symmetry is preserved.
Similarly, for a three-dimensional system, there should be a four-dimensional conserved
‘hyper-angular momentum’.

We have le� until last the most important conservation law. Assuming thatH does
not depend explicitly on time (so that ∂H /∂t = 0), the total derivative Ḣ may be wri�en

dH
dt =

∑
k

(
∂H

∂qk
q̇k +

∂H

∂pk
ṗk

)
= 0

by virtue of eqns (3.6). Hence the Hamiltonian is a constant of the motion. �is energy
conservation law applies whether or not an external potential exists: the essential condi-
tion is that no explicitly time-dependent (or velocity-dependent) forces shall act on the
system.

�e second point concerning the equations of motion is that they are reversible in
time. By changing the signs of all the velocities or momenta, we will cause the molecules
to retrace their trajectories. If the equations of motion are solved correctly, the computer-
generated trajectories will also have this property.

Our �nal observation concerning eqns (3.3), (3.4), and (3.6) is that the spatial derivative
of the potential appears. �is leads to a qualitative di�erence in the form of the motion,
and the way in which the equations are solved, depending upon whether or notV is a
continuous function of particle positions. To use the �nite-timestep method of solution to
be described in the next section, it is essential that the particle positions vary smoothly with
time: a Taylor expansion of r(t ) about time t may be necessary, for example. Whenever the
potential varies sharply (as in the hard-sphere and square-well cases) impulsive ‘collisions’
between particles occur at which the velocities (typically) change discontinuously. �e
particle dynamics at the moment of each collision must be treated explicitly, and separately
from the smooth inter-collisional motion. �e identi�cation of successive collisions is the
key feature of a molecular dynamics program for such systems, and we shall discuss this
in Section 3.7.

3.2 Finite-di�erence methods
A standard method for solution of ordinary di�erential equations such as eqns (3.3) and
(3.8) is the �nite-di�erence approach. �e general idea is as follows. Given the molecular
positions, velocities, and other dynamic information at time t , we a�empt to obtain
the positions, velocities, etc. at a later time t + δt , to a su�cient degree of accuracy.
�e equations are solved on a step-by-step basis; the choice of the time interval δt will
depend somewhat on the method of solution, but δt will be signi�cantly smaller than
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the typical time taken for a molecule to travel its own length. Many di�erent algorithms
fall into the general �nite-di�erence pa�ern. Historically, standard approaches such as
predictor–corrector algorithms (Gear, 1966; 1971) and general-purpose approaches such
as Runge–Ku�a (Press et al., 2007) have been used in molecular dynamics simulations,
and there have been several comparisons of di�erent methods (Gear, 1971; van Gunsteren
and Berendsen, 1977; Hockney and Eastwood, 1988; Berendsen and van Gunsteren, 1986;
Gray et al., 1994; Leimkuhler and Reich, 2004). Which shall we choose?

A shortlist of desirable qualities for a successful simulation algorithm might be as
follows.
(a) It should be fast, and require li�le memory.
(b) It should permit the use of a long timestep δt .
(c) It should duplicate the classical trajectory as closely as possible.
(d) It should satisfy the known conservation laws for energy and momentum, and be

time-reversible.
(e) It should be simple in form and easy to program.

For molecular dynamics, the �rst point is generally less critical than the others, when it
comes to choosing between algorithms. �e memory required to store positions, velocities,
accelerations, etc. is very small compared with that available on most computers, although
this might become a consideration when taking advantage of special features of the
architecture, such as graphics processing units (gpus). Compared with the time-consuming
force calculation, which is carried out at every timestep, the raw speed of the integration
algorithm is not crucial. It is far more important to be able to employ a long timestep δt :
in this way, a given period of ‘simulation’ time can be covered in a modest number of
integration steps, that is, in an acceptable amount of computer time. Clearly, the larger δt ,
the less accurately will our solution follow the correct classical trajectory. How important
are points (c) and (d) in the list?

It is unreasonable to expect that any approximate method of solution will dutifully
follow the exact classical trajectory inde�nitely. Any two classical trajectories which are
initially very close will eventually diverge from one another exponentially with time
(according to the ‘Lyapunov exponents’), irrespective of the algorithm used to approximate
the equations of motion. In the same way, any small perturbation, even the tiny error
associated with �nite precision arithmetic, will tend to cause a computer-generated
trajectory to diverge from the true classical trajectory with which it is initially coincident.
We illustrate the e�ect in Fig. 3.1: using one simulation as a reference, we show that a
small perturbation applied at time t = 0 causes the trajectories in the perturbed simulation
to diverge from the reference trajectories and become statistically uncorrelated, within a
few hundred timesteps (see also Stoddard and Ford, 1973; Erpenbeck and Wood, 1977). In
this example, we show the growing average ‘distance in con�guration space’, de�ned as
∆r where ∆r 2 = |∆r|2 = (1/N )

∑
|ri (t ) − r0

i (t ) |
2, r0

i (t ) being the position of molecule i at
time t in a reference simulation, and ri (t ) being the position of the same molecule at the
same time in the perturbed simulation. In the three cases illustrated here, all the molecules
in the perturbed runs are initially displaced in random directions from their reference
positions at t = 0, by 10−3σ , 10−6σ , and 10−9σ respectively, where σ is the molecular
diameter. In all other respects, the runs are identical; in particular, each corresponds
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Fig. 3.1 �e divergence of trajectories in molecular dynamics. Atoms interacting through the
potential v

RLJ (r ), eqn (1.10a), were used, and a dense �uid state was simulated (ρ∗ = 0.6,
T ∗ = 1.05, δt∗ = 0.005). ∆r is the phase space separation between perturbed and reference
trajectories. �ese simulations used the velocity Verlet algorithm, eqn (3.11), but the results are
essentially determined by the equations of motion rather than the integration algorithm.

to essentially the same total energy. As the runs proceed, however, other mechanical
quantities eventually become statistically uncorrelated. Typically, properties such as the
kinetic energy or pressure remain very close for a period whose length depends on the size
of the initial perturbation; a�er this point the di�erences become noticeable very rapidly.
Presumably, both the reference trajectory and the perturbed trajectory are diverging from
the true solution of Newton’s equations.

Clearly, no integration algorithm will provide an essentially exact solution for a very
long time. Fortunately, we do not need to do this. Remember that molecular dynamics
serves two roles. First, we need essentially exact solutions of the equations of motion for
times comparable with the correlation times of interest so that we may accurately calculate
time correlation functions. Second, we use the method to generate states sampled from
the microcanonical ensemble. We do not need exact classical trajectories to do this but
must lay great emphasis on energy conservation as being of primary importance for this
reason. Momentum conservation is also important, but this can usually be easily arranged.
�e point is that the particle trajectories must stay on the appropriate constant-energy
hypersurface in phase space, otherwise correct ensemble averages will not be generated.
Energy conservation is degraded as the timestep is increased, and so all simulations
involve a trade-o� between economy and accuracy: a good algorithm permits a large
timestep to be used while preserving acceptable energy conservation. Other factors
dictating the energy-conserving properties are the shape of the potential-energy curves
and the typical particle velocities. �us, shorter timesteps are used at high temperatures,
for light molecules and for rapidly varying potential functions.

�e �nal quality an integration algorithm should possess is simplicity. A simple
algorithm will involve the storage of only a few coordinates, velocities, etc., and will be
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Code 3.1 Velocity Verlet algorithm
�is snippet shows a direct translation from the so-called split-operator form of the
algorithm (see Section 3.2.2). We have inserted a reminder that the arrays r, v, and f,
are dimensioned to contain the entire set of 3N positions, velocities, and accelerations,
and so the assignment statements apply to the entire array in each case. �e (optional)
syntax r(:,:) emphasizes this, but here, and henceforth, we omit it for brevity.

REAL , DIMENSION(3,n) :: r, v, a
v = v + 0.5 * dt * a
r = r + dt * v
! ... evaluate forces and hence a=f/m from r
v = v + 0.5 * dt * a

easy to program. Bearing in mind that solution of ordinary di�erential equations is a
fairly routine task, there is li�le point in wasting valuable man-hours on programming a
very complicated algorithm when the time might be be�er spent checking and optimizing
the calculation of forces (see Chapter 5). Li�le computer time is to be gained by increases
in algorithm speed, and the consequences of making a mistake in coding a complicated
scheme might be signi�cant.

For all these reasons, most molecular dynamics programs use a variant of the algorithm
initially adopted by Verlet (1967) and a�ributed to Störmer (Gear, 1971). We describe this
method in the following section.

3.2.1 �e Verlet algorithm

Perhaps the most revealing way of writing the Verlet algorithm is in the so-called velocity
Verlet form (Swope et al., 1982), which acts over a single timestep from t to t + δt as
follows:

v(t + 1
2δt ) = v(t ) + 1

2δt a(t ) (3.11a)
r(t + δt ) = r(t ) + δt v(t + 1

2δt ) (3.11b)
v(t + δt ) = v(t + 1

2δt ) +
1
2δt a(t + δt ). (3.11c)

�e �rst step (3.11a) can be thought of as ‘half-advancing’ the velocities v to an intermedi-
ate time t + 1

2δt , using the values of the accelerations a at time t ; these mid-step velocities
are then used to propel the coordinates from time t to t + δt in step (3.11b). A�er this, a
force evaluation is carried out to give a(t + δt ) for the last step (3.11c) which completes
the evolution of the velocities. �e equations translate almost directly into computer
code, as shown in Code 3.1. At the end of the step, we can calculate quantities such as the
kinetic energy by summing the squares of the velocities, or the total momentum vector,
by summing the di�erent Cartesian components of the velocity. �e potential energy at
time t + δt will have been computed in the force loop.

�is method is numerically stable, convenient, and simple. It is exactly reversible in
time and, given conservative forces, is guaranteed to conserve linear momentum. �e
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Fig. 3.2 Energy conservation of the Verlet algorithm. �e system studied is as for Fig. 3.1. We
calculate rms energy �uctuations 〈δH 2〉1/2 for various runs starting from the same initial condi-
tions, and proceeding for the same total simulation time trun, but using di�erent timesteps δt and
corresponding numbers of steps τrun = trun/δt . �e plot uses log–log scales.

method has been shown to have excellent energy-conserving properties even with long
timesteps. As an example, for simulations of liquid argon near the triple point, rms energy
�uctuations 〈δH 2〉1/2 of the order 0.01 % of the potential well depth are observed using
δt ≈ 10−14 s, and these increase to 0.2 % for δt ≈ 4 × 10−14 s (Verlet, 1967; Fincham and
Heyes, 1982; Heyes and Singer, 1982). In fact, 〈δH 2〉1/2 is closely proportional to δt2 for
Verlet-equivalent algorithms, as shown in Fig. 3.2. As we shall see in the next section, there
is an interesting theoretical derivation of this version of the algorithm, which clari�es the
reason for this dependence.

In the original ‘velocity Verlet’ paper (Swope et al., 1982), the previous equations were
wri�en in the slightly di�erent form

r(t + δt ) = r(t ) + δtv(t ) + 1
2δt

2a(t ) (3.12a)

v(t + δt ) = v(t ) + 1
2δt

[
a(t ) + a(t + δt )

]
. (3.12b)

�ese are easily obtained from eqns (3.11) by eliminating the mid-step velocity. However,
in practice, the velocity is still incremented in two steps, as the alternative is to (needlessly)
store accelerations at both the start and end of the step. �is is shown in Code 3.2.

Two other versions of the Verlet algorithm are worth mentioning at this point. �e
original implementation (Verlet, 1967) makes no direct use of the velocities at all but
instead is directly related to the second-order equations (3.3). Consider addition of the
equations obtained by Taylor expansion about r(t )

r(t + δt ) = r(t ) + δtv(t ) + 1
2δt

2a(t ) + · · ·

r(t − δt ) = r(t ) − δtv(t ) + 1
2δt

2a(t ) − · · · (3.13)
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Code 3.2 Velocity Verlet algorithm (original)
Here dt_sq stores the value of δt2. �e algorithm is equivalent to that of Code 3.1,
di�ering only in that the positions are updated before the mid-step velocities are
calculated.

r = r + dt * v + 0.5 * dt_sq * a
v = v + 0.5 * dt * a
! ... evaluate forces and hence a=f/m from r
v = v + 0.5 * dt * a

to give
r(t + δt ) = 2r(t ) − r(t − δt ) + δt2a(t ). (3.14)

�e method is based on positions r(t ), accelerations a(t ), and the positions r(t − δt )
from the previous step. �e Verlet algorithm is ‘centered’ (i.e. r(t − δt ) and r(t + δt )
play symmetrical roles in eqn (3.14)), making it time-reversible. It is straightforward to
show that eqn (3.14) is equivalent to eqns (3.11), by considering two successive steps and
eliminating the velocities.

�e velocities are not needed to compute the trajectories, but they are useful for
estimating the kinetic energy (and hence the total energy), as well as other interesting
properties of the system. �ey may be obtained from the formula

v(t ) =
r(t + δt ) − r(t − δt )

2δt . (3.15)

Whereas eqn (3.14) is correct except for errors of order δt4 (the local error) the velocities
from eqn (3.15) are subject to errors of order δt2. More accurate estimates of v(t ) can be
made if more variables are stored, but this adds to the inconvenience already implicit in
eqn (3.15), namely that v(t ) can only be computed once r(t + δt ) is known.

One implementation of the ‘classic’ Verlet algorithm is indicated in Code 3.3. It should
be clear that the ‘classic’ Verlet algorithm has identical stability properties to the velocity
form, and is very simple. Against it, we must say that the handling of velocities is rather
awkward and that the form of the algorithm may needlessly introduce some numerical
imprecision (Dahlquist and Björk, 1974). �is arises because, in eqn (3.14), a small term
(O (δt2)) is added to a di�erence of large terms (O (δt0)), in order to generate the trajectory.

Another alternative is the so-called half-step ‘leapfrog’ scheme (Hockney, 1970; Po�er,
1972, Chapter 5). �e origin of the name becomes apparent when we write the algorithm
down:

v(t + 1
2δt ) = v(t − 1

2δt ) + δta(t ) (3.16a)
r(t + δt ) = r(t ) + δtv(t + 1

2δt ). (3.16b)

�e stored quantities are the current positions r(t ) and accelerations a(t ) together with
the mid-step velocities v(t − 1

2δt ). �e velocity equation eqn (3.16a) is implemented �rst,
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Code 3.3 Classic Verlet algorithm
�e ‘classic’ Verlet algorithm evaluates accelerations from the current positions, then
uses these together with the old positions in the advancement step. �e variable dt_sq
stores δt2 as usual. During this step, it is possible to calculate the current velocities.
We handle this using a temporary array r_new to store the new positions. �en, a
shu�ing operation takes place in the last two statements. At the end of the step, the
positions have been advanced, but the ‘current’ (now ‘old’) potential energy can be
combined with the kinetic energy, calculated from the ‘current’ velocities. Following
the particle move, we are ready to evaluate the forces at the start of the next step.

REAL , DIMENSION(3,n) :: r, r_old , r_new , a, v
! ... evaluate forces and hence a=f/m from r
r_new = 2.0 * r - r_old + dt_sq * a
v = ( r_new - r_old ) / ( 2.0 * dt )
r_old = r
r = r_new

and the velocities leap over the coordinates to give the next mid-step values v(t + 1
2δt ).

During this step, the current velocities may be calculated

v(t ) = 1
2

(
v(t + 1

2δt ) + v(t −
1
2δt )

)
. (3.17)

�is is necessary so that the energy (H = V +K ) at time t can be calculated, as well as
any other quantities that require positions and velocities at the same instant. Following
this, eqn (3.16b) is used to propel the positions once more ahead of the velocities. A�er
this, the new accelerations may be evaluated ready for the next step.

Elimination of the velocities from these equations shows that the method is alge-
braically equivalent to Verlet’s algorithm. In fact, eqn (3.16b) is identical to eqn (3.11b),
while eqn (3.16a) is obtained by combining (3.11a) with (3.11c) for the previous step.
Numerical bene�ts derive from the fact that at no stage do we take the di�erence of
two large quantities to obtain a small one; this minimizes loss of precision on a computer.
As is clear from eqn (3.17), the leapfrog method still does not handle the velocities in a
completely satisfactory manner, and velocity Verlet is generally preferable. A complete
molecular dynamics program for Lennard-Jones atoms, using the velocity Verlet method,
is given in Code 3.4.

3.2.2 Formal basis of Verlet algorithm

To an extent, there is no need to understand ‘where algorithms come from’, as long as they
work. Nonetheless, an understanding of the formal background to molecular dynamics
algorithms, and particularly the Verlet algorithm, has been extremely useful in terms
of knowing their limitations and how they may be extended to di�erent situations. We
shall only scratch the surface: for more details the reader is referred to the books of
Leimkuhler and Reich (2004) and Tuckerman (2010). �e following equations make use of
the Liouville operator, introduced in eqn (2.4), and its exponential exp(iLt ) ≡ U (t ), which
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Code 3.4 Molecular dynamics, NVE-ensemble, Lennard-Jones
�ese �les are provided online. �e program md_nve_lj.f90 controls the simulation,
reads in the run parameters, implements the velocity Verlet algorithm, and writes out
the results. It uses the routines in md_lj_module.f90 to evaluate the Lennard-Jones
forces, and various utility modules (see Appendix A) for input/output and simulation
averages. Code to set up an initial con�guration is provided in initialize.f90.

! md_nve_lj.f90
! Molecular dynamics , NVE ensemble
PROGRAM md_nve_lj

! md_lj_module.f90
! Force routine for MD simulation , Lennard -Jones atoms
MODULE md_module

is o�en called the propagator : it has the e�ect of moving the system (i.e. the coordinates,
momenta, and all the dynamical variables that depend on them) forward through time.

In the Verlet algorithm we use an approximate form of the propagator, which arises
from spli�ing iL in two (Tuckerman et al., 1992):

iL = ṙ ·
∂

∂r
+ ṗ ·

∂

∂p
= v ·

∂

∂r
+ f ·

∂

∂p
≡ iL1 + iL2, (3.18)

where, as before, we abbreviate r, v for the complete set of positions, velocities, etc. It is
not hard to see that the ‘propagators’ corresponding to each of the separate parts will
only a�ect the corresponding coordinate

exp(iL1δt ) r = r + vδt exp(iL1δt ) p = p dri�, (3.19)
exp(iL2δt ) r = r exp(iL2δt ) p = p + fδt kick. (3.20)

�e �rst of these is termed the ‘dri�’ because it advances coordinates without changing
momenta, rather like dri�ing in free �ight, with the forces switched o�. �e second is
called the ‘kick’ since it impulsively changes momenta without altering positions. It is
important to realize that each of these separate propagation steps has been derived from
a corresponding part of the Hamiltonian: the ‘dri�’ arises from the kinetic-energy part,
while the ‘kick’ comes from the potential-energy part.

Now, much like operators in quantum mechanics, iL1 and iL2 do not commute with
each other, and this means that the following relation

exp(iLδt ) = exp[(iL1 + iL2)δt] ≈ exp(iL1δt ) exp(iL2δt )

is only an approximation, not an exact relation. �e error associated with the approxima-
tion is, however, ‘small’, that is, it becomes asymptotically exact in the limit δt → 0. A
slightly di�erent approximation would result from combining the two partial propagators
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in the opposite order, and the following arrangement has the additional merit of being
exactly time-reversible:

exp(iLδt ) ≈ exp(iL2δt/2) exp(iL1δt ) exp(iL2δt/2). (3.21)

�e operators act in turn, reading from right to le�, upon the phase space variables r
and p, initially at time t , converting them into the new variables at t + δt . An a�ractive
feature of this formalism is that the three successive steps embodied in eqn (3.21), with
the operators de�ned by eqns (3.19) and (3.20), translate directly (Martyna et al., 1996)
into the velocity Verlet algorithm of eqn (3.11):
(a) ‘half-kick’, r constant, p(t ) → p(t + 1

2δt ) = p(t ) + 1
2δt f (t );

(b) ‘dri�’, free �ight with p constant, r(t ) → r(t + δt ) = r(t ) + δt p(t + 1
2δt )/m;

(c) ‘half-kick’, r constant, p(t + 1
2δt ) → p(t + δt ) = p(t + 1

2δt ) +
1
2δt f (t + δt ).

�is particular spli�ing is quite simple; possible advantages of a higher-order decomposi-
tion have been discussed by Ishida et al. (1998).

A key consequence of the propagators when split in this way (the so-called symplectic
property) is that, although the trajectories are approximate and will not conserve the true
energyH , they do exactly conserve a ‘shadow Hamiltonian’H ‡ (Toxvaerd, 1994), where
H andH ‡ di�er from each other by a small amount, vanishing as δt → 0. More precisely,
it may be shown that the di�erence H − H ‡ can be wri�en as a Taylor expansion in
δt , where the coe�cients involve derivatives ofH with respect to the coordinates. �e
consequence is that the system will remain on a hypersurface in phase space which is ‘close’
to the true constant-energy hypersurface. Such a stability property is extremely useful
in molecular dynamics, since we wish to sample constant-energy states. It essentially
eliminates any long-term ‘dri�’ in the total energy.

We can illustrate this with the example of the simple one-dimensional harmonic
oscillator for which the trajectory generated by the velocity Verlet algorithm and the
corresponding shadow Hamiltonian may be wri�en down explicitly (Venneri and Hoover,
1987; Toxvaerd, 1994). For natural frequency ω, the exact equations of motion and con-
served Hamiltonian are

ṙ = p/m, ṗ = −mω2r , H (r ,p) = p2/2m + 1
2mω

2r 2. (3.22)

�e shadow Hamiltonian depends on timestep through a quantity ζ = 1 − (ωδt/2)2 and
may be wri�en

H ‡ (r ,p) = p2/2m + 1
2mω

2ζ r 2. (3.23)

It would be equally valid to divide the right-hand side by the factor ζ , in which case the
timestep dependence would be associated with the kinetic-energy term, or by

√
ζ , when it

would appear in both terms; for all these choices the di�erence is O ((ωδt )2). �e present
choice allows us to compare trajectories which initially coincide at r = 0 and have the
same momentum and energy, and we do this in the (r ,p) ‘phase portraits’ of Fig. 3.3. �e
true dynamics follows an elliptical trajectory de�ned byH = constant (in the �gure this
is a circle). �e equationH ‡ = constant also describes an ellipse, di�ering only slightly
(for small ωδt ) from the true one. On this diagram, the ‘kicks’ are vertical line segments,
and the ‘dri�s’ are horizontal ones. At the end of each velocity Verlet step the discrete
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r

p

Fig. 3.3 Exact trajectory (circle) and velocity Verlet trajectory (straight line segments) for the
harmonic oscillator. �e shadow-Hamiltonian conservation law is shown by a dashed ellipse. �e
open and closed circles mark out phase points at the end of each timestep for the corresponding
trajectories. �e starting point is marked with a double circle. �e timestep is chosen such that
ωδt = π/3, so the exact trajectory returns to its starting point a�er six timesteps.

trajectory lands exactly on the constant-H ‡ ellipse, although the intermediate stages
lie o� the ellipse. �erefore, the long-time trajectory is very stable in this sense: it will
never leave the ellipse H ‡ ≈ H + O ((ωδt )2) = constant. However, it can also be seen
that the positions and coordinates at the end of each timestep are quickly losing their
phase, relative to the corresponding points on exact trajectory. Of course, the example
shown uses a very large timestep, to emphasize all these e�ects.

3.3 Molecular dynamics of rigid non-spherical bodies
Molecular systems are not rigid bodies in any sense: they consist of atoms interacting
via intra- and inter-molecular forces. In principle, we should not distinguish between
these forces, but as a practical de�nition we take the forces acting within molecules to be
at least an order of magnitude greater than those acting between molecules. If treated
classically, as in the earliest molecular simulations (Harp and Berne, 1968; 1970; Berne
and Harp, 1970), molecular bond vibrations would occur so rapidly that an extremely
short timestep would be required to solve the equations of motion. We return to this
approach in Section 3.5; however, we must bear in mind that the classical approach is
highly questionable for bond vibrations. A common solution to these problems is to
take the intramolecular bonds to be of �xed length. �is is not an inconsequential step,
but seems reasonable if, as is commonly true at normal temperatures, the amplitude
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of vibration (classical or quantum) is small compared with molecular dimensions. For
polyatomic molecules, we must also consider whether all bond angles should be assumed
to be �xed. �is is less reasonable in molecules with low-frequency torsional degrees of
freedom, or indeed where conformer interconversion is of interest. In this section, we
consider the molecular dynamics of molecules in which all bond lengths and internal
angles are taken to be constant, that is, in which the molecule is a single rigid unit. In
Section 3.4 we discuss the simulation of �exible polyatomic molecules.

In classical mechanics, it is natural to divide molecular motion into translation of the
centre of mass and rotation about the centre of mass (Goldstein, 1980). �e former motion
is handled by the methods of the previous sections: we simply interpret the force f i in
the equationmr̈i = f i as being the vector sum of all the forces acting on molecule i at the
centre of mass ri . �e rotational motion is governed by the torque τi about the centre of
mass. When the interactions have the form of forces f ia acting on sites at positions ria in
the molecule, the torque is simply de�ned

τi =
∑
a

(ria − ri ) × f ia . (3.24)

When multipolar terms appear in the potential, the expression for the torque is more
complicated (Price et al., 1984), but it may still be calculated from the molecular positions
and orientations (see Appendix C). �e torque enters the rotational equations of motion
in the same way that the force enters the translational equations; the nature of orientation
space, however, guarantees that the equations of reorientational motion will not be as
simple as the translational equations. In this section, we consider the rotational motion
of a molecule under the in�uence of external torques, taking our origin of coordinates
to lie at the centre of mass. To simplify the notation, we drop the su�x i in this section,
understanding that all the vectors and matrices refer to a single molecule.

3.3.1 Rotational equations of motion

�e orientation of a rigid body, such as a molecule, speci�es the relation between an axis
system �xed in space and one �xed with respect to the body. We de�ne these systems
so that they coincide when the molecule is in an unrotated, reference, orientation. Any
vector e may be expressed in terms of components in the body-�xed or space-�xed frames:
we use the notation eb and es, respectively. �ese components are related by the 3 × 3
rotation matrix A

eb = A · es, (3.25a)
es = AT · eb. (3.25b)

Note that A is orthogonal, that is, its inverse A−1 is the same as its transpose, which we
denote AT. �ese equations relate the components of the same vector in two di�erent

coordinate systems, which is usually called a passive rotation. We also need to consider an
active rotation, which transforms a vector into a di�erent vector, with the components
expressed in the same coordinate system. We express this as

e′ = AT · e. (3.26)
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Fig. 3.4 Active rotation of a vector e→ e′ through an angle φ about an axis n̂.

To relate these two conventions, consider a vector e �xed in the molecule. In the unrotated,
reference orientation, and in the rotated new orientation, the body-�xed components
of this vector will be unchanged because this coordinate system also rotates with the
molecule. �erefore e = eb. �e space-�xed components, however, will change from e to
e′ = es. �erefore, eqns (3.26) and (3.25b) are equivalent. Taking this further, if we choose
eb to be, in turn, each of the body-�xed basis vectors, (1, 0, 0), (0, 1, 0), and (0, 0, 1), we can
see from eqns (3.25) and (3.26) that the columns of AT (and the rows of A) are these same
vectors, in the space-�xed frame, and they completely de�ne the molecular orientation.

�e same active transformation of a vector may be speci�ed by an angle φ of rotation
about an axis de�ned by a unit vector n̂:

e′ = e cosφ + (1 − cosφ) (e · n̂) n̂ + (n̂ × e) sinφ (3.27)

where the sense of rotation is shown in Fig. 3.4.
�e time evolution of the rotation matrix is obtained by considering an in�nitesimally

small rotation φ = ωdt , about a unit vector n̂ = ω̂s = ωs/ω, where ω is the magnitude of
the angular velocity. Expanding the trigonometric functions in eqn (3.27) to �rst order in
dt , in the space-�xed frame, this gives

ės = ωs × es. (3.28)

As discussed earlier, this gives an equation of motion for each of the rows of A.
�is space-�xed time derivative is only correct in an inertial (i.e. non-rotating) frame.

Clearly, if e is a vector �xed in the molecular frame (e.g. a bond vector) then eb will not
change with time, that is, ėb = 0. In space-�xed coordinates, though, the components
es will vary. In fact, eqn (3.28) is a speci�c case of the general equation linking time
derivatives in the two systems (

de
dt

)s
=

(
de
dt

)b
+ω × e, (3.29)

and this is another way of looking at it.
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Now we have the �rst ingredient of the equations of rotational motion: three equations,
of the form of eqn (3.28), for the three basis vectors of the molecular frame, expressed
in space-�xed coordinates. �ese three vectors correspond to the rows of the rotation
matrix A, from which the components, in the space-�xed frame, of any other body-�xed
vector may also be obtained.

To complete the picture, we need to relate the time evolution of the angular velocity
vectorω to the angular momentum `, through the inertia tensor I:

` = I ·ω. (3.30)

�e rotational part of the kinetic energy takes the form

K = 1
2ω · I ·ω =

1
2` · I

−1 · `. (3.31)

In eqns (3.30) and (3.31), the quantities may be expressed in whichever set of coordinates
is convenient, provided the choice is made consistently throughout. �e body-�xed frame
is usually chosen to make the inertia tensor diagonal,

Ib = diag(I b
xx , I

b
yy , I

b
zz ) =

*..
,

I b
xx 0 0
0 I b

yy 0
0 0 I b

zz

+//
-

where the three non-zero elements are the principal moments of inertia. In this frame,
the connection betweenω and ` is simply `bx = I b

xxω
b
x (and similarly for y and z), while

the kinetic energy is a sum of three terms, one for each principal axis

K =
∑

α=x,y,z

1
2 I

b
ααω

b
α

2
=

∑
α=x,y,z

`bα
2

2I b
αα
. (3.32)

�e torque τ is most easily evaluated in space-�xed axes, and is equal to the time derivative
of the angular momentum in those same axes; in the body-�xed frame, however, the
corresponding equation has an extra term, as per eqn (3.29):

˙̀s = τ s, (3.33a)
˙̀b +ωb × `b = τ b. (3.33b)

Note that we have taken the components ofω × ` in the body-�xed frame, since ˙̀b and
τ b are expressed in that frame. �e resulting equations for the components ofω in the
body-�xed frame are

ω̇b
x =

τ b
x

I b
xx
+ *

,

I b
yy − I

b
zz

I b
xx

+
-
ωb
yω

b
z , (3.34a)

ω̇b
y =

τ b
y

I b
yy
+ *

,

I b
zz − I

b
xx

I b
yy

+
-
ωb
zω

b
x , (3.34b)

ω̇b
z =

τ b
z

I b
zz
+ *

,

I b
xx − I

b
yy

I b
zz

+
-
ωb
xω

b
y . (3.34c)
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�is is the second ingredient of the rotational equations of motion. Eqns (3.34) are com-
bined with eqns (3.28); conversion from space-�xed to body-�xed systems and back is
handled by eqn (3.25), that is, τ b = A · τ s andωs = AT ·ωb.

In fact there is substantial redundancy in the rotation matrix A of eqn (3.25) and the
equations of motion which apply to it: only three independent quantities (generalized
coordinates) are needed to de�ne A. �ese are o�en taken to be the Euler angles ϕ,θ ,ψ in
a suitable convention (Goldstein, 1980). However, the equations of motion in Euler angles
contain some singularities, and so in molecular dynamics it is far more common to use
the rotation matrix directly, as before, or to employ a set of four quaternion parameters, as
suggested by Evans (1977). �aternions ful�l the requirements of having well-behaved
equations of motion. �e four quaternions are linked by one algebraic equation, so there
is just one ‘redundant’ variable. �e basic simulation algorithm has been described by
Evans and Murad (1977). A quaternion a is a set of four scalar quantities

a = (a0,a1,a2,a3) = (a0, a) (3.35)

where, as indicated, it is o�en useful to think of the last three elements (a1,a2,a3) as
constituting a vector a.1 Sometimes these four quantities are called Euler parameters. �e
equations that follow are formally simpli�ed by de�ning quaternion multiplication

a ⊗ b =
(
a0b0 − a · b,a0b + b0a + a × b

)
(3.36a)

=

*....
,

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

+////
-

*....
,

b0
b1
b2
b3

+////
-

. (3.36b)

�is operation is not commutative, a⊗b , b⊗a, but it is associative: (a⊗b)⊗c = a⊗(b⊗c).
�aternions for rotations satisfy the normalization constraint

a2
0 + a

2
1 + a

2
2 + a

2
3 = 1. (3.37)

A rotation about an axis de�ned by a unit vector n̂, through an angle φ, is represented by
a quaternion (Goldstein, 1980)

a =
(
cos 1

2φ, n̂ sin 1
2φ

)
. (3.38)

Note that a and −a represent the same rotation. �e complement (inverse) of a, corre-
sponding to φ → −φ, is a−1 = (a0,−a); this satis�es a−1 ⊗ a = I = (1, 0, 0, 0), the unit
quaternion. Using eqns (3.36a) and (3.38), the active rotation formula (3.27) may be wri�en

e′ = a ⊗ e ⊗ a−1, (3.39)

where we have de�ned a quaternion e = (0, e). �is may be rewri�en, using eqn (3.36b),
in the form e′ = AT · e (3.26), with the rotation matrix given by

A = *.
,

a2
0 + a

2
1 − a

2
2 − a

2
3 2(a1a2 + a0a3) 2(a1a3 − a0a2)

2(a1a2 − a0a3) a2
0 − a

2
1 + a

2
2 − a

2
3 2(a2a3 + a0a1)

2(a1a3 + a0a2) 2(a2a3 − a0a1) a2
0 − a

2
1 − a

2
2 + a

2
3

+/
-
. (3.40)

1�e use of vector notation for the components (a1, a2, a3) is not technically correct, as explained elsewhere
(Silva and Martins, 2002), but for our purposes no confusion should arise.
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�e expressions relating the components of a vector in two di�erent frames, eqn (3.25),
take a similar form:

eb = a−1 ⊗ es ⊗ a, es = a ⊗ eb ⊗ a−1.

A small rotation (cos 1
2φ, n̂ sin 1

2φ) with n̂ = ω̂s = ωs/ω, and φ = ωδt , becomes
(1, 1

2ω
sδt ). Applying this to the molecular orientation a gives the equation of motion for

the quaternions representing the orientation of each molecule:

ȧ = 1
2w

s ⊗ a = 1
2a ⊗ wb,

where we have de�ned ws = (0,ωs) and wb = (0,ωb). In matrix form these equations
become

*....
,

ȧ0
ȧ1
ȧ2
ȧ3

+////
-

=
1
2

*....
,

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

+////
-

*....
,

0
ωb
x

ωb
y

ωb
z

+////
-

, (3.41a)

=
1
2

*....
,

a0 −a1 −a2 −a3
a1 a0 a3 −a2
a2 −a3 a0 a1
a3 a2 −a1 a0

+////
-

*....
,

0
ωs
x

ωs
y

ωs
z

+////
-

. (3.41b)

In the quaternion formulation, these equations replace eqn (3.28) for each of the basis
vectors constituting the rotation matrix. Equations (3.41a) with (3.34), using the matrix
of eqn (3.40) to transform between space-�xed and body-�xed coordinates, contain no
unpleasant singularities.

Before considering the numerical solution of these equations, we mention the special
case of linear molecules, where the orientation is completely speci�ed by a single axis es.
Formally taking this to be the body-�xed z-axis, the de�nition of a linear rotor implies that
the moment of inertia tensor has Izz = 0, and Ixx = Iyy = I . �e angular velocity, angular
momentum, and torque vectors are all perpendicular to this axis. �e time evolution of
the axis vector is given by eqn (3.28), and the time evolution of the angular velocity by
eqn (3.33a) together with the simple relation ` = Iω.

3.3.2 Rotational algorithms

How shall we solve these equations in a step-by-step manner? As for the translational
equations of motion, a standard predictor–corrector approach may be applied. However,
methods inspired by the Verlet-leapfrog approach, and especially the operator-spli�ing
idea, are more stable. Several modi�cations of the leapfrog and Verlet algorithms, based
on the equations of motion, seem to show good stability properties (Fincham, 1981; 1992;
Omelyan, 1998; 1999; Hiyama et al., 2008), but we shall concentrate here on the algorithms
based on more formal Hamiltonian spli�ing, for the same reasons outlined in Section 3.2.2:
it can be guaranteed that the energy will be well conserved, because of the existence of a
shadow Hamiltonian.

Once more, we concentrate on the rotational motion about the centre of mass, assum-
ing that the translational motion is handled using the methods of Section 3.2. We focus
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on a single molecule to avoid too many indices, but of course the algorithm is applied to
all the molecules simultaneously. Since the Hamiltonian splits naturally into a rotational
kinetic-energy part, and a potential-energy part that depends on orientation, exactly the
same kind of factorization of the Liouville operator may be used as in Section 3.2.2, and
this leads to:
(a) ‘half-kick’ `s (t ) → `s (t + 1

2δt ) = `s (t ) + 1
2δt τ

s (t ) (�xed orientation);
(b) ‘dri�’ a(t ) → a(t + δt ) or A(t ) → A(t + δt ) (free rotation with `s constant);
(c) ‘half-kick’ `s (t + 1

2δt ) → `s (t + δt ) = `s (t + 1
2δt ) +

1
2δt τ

s (t + δt ) (�xed orientation).
�e �rst and third steps are straightforward: our a�ention needs to focus on the middle
one, which is the exact solution of the problem of a freely rotating body, with constant
angular momentum (in the space-�xed frame), over one timestep.

A molecule whose principal moments of inertia are all equal, Ixx = Iyy = Izz = I ,
is called a spherical top. Examples are CCl4 and SF6. In this case, ` = Iω, so the angular
velocity vector is constant, in both the space-�xed and body-�xed frames. �is means
that the solution is a simple rotation about the direction n̂ = ω̂s = ωs/ω, through an
angle φ = ωδt , where ω = |ωs |. It is simply a ma�er of convenience whether to use
the rotation matrix, or quaternion parameters, to represent the molecular orientation. In
vector notation, the solution of eqn (3.28) for any of the basis vectors �xed in the molecule
is given by eqn (3.27):

es (t + δt ) = es (t ) cosωδt + (1 − cosωδt )
(
es (t ) · ω̂s

)
ω̂s +

(
ω̂s × es (t )

)
sinωδt . (3.42)

As explained before, this applies to each of the rows of A. �is equation is also the solution
of the free-rotation problem for linear molecules. In quaternion form, using eqn (3.38) in
a similar way

a(t + δt ) =
(
cos 1

2ωδt , ω̂
s sin 1

2ωδt
)
⊗ a(t ). (3.43)

More commonly, small rigid molecules have three unequal moments of inertia, in
which case they are called asymmetric tops (H2O is one example), or, more rarely, two
equal values and one di�erent, when they are termed symmetric tops (e.g. CHCl3). Now,
the exact solution of the free-rotation problem is not so straightforward, although it
has been presented in a form suitable for molecular dynamics (van Zon and Scho�eld,
2007a,b). It consists of a sequence of rotations, and involves Jacobi elliptic functions and
the numerical evaluation of an integral. Although this introduces some computational
complexity into the problem, it should be remembered that the most cpu-intensive parts
of the md program most likely lie in the force loop, so this approach is quite feasible
(Celledoni et al., 2008).

Alternatively, one can make approximations to the free-rotation propagator, giving a
simpler implementation (Dullweber et al., 1997; Miller et al., 2002). One method, which
has been extensively studied (Dullweber et al., 1997) is to take advantage of the spli�ing
of the kinetic energy into three separate parts, eqn (3.32), and correspondingly split the
propagator into successive rotations, each taken around one of the body-�xed principal
axes. A symmetric spli�ing scheme of this kind may be wri�en

Ux (
1
2δt )Uy (

1
2δt )Uz (δt )Uy (

1
2δt )Ux (

1
2δt ),
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where Uα (t ) = exp(iLα t ) for α = x ,y, z. Each symbol represents a rotation about the
corresponding principal axis, for the indicated time, which is implemented using an
equation like (3.42) or (3.43). �e �rst step,Ux (

1
2δt ), for example, consists of selecting the

vector xs corresponding to the body-�xed x-axis, calculating the component of ` along
this axis, which is, of course, equal to `bx , evaluating the corresponding angular velocity
component ωb

x = `
b
x/Ixx , and replacing ω → ωb

x , ω̂s → xs, and δt → 1
2δt in eqn (3.42)

(which applies to each of the basis vectors) or eqn (3.43). In this case, the principal x-axis
will remain constant, while the y and z axes rotate around it. �en the same procedure is
repeated for the other axes in sequence. �roughout the whole process, the space-�xed
angular momentum `s is constant, while the components `b in body-�xed axes will change
as they rotate. Of course, the particular sequence of axes given here is just one choice;
there is scope to optimize the performance of the algorithm, depending on the relative
values of the moments of inertia (Fassò, 2003).

Whichever method is used to integrate forward the rotational equations of motion, in
principle the normalization constraint eqn (3.37), or the orthonormality of the rotation
matrix, should be preserved. It is easy to show that the aforementioned algorithms do this,
to the precision allowed by �oating-point numbers. In practice, of course, small errors
may build up over a period of time. To avoid this, it seems natural to ‘renormalize’ a, or
‘re-orthonormalize’ A, at frequent intervals. However, it has been pointed out (Matubayasi
and Nakahara, 1999) that imposing an additional step of this kind will violate the exact
time reversibility of the algorithm. �erefore, provided an appropriate algorithm is being
employed, it is best to avoid doing this.

3.4 Constraint dynamics
In polyatomic systems, it becomes necessary to consider not only the stretching of
interatomic bonds but also bending motions, which change the angle between bonds, and
twisting motions, which alter torsional angles (see Fig. 1.10). �ese torsional motions are,
typically, of much lower frequency than bond vibrations, and are very important in long-
chain organic molecules and biomolecules: they lead to conformational interconversion
and have a direct in�uence on polymer dynamics. Clearly, these e�ects must be treated
properly in molecular dynamics, within the classical approximation. It would be quite
unrealistic to assume total rigidity of such a molecule, although bond lengths can be
thought of as �xed, and a case might be made out for a similar approximation in the case
of bond bending angles.

Of course, for any system with such holonomic constraints applied (i.e. a set of alge-
braic equations connecting the coordinates) it is possible to construct a set of generalized
coordinates obeying constraint-free equations of motion (i.e. ones in which the constraints
appear implicitly). For any molecule of moderate complexity, such an approach would be
very complicated, although it was used in the �rst simulations of butane (Ryckaert and
Bellemans, 1975). �e equations of motion in such a case are derived from �rst principles,
starting with the Lagrangian (eqns (3.1) and (3.2)). In practice, we will want to handle
the dynamics in terms of Cartesian coordinates, not generalized ones. �e de�nition of
the microcanonical ensemble in this situation is discussed by Ryckaert and Cicco�i (1983,
Appendix), and some of the consequences are outlined in Section 2.10. Here we examine
the practical implementation of constraint dynamics using Cartesian coordinates.
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Fig. 3.5 Illustration of constraint scheme applied to triatomic molecule such as H2O. Intramolecular
forces f12 = −f21 and f23 = −f32, derived from bond-stretching potentials, are replaced by constraint
forces ±λ12r12 and ±λ23r23, directed along the bonds. �e multipliers λ12 and λ23 are determined
by the constraint conditions at the end of the timestep, and for convenience a factor involving δt
is o�en included in their de�nition. In both cases, the forces f1, f2, f3, are due to intermolecular

interactions, and to any other intramolecular terms such as the θ123 angle-bending potential.

A special technique has been developed to handle the dynamics of a molecular sys-
tem in which certain arbitrarily selected degrees of freedom (such as bond lengths) are
constrained while others remain free to evolve under the in�uence of intermolecular and
intramolecular forces. �is constraint dynamics approach (Ryckaert et al., 1977) in e�ect
uses a set of undetermined multipliers to represent the magnitudes of forces directed
along the bonds which are required to keep the bond lengths constant. �e technique is to
solve the equations of motion for one timestep in the absence of the constraint forces, and
subsequently determine their magnitudes and correct the atomic positions. �e method
can be applied equally well to totally rigid and non-rigid molecules. Its great appeal is
that it reduces even a complex polyatomic liquid simulation to the level of di�culty of an
atomic calculation plus a constraint package based on molecular geometry. �e original
method, called shake, designed to work with the Verlet algorithm, is described in detail by
Ryckaert et al. (1977); a version built around the velocity Verlet algorithm (Section 3.2.1)
was proposed by Andersen (1983), and called rattle. We describe this method here.

We shall illustrate the constraint method with a simple example. Consider a bent
triatomic molecule such as H2O, in which we wish to constrain two of the bonds to be
of �xed length but allow the remaining bond, and hence the inter-bond angle, to vary
under the in�uence of the intra-molecular potential. In this section, we drop the molecular
indices, so ra will represent the position of atom a in a speci�c molecule. Numbering the
central (oxygen) atom 2, and the two outer (hydrogen) atoms 1 and 3, as shown in Fig. 3.5,
we write the constraint equations

χ (r)
12 (t ) =

���r12 (t )
���
2
− d2

12 = 0, and χ (r)
23 (t ) =

���r23 (t )
���
2
− d2

23 = 0, (3.44a)

and by time di�erentiation it follows that the following equations are also satis�ed

χ (v)
12 (t ) = v12 (t ) · r12 (t ) = 0, and χ (v)

23 (t ) = v23 (t ) · r23 (t ) = 0, (3.44b)

where d12 and d23 are the bond lengths, r12 = r1 − r2, v12 = ṙ12, etc. �e equations of
motion take the form

m1r̈1 = f1 + g1, m2r̈2 = f2 + g2, m3r̈3 = f3 + g3. (3.45)
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Here f1, f2, and f3 are the forces due to intermolecular interactions as well as those
intramolecular e�ects that are explicitly included in the potential. �e remaining terms
g1 etc. are the constraint forces: their role is solely to ensure that the constraint equations
(3.44) are satis�ed at all times.

�e Lagrangian equations of motion are derived from the constraints (3.44a) (Bradbury,
1968, Chapter 11); they are eqns (3.45) with

ga = Λ12∇ra χ
(r)
12 + Λ23∇ra χ

(r)
23 (3.46)

where Λ12 and Λ23 are undetermined (Lagrangian) multipliers. So far, we have made
no approximations, and, in principle, could solve for the constraint forces (Orban and
Ryckaert, 1974). However, because we are only able to solve the equations of motion
approximately, using �nite-di�erence methods, in practice this will lead to bond lengths
that steadily diverge from the desired values. Instead, Ryckaert et al. (1977) suggested
an approach in which the constraint forces are calculated so as to guarantee that the
constraints are satis�ed at each timestep; by implication, the constraint forces themselves
are only correct to the same order of accuracy as the integration algorithm. In fact, we
will be considering two di�erent approximations to each ga : the �rst, which we call g(r)

a ,
ensures that eqns (3.44a) are satis�ed, while the second, g(v)

a , guarantees that we satisfy
eqns (3.44b). Both these approximations, of course, will be within O (δt2) of the true
constraint forces.

Consider the �rst ‘kick’ and the ‘dri�’ stage of the velocity Verlet algorithm, generating
the half-advanced velocities, and the fully advanced positions. Let r′a (t+δt ) and v′a (t+ 1

2δt )
be the results of doing this, including all the physical forces fa , but without including the
constraint forces ga . Referring to eqns (3.11a), (3.11b), and (3.12a):

v′a (t +
1
2δt ) = va (t ) + 1

2 (δt/ma ) fa (t )

r′a (t + δt ) = ra (t ) + δt v′a (t +
1
2δt ) = ra (t ) + δt va (t ) + 1

2

(
δt2/ma

)
fa (t ).

Concentrating on the positions, the e�ects of subsequently including the constraint forces
may be wri�en

ra (t + δt ) = r′a (t + δt ) +
1
2

(
δt2/ma

)
g(r)
a (t ) (3.47)

for each of the three atoms in the H2O molecule. �e constraint forces for this stage, g(r)
a ,

must be directed along the bond vectors rab (t ), and must conform to Newton’s third law,
so we may write them in the form(

1
2δt

2
)
g(r)

1 (t ) = λ(r)
12r12 (t ) (3.48a)(

1
2δt

2
)
g(r)

2 (t ) = λ(r)
23r23 (t ) − λ

(r)
12r12 (t ) (3.48b)(

1
2δt

2
)
g(r)

3 (t ) = −λ(r)
23r23 (t ) (3.48c)

where λ(r)
12 and λ(r)

23 are the undetermined multipliers (one for each constraint), and we
have included a factor of 1

2δt
2 for convenience. Inserting these expressions into the
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corresponding three equations (3.47), we can calculate the bond vectors at t + δt :

r12 (t + δt ) = r′12 (t + δt ) +
(
m−1

1 +m
−2
2

)
λ(r)

12r12 (t ) −m
−1
2 λ(r)

23r23 (t ) (3.49a)

r23 (t + δt ) = r′23 (t + δt ) −m
−1
2 λ(r)

12r12 (t ) +
(
m−1

2 +m
−2
3

)
λ(r)

23r23 (t ). (3.49b)

Now we can take the square modulus of both sides and apply our desired constraints:
|r12 (t + δt ) |

2 = |r12 (t ) |
2 = d2

12 and similarly for r23. �e result is a pair of quadratic
equations in the two unknowns, λ(r)

12 and λ(r)
23, the coe�cients in which are all known

(given that we already have the ‘unconstrained’ bond vectors r′ab ) and which can be
solved for the undetermined multipliers. We turn to the method of solution shortly.

�ese values are used in eqns (3.48) and (3.47). At the same time, the half-step velocities
v′a (t +

1
2δt ) are adjusted according to

va (t + 1
2δt ) = v′a (t +

1
2δt ) +

1
2 (δt/ma ) g

(r)
a (t ). (3.50)

�e second part of the algorithm follows evaluation of the non-constraint forces
fa (t + δt ), which are used in eqn (3.11c) to give v′a (t + δt ):

v′a (t + δt ) = va (t + 1
2δt ) +

1
2 (δt/ma ) fa (t + δt ).

�e inclusion of constraints in the second stage is wri�en

va (t + δt ) = v′a (t + δt ) +
1
2 (δt/ma )g

(v)
a (t + δt ). (3.51)

�ese constraint forces g(v)
a (t + δt ), are directed along the bonds rab (t + δt ), so a set of

equations similar to (3.48) may be wri�en(
1
2δt

)
g(v)

1 (t + δt ) = λ(v)
12 r12 (t + δt ) (3.52a)(

1
2δt

)
g(v)

2 (t + δt ) = λ(v)
23 r23 (t + δt ) − λ

(v)
12 r12 (t + δt ) (3.52b)(

1
2δt

)
g(v)

3 (t + δt ) = −λ(v)
23 r23 (t + δt ) (3.52c)

where once again it is convenient to introduce a factor involving the timestep. �is reduces
the problem to determining a new pair of undetermined multipliers, λ(v)

12 and λ(v)
23 . �ese

are chosen so that the velocities satisfy the constraint equations (3.44b) exactly at time
t + δt . �ose equations are linear in the unknowns, since they are obtained by taking the
scalar products of the relative velocities:

v12 (t + δt ) = v′12 (t + δt ) +
(
m−1

1 +m
−2
2

)
λ(v)

12 r12 (t ) −m
−1
2 λ(v)

23 r23 (t ) (3.53a)

v23 (t + δt ) = v′23 (t + δt ) −m
−1
2 λ(v)

12 r12 (t ) +
(
m−1

2 +m
−2
3

)
λ(v)

23 r23 (t ) (3.53b)

with the corresponding, already determined, bond vectors r12 (t + δt ), r23 (t + δt ). Once
determined, the values of λ(v)

12 and λ(v)
23 are used in eqns (3.52) to give the constraint forces,

which are substituted into eqns (3.51). Note that, in the next integration step, a di�erent
approximation to these same constraint forces, namely g(r)

a (t + δt ), will be used. �is step
follows immediately.
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�e scheme for the original shake method is somewhat simpler than the one just
described, since the Verlet algorithm only involves positions, with velocities determined
a�erwards: therefore, only a single set of Lagrange multipliers, λ(r)

ab , is needed. Nonetheless,
the same ideas apply, and the equations are very similar.

We have examined this case in some detail so as to bring out the important features
in a more general scheme. Bond angle (as opposed to bond length) constraints present no
fundamental di�culty, and may be handled by introducing additional length constraints.
For example, the H−O−H bond angle in water may be �xed by constraining the H−H
distance, in addition to the O−H bond lengths. Instead of eqn (3.48) we would then have(

1
2δt

2
)
g(r)

1 (t ) = λ(r)
12r12 (t ) − λ

(r)
31r31 (t )(

1
2δt

2
)
g(r)

2 (t ) = λ(r)
23r23 (t ) − λ

(r)
12r12 (t )(

1
2δt

2
)
g(r)

3 (t ) = λ(r)
31r31 (t ) − λ

(r)
23r23 (t )

and eqn (3.49) would be replaced by

r12 (t + δt ) = r′12 (t + δt ) +
(
m−1

1 +m
−1
2

)
λ(r)

12r12 (t ) −m
−1
2 λ(r)

23r23 (t ) −m
−1
1 λ(r)

31r31 (t )

r23 (t + δt ) = r′23 (t + dt ) −m
−1
3 λ(r)

31r31 (t ) + (m−1
2 +m

−1
3 )λ(r)

23r23 (t ) −m
−1
2 λ(r)

12r12 (t )

r31 (t + δt ) = r′31 (t + δt ) −m
−1
1 λ(r)

12r12 (t ) −m
−1
3 λ(r)

23r23 (t ) + (m−1
3 +m

−1
1 )λ(r)

31r31 (t )

with a similar set of equations applying to the second-stage velocity constraints. �is
process of ‘triangulating’ the molecule by introducing �ctitious bonds is straightforwardly
applied to more complex systems. Figure 3.6 shows bond length constraints applied to
the carbon units in a simple model of butane, which leaves just one internal parameter
(the torsion angle ϕ) free to evolve under the in�uence of the potential. �e extension to
n-alkanes is discussed by Ryckaert et al. (1977) and an application to the case of n-decane
has been described (Ryckaert and Bellemans, 1978).

Now we turn to the method of solving the constraint equations. For the velocity
constraints, λv

12, λv
23, these equations are linear. For the position constraints, since λr

12, λr
23

are proportional to δt2, the quadratic terms are relatively small. �ese equations may be
solved in an iterative fashion: the quadratic terms are dropped and the remaining linear
equations solved; these approximate solutions are substituted into the quadratic terms to
give new linear equations, which yield improved estimates of λr

12 and λr
23, and so on. For

very small molecules, as in the previous example, the (linearized) constraint equations
may be solved by straightforward algebra. For a larger polyatomic molecule, with nc
constraints, the solution of these equations essentially requires inversion of an nc × nc
matrix at each timestep. �is could become time-consuming for very large molecules, such
as proteins. Assuming, however, that only near-neighbour atoms and bonds are related by
constraint equations, the constraint matrix will be sparse, and special inversion techniques
might be applicable. An alternative procedure is to go through the constraints one by one,
cyclically, adjusting the coordinates so as to satisfy each in turn. �e procedure may be
iterated until all the constraints are satis�ed to within a given tolerance. To be precise,
it is this algorithm that is termed shake (Ryckaert et al., 1977) or rattle (Andersen,
1983). It is most useful when large molecules are involved, and is a standard part of most
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Fig. 3.6 Triangulation scheme for the simple model of butane illustrated in Fig. 1.10. Bonds 1–2,
2–3, and 3–4 are constrained to have speci�ed lengths. In addition, constraining the 1–3 and 2–4
distances will �x the angles θ , θ ′, leaving the torsion angle ϕ as the only internal coordinate that is
free to vary.

molecular dynamics packages. If the process is iterated to convergence, then it preserves
the symplectic nature of the Verlet, or velocity Verlet, algorithm (Leimkuhler and Skeel,
1994). �e process may be accelerated by a successive overrelaxation approach (Barth
et al., 1995).

Problems may arise in the construction of a constraint scheme for certain molecules.
Consider the linear molecule CS2: it has three atoms and �ve degrees of freedom (two
rotational and three translational) so we require nc = 3 × 3 − 5 = 4 constraints. �is is
impossible with only three bond lengths available to be speci�ed. A more subtle example is
that of benzene, modelled as six united CH atoms in a hexagon. For six degrees of freedom
(three rotational and three translational) we require nc = 3 × 6 − 6 = 12 constraints, and
this number may indeed be accommodated. However, the constraint matrix is then found
to be singular, that is, its determinant vanishes. Physically, the problem is that all the
constraints act in the plane of the molecule, and none of them act to preserve planarity.
�e solution to both these problems is to choose a subset of atoms su�cient to de�ne the
molecular geometry, apply constraints to those atoms, and express the coordinates of the
remaining atoms as linear combinations of those of the primary ‘core’ (Cicco�i et al., 1982).
In computing the dynamics of the core, there is a simple prescription for transferring the
forces acting on the ‘secondary’ atoms to the core atoms so as to generate the correct linear
and angular accelerations. �e shake method has been extended to handle more general
geometrical constraints needed to specify (for example) the arrangement of side-chains or
substituent atoms in �exible hydrocarbons (Ryckaert, 1985; Cicco�i and Ryckaert, 1986).

Having discussed shake and rattle, we brie�y summarize some of the alternatives.
For small molecules, an algebraic solution of the constraint equations may still be prefer-
able to iteration, and indeed this is the approach used in the settle algorithm (Miyamoto
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Code 3.5 Constraint algorithms for a chain molecule
�ese �les are provided online. �e code illustrates the rattle and milc-shake
constraint algorithms for a chain of atoms. �e program md_chain_nve_lj.f90 o�ers
a run-time choice between these two methods, the routines for which are in the �le
md_chain_lj_module.f90. milc-shake requires a tridiagonal solver, and there are
many options for this; the current implementation calls a routine dgtsv from the
lapack library which is assumed to be installed. A more general example routine,
using a similar approach, is referenced in Bailey et al. (2008), which also provides
more details about the method. Various routines for input/output and simulation
averages are provided in utility modules (see Appendix A). Code to set up an initial
con�guration is provided in initialize.f90.

! md_chain_nve_lj.f90
! Molecular dynamics , NVE ensemble , chain molecule
PROGRAM md_chain_nve_lj

! md_chain_lj_module.f90
! Force & constraint routines for MD, LJ chain
MODULE md_module

and Kollman, 1992). For linear or ring molecules, where each atom is connected to at most
two others, the constraint matrix is tridiagonal, and again an e�cient non-iterative solu-
tion of the constraint problem, milc-shake, may be implemented (Bailey et al., 2008; 2009).
�e linear constraint solver (lincs) approach (Hess et al., 1997) is based on re-writing the
constrained equations of motion using the principle of least action. �e method works
by applying a matrix correction to the unconstrained positions so as to set the bond
lengths, projected along the direction of the ‘old’ bonds, to the correct values. Including
a correction for bond rotation, the method is found to be quite accurate without iter-
ation, and is claimed to be several times faster than shake, as well as showing be�er
convergence characteristics at large timesteps. wiggle (Lee et al., 2005) is derived by
applying a projection operator method to the equations of motion, and considers atomic
accelerations rather than forces. Some examples are given in Code 3.5.

For completely rigid molecules, symplectic integration algorithms based on quaternion
parameters or rotation matrices seem to be the simplest approach. On the other hand,
as soon as any non-rigidity is introduced into the molecular model, constraint dynamics
as typi�ed by rattle and shake provide an a�ractive option. As we shall see in the
next section, the only reasonable alternative is to allow the high-frequency motions to
occur, and employ a multiple-timestep integrator to handle them properly. For �exible
molecules, we have ample choice as to where to apply constraints, and it is generally
believed that, while constraining bond lengths is worthwhile, it is best to leave bond angles
(and certainly torsion angles) free to evolve under the in�uence of appropriate terms in the
potential energy. �is is partly on the grounds of program e�ciency: the rattle/shake
algorithm iterations converge very slowly when rigid ‘triangulated’ molecular units are
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involved, o�en necessitating a reduced timestep, which might as well be used in a proper
integration of the bond ‘wagging’ motions instead (van Gunsteren and Berendsen, 1977;
van Gunsteren, 1980). �e other reason is that the relatively low frequencies of these
motions makes the constraint approximation less valid. As discussed in Section 2.10,
a model with a strong harmonic potential is di�erent from one in which the potential
is replaced by a rigid constraint. �is point has been recognized for some time in the
�eld of polymer dynamics, and has been tested by computer simulation (Fixman, 1974;
1978a,b; Gō and Scheraga, 1976; Helfand, 1979; Pear and Weiner, 1979). In practical terms,
for a model of a protein molecule, van Gunsteren and Karplus (1982) have shown that
the introduction of bond length constraints into a model based otherwise on realistic
intramolecular potential functions has li�le e�ect on the structure and dynamics, but
the further introduction of constraints on bond angles seriously a�ects the torsion angle
distributions and the all-important conformational interconversion rates. �is e�ect can
be countered by adding the additional constraint potential of eqn (2.161), which involves
the calculation of the metric determinant det(H). �is is time-consuming and algebraically
complicated for all but the simplest �exible molecules, and the lesson seems to be that,
for realistic molecular dynamics simulations, bond length constraints are permissible, but
bond angle constraints should not be introduced without examining their e�ects.

Two �nal points should be made, in relation to the calculation of thermodynamic
properties of model systems incorporating constraints. �e calculation of the total kinetic
energy of such a system is a simple ma�er of summing the individual atomic contributions
in the usual way. When using this quantity to estimate the temperature, according to
eqn (2.55), we must divide by the number of degrees of freedom. It should be clear from
the speci�cation of the molecular model how many independent constraints have been
applied, and hence what the number of degrees of freedom is. Second, in molecular
systems, quantities such as the pressure may be calculated in several ways, the two most
important of which focus on the component atoms, and on the molecular centres of mass,
respectively. Consider the evaluation of the virial function (eqn (2.65)) interpreting the
sum as being taken over all atom–atom separations rab and forces fab . In this case, all
intramolecular contributions toW including the constraint forces should be taken into
account. Now consider the alternative interpretation of eqn (2.67), in which we take the
f i j to represent the sum of all the forces acting on a molecule i , due to its interactions
with molecule j, and take each such force to act at the centre of mass. In this case, all the
intramolecular forces, including the constraint forces, cancel out and can be omi�ed from
the sum. It is easy to show that, at equilibrium, the average pressure computed by either
route is the same.

3.5 Multiple-timestep algorithms
An alternative to constraining some of the intramolecular degrees of freedom is to allow
them to evolve according to the classical equations, but use a timestep small enough to
cope with the high-frequency motion. �e formal development of Section 3.2.2 allows this
to be done in a relatively straightforward way (Tuckerman et al., 1992; Grubmüller et al.,
1991; Martyna et al., 1996). Suppose, to illustrate this, that there are ‘slow’ f slow, and ‘fast’
f fast, forces. �erefore, the momentum equation is ṗ = f slow + f fast. We may break up the



Checks on accuracy 121

Liouville operator iL = iL1 + iL2 + iL3 where the separate terms are de�ned:

iL1 = v ·
∂

∂r
, iL2 = f fast

·
∂

∂p
, iL3 = f slow

·
∂

∂p
. (3.54)

�e propagator U (∆t ) = exp
(
iL∆t

)
approximately factorizes

U (∆t ) ≈ U3
(

1
2∆t

)
exp

(
(iL2 + iL1)∆t

)
U3

(
1
2∆t

)
, (3.55)

where ∆t represents a long timestep. �e middle part is then split again, using the
conventional separation as usual, iterating over small timesteps δt = ∆t/nshort:

exp
(
(iL2 + iL1)∆t

)
≈

[
U2

(
1
2δt

)
U1 (δt )U2

(
1
2δt

)]nshort
. (3.56)

�e fast-varying forces are computed at short intervals, while the slow forces are computed
once per long timestep. �is algorithm translates naturally into computer code, as shown
in Code 3.6. As we shall see in Section 5.4, this approach may be extended to speed up
the calculation of non-bonded interactions, as well as bond vibrations and the like.

3.6 Checks on accuracy
Is it working properly? �is is the �rst question that must be asked when a simulation is
run for the �rst time, and the answer is frequently in the negative. Here, we discuss the
tell-tale signs of a non-functioning md program.

�e �rst check must be that the conservation laws are properly obeyed, and in partic-
ular that the energy should be ‘constant’. As we shall see later (Section 3.8), it is common
practice to conduct md simulations at constant temperature, in which energy �uctuations
are expected. �is can conceal some problems, so before carrying out such runs it is
important to switch o� the thermostat and conduct tests in the microcanonical ensemble.

In fact small changes in the energy will occur (see Fig. 3.2). For a simple Lennard-Jones
system, �uctuations of order 1 part in 104 are generally considered to be acceptable,
although some workers are less demanding, and some more so. Energy �uctuations
may be reduced by decreasing the timestep. Assuming that a symplectic algorithm is
being used, as explained earlier, the way these �uctuations scale with timestep is almost
precisely known, because of the exact conservation of a shadow Hamiltonian. For the
Verlet algorithm, H ‡ − H = O (δt2), and a suggestion due to Andersen (Berens et al.,
1983) may be useful: plot rms energy �uctuations

√
〈H 2〉 − 〈H〉2 against δt2, and check

that the resulting graph is linear (see also Fig. 3.2). To avoid systematic di�erences, these
calculations should cover essentially the same md trajectories. Several short runs should
be undertaken, each starting from the same initial con�guration and covering the same
total time trun: each run should employ a di�erent timestep δt , and hence consist of a
di�erent number of steps τrun = trun/δt .

A good initial estimate of δt is that it should be roughly an order of magnitude less than
the Einstein period tE = 2π/ωE, where the Einstein frequency ωE is given by eqn (2.135).
�is gives a guide to the typical frequencies of atomic motion that the algorithm is
a�empting to reproduce faithfully. If a typical liquid starting con�guration is available,
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Code 3.6 Multiple-timestep algorithm
We show, schematically, the important parts of the algorithm for a simulation of nlong
‘long’ timesteps, each of length ∆t (stored in dt_long), each step consisting of nshort
‘short’ timesteps δt (stored in dt_short). We take the atoms to have unit mass, so
forces and accelerations are the same.

REAL , DIMENSION(3,n) :: r, f_fast , f_slow , v
! begin with these arrays all calculated

DO long_step = 1, n_long
v = v + 0.5 * dt_long * f_slow
DO short_step = 1, n_short

v = v + 0.5 * dt_short * f_fast
r = r + dt_short * v
! ... calculate f_fast from r
v = v + 0.5 * dt_short * f_fast

END DO
! ... calculate f_slow from r
v = v + 0.5 * dt_long * f_slow

END DO

A program illustrating this for a chain molecule, with strong intramolecular springs
giving rise to the ‘fast’ forces, is provided online in md_chain_mts_lj.f90 with
the force routines in the same �le md_chain_lj_module.f90 used in Code 3.5. As
usual, routines for input/output and simulation averages are provided in utility mod-
ules (see Appendix A), while code to set up an initial con�guration is provided in
initialize.f90.

! md_chain_mts_lj.f90
! Molecular dynamics , multiple timesteps , chain molecule
PROGRAM md_chain_mts_lj

then ωE may be obtained by averaging over all the molecules in the system. Otherwise,
an approximate calculation may be made by considering a hypothetical solid phase of
the same density as the system of interest. As can be deduced from the analysis of the
harmonic oscillator in Section 3.2.2, the quantity ζ in eqn (3.23) switches from positive
to negative when ωδt = 2. �is causes the trajectories for this model system to change
from ellipses in the phase plane (Fig. 3.3) to hyperbolae, which diverge from the origin.
Needless to say, the trajectories will become noticeably unphysical well before this limit
is reached. In a simulation, too large a timestep will generate high velocities and atomic
overlaps, with disastrous results: most simulation packages will test for this and stop
before numerical over�ows occur.

Although symplectic algorithms should generate no systematic dri� in energy, there
is a loophole in the preceding analysis: the connection between H ‡ and H relies on
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Example 3.1 Protein folding on a special-purpose machine

Anton is a massively parallel computer that has been speci�cally designed to run
md calculations (Shaw et al., 2009). It consists of a set of 512 nodes connected in a
toroidal topology. Each node has two sub-systems. �e �rst consists of an array of 32
special pairwise point interaction pipelines (ppips) for calculating the short range
interactions for a variety of potentials. �e second �exible sub-system contains eight
geometry cores for fast numerical calculations, four processors to control overall data
�ow in the system, and four data-transfer processors that allow the communication
to be hidden behind the computation. �e inner loops of a standard md package such
as gromacs can be mapped onto Anton’s ppips. A new Gaussian-split Ewald method
(Shan et al., 2005) was speci�cally developed to handle the long-range part of the
electrostatic interactions on this machine.
Once constructed and tested against results from more general-purpose computers,
Anton was used to study the folding of two proteins in water (Shaw et al., 2010):
the �rst of these, a villin fragment (m = 4.07 kDa) is from an actin binding protein;
the second, fip35 (m = 4.14 kDa) is a 35-residue mutant of the human pin1 protein.
�e starting con�guration for both simulations was an extended protein surrounded
by 4000 tip3p water molecules and a small number of Na+ and Cl– ions at 30 mm
ionic concentration. At a temperature of 300 K the villin folded to its natural state in
68 µs. At 337 K, fip35 folded in 38 µs. Both simulations were run for a further 20 µs
to con�rm the �nal structures. �ese very long simulations were performed using
constant-NVT md with a Nosé–Hoover thermostat and a multiple-timestep approach:
δt = 2.5 fs for the bonded and short-range interactions, and ∆t = 5.0 fs for the long-
range electrostatic forces. �e simulated structures of the folded proteins show a
backbone rms deviation of ∼ 0.1 nm with respect to the X-ray crystal structures.
�e md allows us to follow the folding process in detail. Although the folding rates
and native structures of these proteins are accurately described by the charmm and
amber force �elds used in the calculations, the simulated enthalpy of the folded state
is o�en lower than experimental estimates (Piana et al., 2014). �is is ascribed to
a set of small, uncorrelated errors in the force-�eld parameters rather than to the
overall structure of the force �eld itself. Subsequently, other fast-folding proteins
were studied (Lindor�-Larsen et al., 2011), with simulations reaching milliseconds in
length.
Protein folding has long been a stimulus for many aspects of md simulation (for
reviews see Lane et al., 2013; Towse and Dagge�, 2015). It would be wrong to think
that special-purpose hardware is the only solution: conventional parallel computers
may still be the most convenient, accessible, or cost-e�ective route for many research
groups. Advanced simulation techniques may greatly accelerate the sampling (see
e.g. Du and Bolhuis, 2014; Miao et al., 2015; Pan et al., 2016) and we shall cover some
of these in later chapters. Nonetheless, the design and construction of Anton, and its
further development (Shaw et al., 2014), are noteworthy in the �eld.
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the di�erentiability of the Hamiltonian. We usually employ a cuto� which introduces
discontinuities in the potential or its higher derivatives (Engle et al., 2005), which can
cause a dri�. Depending on the nature of the discontinuity (i.e. in which derivative of the
potential it occurs) and its magnitude, this may or may not be a small e�ect. It has been
suggested that at least the potential, and its �rst four derivatives should be continuous at
the cuto� for long-time energy conservation in practice (Toxvaerd et al., 2012).

A slow upward dri� of energy may also indicate a program error. E�ects with a
‘physical’ origin can be identi�ed by the procedure outlined earlier, that is, duplicating
a short run but using a larger number of smaller timesteps. If the dri� as a function of
simulation time is unchanged, then it is presumably connected with the system under
study, whereas if it is substantially reduced, the method used to solve the equations of
motion (possibly the size of the timestep) is responsible. In the category of program
error, we should mention the possibility that the wrong quantity is being calculated.
If the total energy varies signi�cantly but the simulation is ‘stable’ in the sense that
no inexorable climb in energy occurs, then the way in which the energy is calculated
should be examined. Are potential and kinetic contributions added together correctly?
Is the pairwise force (appearing in the double loop) in fact correctly derived from the
potential? �is last possibility may be tested by including statements that calculate the
force on a given particle numerically, from the potential energy, by displacing it slightly
in each of the three coordinate directions. �e result may be compared with the analytical
formula encoded in the program. We illustrate this for various examples in Appendix C. As
emphasized earlier, although small �uctuations are permissible, it is essential to eliminate
any traces of a dri� in the total energy over periods of tens of thousands of timesteps, if
the simulation is to probe the microcanonical ensemble correctly.

Rather than a slow dri�, a very rapid, even catastrophic increase in energy may
occur within the �rst few timesteps. �ere are two possibilities here: either a starting
con�guration with particle overlaps has been chosen (so that the intermolecular forces
are unusually large) or there is a serious program error. �e starting con�guration may
be tested simply by visualizing it, or writing out the coordinates and inspecting the
numbers. Alternatively, particularly when the number of particles is large, statements may
temporarily be incorporated into the force loop so as to test each of the pair separations
and write out particle coordinates and identi�ers whenever a very close pair is detected.

Tracking down a serious program error may be a di�cult task. It is a favourite mistake,
particularly when reading in the potential parameters in real (e.g. si) units, to make a small,
but disastrous, error in unit conversion. �ere is much to be said for testing out a program
on a small number of particles before tackling the full-size system, but beware! Is the
potential cuto� distance still smaller than half of the box length? Frequent program errors
involve mismatching of number, length, or type of variables passed between routines.
Simple typographical errors, while hard to spot, may have far-reaching e�ects. It is hard
to overemphasize how useful modern so�ware development tools can be in locating and
eliminating mistakes of this kind. A good editor may be used to check the source code
much more e�ciently than simple visual inspection. Most Fortran compilers will detect
mismatched variables, provided the program uses modules and/or interface blocks in a
consistent way. On modern computers, excellent interactive Fortran debugging facilities
exist, which allow the program to be run under user control, with constant monitoring
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of the program �ow and the values of variables of interest. Needless to say, a program
wri�en in a simple, logical, and modular fashion will be easier to debug (and will contain
fewer errors!) than one which has not been planned in this way. Some programming
considerations appear in Appendix A.

For molecular simulations, errors may creep into the program more easily than in the
simple atomic case. Energy should be conserved just as for atomic simulations although, for
small molecules, a rather short timestep may be needed to achieve this, since rotational
motion occurs so rapidly. If non-conservation is a problem, several points may need
checking. Incorrectly di�erentiating the potential on the way to the torques may be a
source of error: this is more complicated for potentials incorporating multipolar terms
(see Appendix C). Again, this may be tested numerically by subjecting selected molecules
to small rotations and observing the change in potential energy. If the angular part of the
motion is suspect, the rest of the program may be tested by ‘freezing out’ the rotation.
�is is accomplished by disengaging the rotational algorithm; physically this corresponds
to giving the molecules an in�nite moment of inertia and zero angular velocity. Energy
should still be conserved under these conditions. Conversely, the angular motion may be
tested out by omi�ing, temporarily, the translational algorithm, thus �xing the molecular
centres at their initial positions.

Two �nal points should be made. When the program appears to be running correctly,
the user should check that the monitored quantities are in fact evolving in time. Even
conserved variables will �uctuate a li�le if only due to round-o� errors, and any quantity
that appears to be constant to ten signi�cant �gures should be regarded with suspicion: it
is probably not being updated at all. Excellent conservation, but no science, will result
from a program that does not, in fact, move the particles for any reason. A timestep that
is too small (or that has been accidentally set to zero) will be very wasteful of computer
time, and the extent to which δt can be increased without prejudicing the stability of the
simulation should be investigated. Finally, the problems just discussed are all ‘mechanical’
rather than ‘thermodynamic’; that is, they are associated with the correct solution of the
equations of motion. �e quite separate question of a�aining thermodynamic equilibrium
will be discussed in Chapter 5. If a well-known system is being simulated (e.g. Lennard-
Jones, so�-sphere potentials, etc.) then it is obviously sensible to compare the simulation
output, when equilibrium has been a�ained, with the known thermodynamic properties
reported in the literature.

3.7 Molecular dynamics of hard particles
�e molecular dynamics of molecules interacting via hard potentials (i.e. discontinuous
functions of distance) must be solved in a way which is qualitatively di�erent from the
molecular dynamics of so� bodies. Whenever the distance between two particles becomes
equal to a point of discontinuity in the potential, then a ‘collision’ (in a broad sense) occurs:
the particle velocities will change suddenly, in a speci�ed manner, depending upon the
particular model under study. �us, the primary aim of a simulation program here is to
locate the time, collision partners, and all impact parameters, for every collision occurring
in the system, in chronological order. Instead of a regular, step-by-step, approach, as for
so� potentials, hard potential programs evolve on a collision-by-collision basis, computing
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the collision dynamics and then searching for the next collision. �e general scheme may
be summarized as follows:
(a) locate next collision;
(b) move all particles forward until collision occurs;
(c) implement collision dynamics for the colliding pair;
(d) calculate collisional properties, ready for averaging, before returning to (a).

Because of the need to locate accurately future collision times, simulations have been
restricted in the main to systems in which force-free motion occurs between collisions.
In the simple case of spherical particles such as hard spheres and square wells (Alder
and Wainwright, 1959; 1960), location of the time of collision between any two particles
requires the solution of a quadratic equation. We examine this in detail in the next
section. �e computational problems become more daunting when the hard cores are
supplemented with long-range so� potentials. An example is the primitive model of
electrolytes, consisting of hard spheres plus Coulomb interactions. By contrast, such
systems may be handled easily using Monte Carlo simulation (see Chapter 4). However, it
is possible to treat these ‘hybrid’ hard-plus-so� systems, as well as non-spherical hard
particles, by returning to an approximate ‘step-by-step’ approach; we consider this brie�y
in Section 3.7.2.

Although event-driven simulations of this kind are not as widespread as those using
continuous potentials, the dynamo package provides a platform for carrying out a range
of simulations using such models (Bannerman et al., 2011).

3.7.1 Hard spheres

A program to solve hard-sphere molecular dynamics has two functions to perform: the
calculation of collision times and the implementation of collision dynamics. We illustrate
the methods using a simple program in Code 3.7.

�e collision time calculation is the expensive part of the program, since, in principle,
all possible collisions between distinct pairs must be considered. Consider two spheres, i
and j, of diameter σ , whose positions at time t are ri and rj , and whose velocities are vi
and vj . If these particles are to collide at time t + ti j then the following equation will be
satis�ed: ���ri j (t + ti j )

��� =
���ri j + vi jti j

��� = σ (3.57)

where ri j = ri − rj and vi j = vi −vj . If we de�ne bi j = ri j ·vi j , then this equation becomes

v
2
i jt

2
i j + 2bi jti j + r 2

i j − σ
2 = 0. (3.58)

�is is a quadratic equation in ti j . If bi j > 0, then the molecules are going away from each
other and they will not collide. If bi j < 0, it may still be true that b2

i j − v
2
i j (r

2
i j − σ

2) < 0,
in which case eqn (3.58) has complex roots and again no collision occurs. Otherwise
(assuming that the spheres are not already overlapping) two positive roots arise, the
smaller of which corresponds to impact
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. (3.59)
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Fig. 3.7 A smooth hard-sphere collision. For illustrative purposes, we have taken all the vectors
to be coplanar. We assume equal masses. (a) Collision geometry, and velocities before and a�er
collision. (b) �e vector construction gives the change in velocities δvi = −δvj for each particle. (c)
Relation between velocities before and a�er collision.

�e program should store, in a convenient way, the earliest upcoming collision involving
each atom. Methods for handling collision lists can be quite sophisticated (Rapaport,
1980; Bannerman et al., 2011) but a simple approach is to identify the collision by the
index of the �rst particle, i , and store the collision time in an array element coltime(i),
and the collision partner, j, in another array partner(i). In principle, the search need
only consider distinct pairs with i < j (except as mentioned later in this section), as in a
conventional force loop. Also, for a reasonable liquid density, we may assume that we
only need to examine the nearest images of any two particles in order to pick out the
collision between them. Relaxing this assumption makes the simulation program a li�le
more complicated; it should only break down at very low densities.

�e next stage of the program is to locate the earliest collision time ti j , and the colliding
pair i and j; this may be accomplished with the Fortran MINLOC function. All molecules
are moved forward by the time ti j , the periodic boundary conditions are applied, and the
table of future collision times is adjusted accordingly.

Now we are ready to carry through the second part of the calculation, namely the col-
lision dynamics themselves. �e changes in velocities of the colliding pair are completely
dictated by the requirements that energy and linear momentum be conserved and (for
smooth hard spheres) that the impulse act along the line of centres, as shown in Fig. 3.7.

Using conservation of total linear momentum and (kinetic) energy, and assuming
equal masses, the velocity change δvi , such that

vi (a�er) = vi (before) + δvi , vj (a�er) = vj (before) − δvi , (3.60)

is given by
δvi = −(bi j/σ 2)ri j = −v

‖

i j (3.61)

with bi j = ri j · vi j evaluated now at the moment of impact (it is still a negative number).
�us, δvi is simply the negative of the projection of vi j along the ri j direction, which we
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Code 3.7 Molecular dynamics of hard spheres
�ese �les are provided online. �e program md_nve_hs.f90 controls the simulation,
reads in the run parameters, implements the free-�ight dynamics, and writes out the
results. It uses the routines in md_nve_hs_module.f90 to update the collision lists and
implement the collision dynamics, and utility module routines (see Appendix A) for
input/output and simulation averages.

! md_nve_hs.f90
! Molecular dynamics , NVE ensemble , hard spheres
PROGRAM md_nve_hs

! md_nve_hs_module.f90
! Collisions and overlap for MD of hard spheres
MODULE md_module

denote v‖i j (see Fig. 3.7). �e code for the collision dynamics is simply a transcription of
eqn (3.61) followed by eqn (3.60).

Now we could return to the initial loop and recalculate all collision times afresh. In
fact, there is no need to carry out this calculation in entirety, since many of the details in
coltime and partner will have been una�ected by the collision between i and j . Obviously,
we must look for the next collision partners of i and j; to be certain of �nding them, we
must examine all other atoms (with indices greater than or less than i and j respectively).
Also we have to discover the fate of any other atoms which were due to collide with i and
j , had these two not met each other �rst; for this it is su�cient to search only for partners
with (say) higher indices, as before. Apart from these, the information in our collision
lists is still quite valid. �e ‘update’ procedure is given in Code 3.7. Following this, the
smallest time in coltime is located, the particles are moved on, and the whole procedure
is repeated.

�e generalization of this program to the case of the square-well potential is straight-
forward. Now, for each pair, there are two distances at which ‘collisions’ occur, so the
algorithm for determining collision times is slightly more involved. Collisions at the
inner sphere obey normal hard-sphere dynamics. At the outer boundary, where a �nite
change in potential energy occurs, the change in momentum is determined by the usual
conservation laws. For molecules approaching each other, the potential energy drops
on crossing the boundary, and so the kinetic energy shows a corresponding increase. If
the molecules are within the well, and separating from each other as they approach the
boundary, two possibilities arise. If the total kinetic energy is su�cient, the molecules
cross the boundary with a loss inK to compensate the rise inV , and continue separating
more slowly. Alternatively, if K is insu�cient, re�ection at the outer boundary occurs:
the particles remain ‘bound’ within the a�ractive well, and start approaching each other
again.

We should mention one elegant approach to the model of a �exible chain of hard
spheres (Rapaport, 1978; 1979; Bellemans et al., 1980) which once more reduces the com-
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plexity of a polyatomic simulation to the level of a simple atomic simulation. In the
Rapaport model, the length of the bond between two adjacent atoms in the chain is not
�xed, but is constrained to lie between two values σ and σ + δσ . Interactions between
non-bonded atoms, and between atoms on di�erent polymer molecules, are of the usual
hard-sphere form. �e spherical atoms undergo free �ight between collisions that are of
the usual kind: in fact the ‘bonds’ are no more than extreme examples of the square-well
potential (with in�nite walls on both sides of the well). By choosing δσ to be small, the
bond lengths may be constrained as closely as desired, at the expense (of course) of there
being more ‘bond collisions’ per unit time. �e model can be extended so that we can
construct nearly rigid, as well as more complicated �exible molecules from the basic
building blocks (Chapela et al., 1984).

More complicated potentials involving several ‘steps’ can be treated in the same way; a
quite realistic potential can be constructed from a large number of vertical and horizontal
segments, but of course the simulation becomes more expensive as more ‘collisions’ have
to be dealt with per unit time (Chapela et al., 1984).

A further extension of the model, which preserves spherical symmetry, is the intro-
duction of roughness. Rough spheres (Subramanian and Davis, 1975; O’Dell and Berne,
1975), di�er from simple hard spheres only in their collision dynamics: the free-�ight
dynamics between collisions, and hence the techniques used to locate future collisions,
are identical. �ey are characterized by a moment of inertia, and carry an angular or
‘spin’ velocityω: the collision rules guarantee conservation of total energy, total linear
momentum, and total angular momentum of the colliding pair about an arbitrarily chosen
point. (We remind the reader, in passing, that periodic boundary conditions will destroy
the conservation law for the total angular momentum of the whole system; see Chapter 1).
A�empts have been made to introduce ‘partial roughness’ into the basic hard-sphere
model (Lyklema, 1979a,b) but we shall not discuss them here.

3.7.2 Hard non-spherical bodies

For any non-spherical rigid-body model, calculating the collision point for two molecules,
even in the case of free �ight between collisions, is numerically more taxing than simply
solving a quadratic equation. First, it is necessary to express the contact condition as a
function of the orientations and relative positions of each candidate pair of molecules.
�en, assuming free �ight, expressions for these, in terms of the individual momenta and
angular momenta, as well as the positions and orientations at the current time t , must be
obtained. In favourable cases, the equation will take the form Φ(ti j ; ri j (t ), ei (t ), ej (t )) = 0
at contact, with Φ > 0 applying when the particles do not overlap, and Φ < 0 indicating
that the particles do overlap. �is opens up the possibility of checking for overlap at
regular intervals δt ; on detecting overlap between a pair, it is possible to solve for the
collision time numerically, knowing that the root of the equation is bracketed within the
time interval: e�cient methods exist for doing this, particularly if the time derivative Φ̇ can
be wri�en down analytically (Press et al., 2007). If several collisions are predicted to occur,
then the earliest one is selected and dealt with; there may then be some recalculation
of future collisions, as in the case of hard spheres. �e method will miss a certain fraction
of collisions, if two particles enter and then leave the overlap region within the course of
one timestep. �is approach has been applied to a range of hard particles (Rebertus and



130 Molecular dynamics

Sando, 1977; Bellemans et al., 1980; Stra� et al., 1981; Allen and Imbierski, 1987; Allen
et al., 1989; 1993). It is also possible to extend the approach to handle models in which
there is never any overlap (Frenkel and Maguire, 1983; Allen and Cunningham, 1986),
and hybrid systems of hard cores plus so� a�ractive (or repulsive) potentials (McNeil and
Madden, 1982).

Checks on the working of a program which simulates hard molecular systems must
include tests of the basic conservation laws on collision, and periodic examination of the
con�guration for unphysical overlaps. It is also sensible to conduct preliminary runs for
any special cases of the molecular model (e.g. hard spheres) whose properties are well
known.

3.8 Constant-temperature molecular dynamics
�ite o�en, we wish to conduct md in the canonical ensemble, which means implementing
a thermostat of some kind. In this section, we describe some of the approaches in common
use, and discuss practical points in their implementation. Some of these approaches are
discussed in the review of Hünenberger (2005). For some of these algorithms, a formal
proof that they sample the desired ensemble requires ideas discussed in the next chapter,
such as Markov chains.

All the methods involve modifying the equations of motion, whether by introducing
stochastic terms or adding deterministic e�ects through constraints or additional dynami-
cal variables. �is naturally leads to the question: how will this a�ect the time correlation
functions and related dynamical properties? �e answer usually depends on the system
studied, and the parameters of the method; a study of most of the methods discussed in
this section (Basconi and Shirts, 2013) gives some guidance on this issue.

More seriously, the application of a thermostat does not guarantee that the system
is properly at equilibrium. �ere are some celebrated examples of di�erent degrees of
freedom apparently having di�erent temperatures (Harvey et al., 1998; Mor et al., 2008);
this is sometimes due to poor choice of thermostat parameters, and in some cases the
origins of the error are rather subtle (Eastwood et al., 2010).

3.8.1 Stochastic methods

A physical picture of a system corresponding to the canonical ensemble involves ‘stray
interactions’ between the molecules of the system and the particles of a heat bath at a
speci�ed temperature (Tolman, 1938). �is leads to a straightforward adaptation of the
md method due to Andersen (1980). At intervals, the velocity of a randomly selected
molecule is chosen afresh from the Maxwell–Boltzmann distribution (see Appendix E).
�is corresponds to a collision with an imaginary heat-bath particle. �e system follows
standard energy-conserving dynamics in between collisions, jumping between constant-
energy surfaces whenever a collision occurs. In this way, the system samples the canonical
ensemble.

In the original description of the method (Andersen, 1980) times between collisions
are chosen from a Poisson distribution with a speci�ed mean collision time, but this
detail does not a�ect the �nal phase-space distribution. A practical alternative, having
speci�ed a collision rate per particle, ν , is to refresh the velocity of every atom with
probability P = νδt at each timestep δt . If the collisions take place infrequently, energy
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�uctuations will occur slowly, but kinetic-energy (temperature) �uctuations will occur
much as they do in conventional md. If the collisions occur very frequently, then velocities
and kinetic-energy �uctuations are dominated by them, rather than by the deterministic
dynamics. Too high a collision rate will slow down the speed at which the molecules in
the system explore con�guration space, whereas too low a rate means that the canonical
distribution of energies will only be sampled slowly. If it is intended that the system mimic
a volume element in a liquid, in thermal contact with its surroundings, then Andersen
suggests

ν ∝ λT ρ
−1/3N −2/3

where λT is the thermal conductivity. Note that this decreases as the system size goes
up; in other words the overall rate of collisions in the whole system increases slowly,
Nν ∝ N 1/3. In suitable circumstances, the collisions have only a small e�ect on single-
particle time correlation functions (Haile and Gupta, 1983) but too high a collision rate
will lead to velocity correlation functions that decay exponentially in time (Evans and
Morriss, 1984a). Whether or not the dynamics are of interest, it is sensible to compare
the single-particle velocity autocorrelation functions with and without the thermostat,
to assess its impact on particle motion and hence (one aspect of) the e�ciency of phase
space exploration.

�e Andersen thermostat is simple to implement and requires no changes to the
dynamical algorithm. It is relatively straightforward to combine it with constraint algo-
rithms (Ryckaert and Cicco�i, 1986). For systems with strong intramolecular forces, such
as bond stretches, it does not introduce any extra concerns regarding ergodicity, and
indeed it may be quite e�ective at equilibrating such degrees of freedom. Variants exist,
in which all the particle velocities are resampled, or scaled up and down, simultaneously
(Andrea et al., 1983; Heyes, 1983b; Bussi et al., 2007), allowing a gentler perturbation of
the trajectories.

An alternative approach is the Langevin thermostat, which also mimics the coupling
of the system of interest to a thermal bath. Here, the equations of motion are modi�ed
in two ways: �rst, a ‘random force’ term is introduced: this is the stochastic element of
the algorithm. Second, a deterministic ‘frictional force’ is added, proportional to particle
velocities. �e strength of these terms, and the prescribed temperature, are connected
by the �uctuation–dissipation theorem. We discuss the Langevin equation in detail in
Section 12.2. It can also be very e�ective in equilibrating sti� degrees of freedom, although
the same care should be taken in choosing the friction constant as for the collision
rate in the Andersen method. It is obviously sensible to conduct some preliminary tests,
monitoring dynamical properties, to assess the e�ect of the thermostat.

A feature of the thermostats described so far is that they do not conserve the total
momentum of the system, and so are not Galilean-invariant: the equations of motion would
change if the underlying coordinate system were made to move at some constant velocity.
One minor consequence of this is that the number of degrees of freedom associated with
the velocities is д = 3N instead of д = 3(N − 1) as in the usual md ensemble. However,
this non-conservation may become problematic in the study of �uid �ow. To avoid this, a
momentum-conserving ‘pairwise’ stochastic thermostat was proposed by Lowe (1999).
It extends the idea of Andersen (1980), and is usually referred to as the Lowe–Andersen
thermostat. At each timestep δt , a�er advancing the positions and momenta in the usual
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way, with a conventional velocity Verlet algorithm, pairs ij are examined in random order.
For each pair, with probability P = νδt , the momenta are updated in a conservative way

p′i = pi + δpi j , p′j = pj − δpi j ,

δpi j =
1
2m

[
ζi j

√
2kBT /m − (vi j · r̂i j )

]
r̂i j

where ζi j is a Gaussian random variable, with zero mean and unit variance. Just as in
the Andersen case, the parameter ν a�ects the properties of the �uid: high (low) ν gives
strong (weak) T control, and high (low) viscosity. Usually, the list of pairs would be
restricted to those lying within a prede�ned separation of each other. �e probability of
selecting a given pair may include a separation-dependent weight function. �e algorithm
for selecting pairs in a random order is discussed in Appendix E.6. �is thermostat was
originally proposed as an alternative to the dissipative particle dynamics (dpd) method
discussed in Section 12.4. �e dpd algorithm itself may be used as a thermostat, being
essentially a pairwise version of the Langevin equation.

3.8.2 Deterministic methods

Starting with a few key papers in the early 1980s (Andersen, 1980; Hoover et al., 1982;
Evans, 1983; Nosé, 1984), there has been a tremendous amount of work on developing
deterministic md algorithms for sampling at constant temperature and pressure. In most
cases, the process involves establishing modi�ed equations of motion, for which the desired
distribution is a stationary solution, usually assumed to be the equilibrium solution. �e
next stage is to develop a stable numerical algorithm to integrate these equations. As
we have seen, a Liouville-operator-spli�ing approach is very a�ractive, since it provides
such a direct link between the formal theory of the dynamics, and the numerical method.
However, the situation is complicated because o�en the equations are not Hamiltonian,
and do not have a symplectic structure. �is has stimulated interest in the statistical
mechanics of non-Hamiltonian systems (Tuckerman et al., 1999; 2001), as well as schemes
for transforming the dynamical equations into a Hamiltonian form (Bond et al., 1999)
which may be treated in the conventional way.

Controlling the temperature deterministically is most crudely done, within the md
algorithm, by rescaling the velocities at each step by a factor

√
T /T where T is the

current kinetic temperature and T is the desired thermodynamic temperature. �is is
be�er regarded as the solution of the isokinetic equations of motion derived using Gauss’
principle of least constraint (Hoover et al., 1982; Evans, 1983; Hoover, 1983b; Evans and
Morriss, 1984a)

ṙ = v = p/m (3.62a)
ṗ = f − ξ (r, p)p (3.62b)

ξ =
p · f/m
p · p/m

. (3.62c)

We adopt the usual shorthand, r ≡ {ri }, p · f/m ≡
∑

i pi · f i/mi =
∑

i vi · f i , etc. �e
formula for the ‘friction coe�cient’ ξ , which acts as a Lagrange multiplier enforcing
the constraint, guarantees that Ṫ = 0. (Note, however, that this term is not derived in
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the same way as those of Section 3.4). Evans and Morriss (1983b) have shown that the
ensemble distribution function is proportional to

δ (K (p) − K0)δ (P − P0) exp(−V (r)/kBT ) (3.63)

where K0 and P0 are the initial (and conserved) kinetic energy and total momentum,
respectively. Because of these four constraints, the connection between temperature and
kinetic energy is

kBT =
2K0
д
, where д = 3N − 4

for an atomic system in 3D. Because of the factorization of eqn (3.63) into p- and r-
dependent parts, we see that the con�gurational distribution is canonical. Incidentally,
although it is not obvious from eqn (3.63), the momentum distribution is still very close
to Maxwellian for a many-particle system, just as it is in the microcanonical ensemble.

What algorithm shall we use to solve eqn (3.62)? Based on the statistical mechanics
of non-Hamiltonian systems (Tuckerman et al., 1999; 2001), Minary et al. (2003) have
proposed a variety of algorithms and revisit the operator-spli�ing approach due to Zhang
(1997), which we describe here. �is uses the same kind of decomposition as eqn (3.18):
iL = iL1 + iL2. �e �rst component corresponds to the equations(

ṙ
ṗ

)
= iL1

(
r
p

)
= v ·

∂

∂r

(
r
p

)
=

(
v
0

)
and so advances the positions at constant momenta

U1 (t )r = exp
(
iL1t

)
r = r + v t ,

leaving p unchanged. �e second component corresponds to the equations(
ṙ
ṗ

)
= iL2

(
r
p

)
=

(
f − ξ (r, p)p

)
·
∂

∂p

(
r
p

)
=

(
0

f − ξ (r, p)p

)
.

�e equation for ṗ is exactly soluble: the positions r are �xed, so the forces f are constant,
as is the denominator in the de�nition of ξ . �e solution may be wri�en (Zhang, 1997;
Minary et al., 2003) in terms of two (related) functions of time

α (t ) = coshω0t + ξ0t
sinhω0t

ω0t
≈ 1 + ξ0t +

1
2

(
1 + 1

3ξ0t
)
ω2

0t
2,

β (t ) =
sinhω0t

ω0t
+ ξ0t

coshω0t − 1
ω2

0t
2 ≈ 1 + 1

2ξ0t +
1
6

(
1 + 1

4ξ0t
)
ω2

0t
2,

where the quantities
ω2

0 =
f · f/m
p · p/m

and ξ0 =
p · f/m
p · p/m

are evaluated at the start of the U2 propagation step. To avoid numerical inaccuracy at
small ω0t , the indicated expansions can be used. �e resulting propagator is

U2 (t )p = exp
(
iL2t

)
p =

p + β (t )f t
α (t )

,
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leaving r unchanged. �e propagators are combined in the familiar pa�ern

U (δt ) = exp(iLδt ) ≈ U2
(

1
2δt

)
U1

(
δt

)
U2

(
1
2δt

)
and this translates straightforwardly into the same kind of kick–dri�–kick code as the
velocity Verlet algorithm. �e result is (by design) time-reversible; since the U2 steps
exactly conserve the kinetic energy, so does the overall algorithm. Minary et al. (2003)
discuss multiple-timestep and constraint versions of the method. An extension to include
rigid body rotation has been presented by Terada and Kidera (2002). �ere is also a di�erent
approach, using a transformation into Hamiltonian form (De�mann and Morriss, 1996)
in which case the standard velocity Verlet method can be used.

A second way to treat the dynamics of a system in contact with a thermal bath is
to include one or more degrees of freedom which represent the reservoir, and carry
out a simulation of this ‘extended system’. Energy is allowed to �ow dynamically from
the reservoir to the system and back; the reservoir has a certain ‘thermal inertia’ Q
associated with it, and the whole technique is rather like controlling the volume of a
sample by using a piston (see Section 3.9). Nosé (1984) proposed a method for doing this,
based on a Hamiltonian for an extended system including an additional coordinate s , and
associated momentum ps , together with the prescribed temperature T as a parameter. He
demonstrated that the microcanonical equations of motion for the extended system would
generate a canonical distribution of the variables r and p/s . �is means that a slightly
awkward time scaling, which varies during the simulation, must be applied to convert
the results back to the physical set of variables r and p. Most commonly nowadays, the
modi�ed equations due to Hoover (1985) are used instead, and are generally referred to
as the Nosé–Hoover equations:

ṙ = p/m, ṗ = f − (pη/Q )p, (3.64a)
η̇ = pη/Q, ṗη = p · p/m − дkBT . (3.64b)

Here, T is the prescribed temperature and д the number of degrees of freedom; typically
д = 3N − 3. �e combination pη/Q = η̇ ≡ ξ may be recognized as a dynamical friction
coe�cient: its equation of motion drives it towards higher values if the system is too hot,
and lower (possibly negative) values if too cold.

It is important to realize that these equations are non-Hamiltonian. Nonetheless, they
do conserve an energy-like variable

H = K (p) +V (r) +
p2
η

2Q + дkBT η. (3.65)

�e variable η is only of interest inasmuch as it appears in this quantity, and hence can be
used to check the correct solution of the dynamics. �e stationary distribution is (Hoover,
1985; Nosé, 1991)

exp
(
−V (r)/kBT

)
exp

(
−K (p)/kBT

)
exp

(
−p2

η/2QkBT
)

that is, it is canonical, at temperature T , in the variables r, p.
�e operator-spli�ing approach, similar to that seen before, may be applied to the

Nosé–Hoover equations (Tuckerman et al., 1992; Martyna et al., 1996). Although they
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are non-Hamiltonian, it turns out to be possible to formulate such an algorithm so as to
conserve the appropriate invariant measure or phase space volume (Ishida and Kidera,
1998; Sergi and Ferrario, 2001; Legoll and Monneau, 2002; Ezra, 2006). Here we describe
one of these schemes. �e spli�ing is

iL = iL1 + iL2 + iL3 + iL4

where

iL1 = v ·
∂

∂r
, iL2 = f ·

∂

∂p
,

iL3 = ξ
∂

∂η
− ξp ·

∂

∂p
, iL4 =

(
p · p/m − дkBT

) ∂
∂pη
,

where again ξ = pη/Q . �e e�ect of each of the propagators is as follows (for simplicity
we only show the action on those coordinates and momenta that are changed):

U1 (t )r = exp(iL1t )r = r + v t
U2 (t )p = exp(iL2t )p = p + f t

U3 (t )

(
η
p

)
= exp(iL3t )

(
η
p

)
=

(
η + ξ t

p exp
(
−ξ t

))
U4 (t )pη = exp(iL4t )pη = pη +

(
p · p/m − дkBT

)
t .

Notice that the two parts of the iL3 operator commute with each other, so the order in
which the corresponding propagators are implemented is unimportant.

One simple approach (Martyna et al., 1996) is to split the propagator into non-thermostat
and thermostat parts, and further split each of these into its two components:

exp(iLδt ) = U (δt ) ≈ U3&4
(

1
2δt

)
U1&2

(
δt

)
U3&4

(
1
2δt

)
(3.66a)

U1&2
(
δt

)
= exp

(
(iL1 + iL2)δt

)
≈ U2

(
1
2δt

)
U1

(
δt

)
U2

(
1
2δt

)
(3.66b)

U3&4
(

1
2δt

)
= exp

(
(iL3 + iL4)

1
2δt

)
≈ U4

(
1
4δt

)
U3

(
1
2δt

)
U4

(
1
4δt

)
. (3.66c)

�e algorithm consists of a sequence of nine steps: the last three are just a repeat of
the �rst three, updating the thermostat variables, while the middle three are the usual
(constant-energy) velocity Verlet algorithm. However, this is not the only choice. A quite
reasonable alternative ordering (Itoh et al., 2013) is

U (δt ) ≈ U4
(

1
2δt

)
U3

(
1
2δt

)
U2

(
1
2δt

)
U1

(
δt

)
U2

(
1
2δt

)
U3

(
1
2δt

)
U4

(
1
2δt

)
(3.67)

and it is also possible to group the U4 step together with the central U1 step (since the
corresponding Liouville operators commute, they can both be implemented over the
full δt ). Itoh et al. (2013) have discussed the consequences of applying the component
parts in di�erent orders. As for the velocity Verlet algorithm, each individual step may be
expressed in exact form, which is easily translated into computer code, as illustrated in
Code 3.8.
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Code 3.8 Measure-preserving constant-NVT MD algorithm
�ese �les are provided online. �e program md_nvt_lj.f90 controls the simulation,
reads in the run parameters, implements an algorithm for the Nosé–Hoover equations,
and writes out the results. Routines in the �le md_lj_module.f90 (see Code 3.4) are
used for the forces, and various utility module routines (see Appendix A) handle
input/output and simulation averages.

! md_nvt_lj.f90
! Molecular dynamics , NVT ensemble
PROGRAM md_nvt_lj

It is also possible to use a di�erent spli�ing, for example (Ezra, 2006)

iL1 = v ·
(
∂

∂r
+ p
∂

∂pη

)
, iL2 = f ·

∂

∂p
,

iL3 = ξ
∂

∂η
− ξp ·

∂

∂p
, iL4 = −дkBT

∂

∂pη
.

Although this is not just a simple identi�cation of terms in the equations of motion, each
of the operators also preserves the key volume elements (Ezra, 2006). Finally, the list of
possible algorithms grows enormously once one considers the possibility of higher-order
decompositions (Ishida and Kidera, 1998).

�e thermal inertia Q governs the rate of �ow of energy between the physical system
and the reservoir: in the limit Q → ∞ we regain conventional md, while too low a value
will result in long-lived, weakly damped, oscillations of the energy. Q has units of energy
× time2. Rewriting eqn (3.64b) in the form

ξ̇ =
ṗη

Q
=
дkBT

Q

(
p · p/m
дkBT

− 1
)

shows that the combination Q/дkBT ≡ τ
2 gives the square of a characteristic timescale,

and Martyna et al. (1992) suggest matching τ , roughly, to the physical timescales of
motions in the system to achieve the most e�ective thermosta�ing. However, clearly
an empirical approach, varying Q and observing the e�ects on the system of interest, is
advisable.

A possible de�ciency of the Nosé–Hoover equations is their lack of ergodicity, or at
least very slow sampling of the full equilibrium distribution, under certain circumstances.
�is is dramatically clear for a single harmonic oscillator (Hoover, 1985), but can occur
for other small and/or sti� systems. A comparative example is the simulation of a single
butane molecule (D’Alessandro et al., 2002), where the simple Gaussian isokinetic method
is demonstrably be�er. To improve this situation, a ‘chain’ of thermosta�ing variables
may be introduced (Martyna et al., 1992). �e equations of motion for M such variables
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are wri�en

ṙ = p/m, (3.68a)

ṗ = f −
(pη1

Q1

)
p, (3.68b)

η̇j =
(pηj
Q j

)
, j = 1, . . . ,M, (3.68c)

ṗη1 = G1 −
(pη2

Q2

)
pη1 , (3.68d)

ṗηj = G j −

(pηj+1

Q j+1

)
pηj , j = 2, . . . ,M − 1, (3.68e)

ṗηM = GM , (3.68f)

where for brevity we have introduced the driving forces

G1 = G1 (p) = p · p/m − дkBT , (3.69a)

G j = G j (pηj−1 ) =
p2
ηj−1

Q j−1
− kBT , j > 1. (3.69b)

�e conserved quantity is now

H = K (p) +V (r) +
M∑
j=1

p2
ηj

2Q j
+ дkBT η1 +

M∑
j=2

kBT ηj . (3.70)

and the equilibrium distribution is

exp
(
−V (r)/kBT

)
exp

(
−K (p)/kBT

) M∏
j=1

exp
(
−p2

ηj /2Q jkBT
)
.

�e recommended thermostat masses re�ect the expected timescale τ of �uctuations in
the physical system: if we choose Q1 ≈ дkBTτ

2, then it is sensible to make Q j ≈ kBTτ
2,

for j = 2, . . . ,M . As before, some experimentation with these parameters is advisable.
�e additional variables add very li�le to the cost of the simulation, and can readily be

incorporated into the integration algorithm (Martyna et al., 1996). �e Liouville operator
contains terms iL1 and iL2 de�ned as before, plus modi�ed thermostat terms

iL3 =
M∑
j=1

ξ j
∂

∂ηj
− ξ1p ·

∂

∂p
, (3.71a)

iL4 =
M∑
j=1

iL4, j (3.71b)

iL4, j =




(
G j − ξ j+1pηj

)
∂

∂pηj
j < M

GM
∂

∂pηM
j = M

(3.71c)
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where, again for brevity, we introduce ξ j = pηj /Q j . �e propagator corresponding to iL3
acts in a similar way to before

U3 (t )ηj = exp(iL3t )ηj = ηj + ξ j t j = 1, . . . ,M (3.72a)

U3 (t )p = exp(iL3t )p = p exp
(
−ξ1t

)
. (3.72b)

All the di�erent operators in iL3 commute with each other (the variables ηj have no e�ect
on the other variables) so these updates can be conducted in any order. �e propagator
corresponding to each iL4, j is exactly soluble in each case. For the case j = M we have
simply

U4,M (t )pηM = exp(iL4t )pηM = pηM +GMt (3.73)
while for j < M

U4, j (t )pηj = exp(iL4t )pηj = pηj exp(−ξ j+1t ) +G jt

( 1 − exp(−ξ j+1t )

ξ j+1t

)
(3.74a)

≈ pηj exp(−ξ j+1t ) +G jt exp(−ξ j+1t/2). (3.74b)

Equation (3.74b) is an approximate form resulting from a further factorization of the
propagator, or by considering a Taylor expansion, which is recommended at small ξ j+1t
(Martyna et al., 1996). Finally, all these propagators may be put together as in eqns (3.66),
but with (3.66c) taking the form

U3&4
(

1
2δt

)
≈ U4,M

(
1
4δt

)
· · · U4,1

(
1
4δt

)
U3

(
1
2δt

)
U4,1

(
1
4δt

)
· · · U4,M

(
1
4δt

)
. (3.75)

Alternative pa�erns, based for instance on eqn (3.67), might also be possible. However, if
the chain momenta vary quickly, a higher-order method may be needed: Tuckerman et al.
(2006) recommend using a Suzuki–Yoshida decomposition of the thermostat propagator
(essentially a multiple-timestep scheme) and then factorize each part (for details, see
Tuckerman et al., 2006). �ere is no particular concern about the computational cost
of this part, since the expensive force evaluation happens only once. In any case, the
equations translate straightforwardly into computer code. Once more, alternative measure-
preserving spli�ings of the Liouville operator for Nosé–Hoover chains are possible (Ezra,
2006).

Nosé–Hoover chains provide a �exible approach to thermosta�ing, in which the
precise values of the inertia parameters Q j are not thought to be critical to ensuring
good sampling. However, this is clearly system-dependent, and a mixture of di�erent
types of molecule may require some thought to be given to these parameters. A further
option is to apply di�erent thermostat chains to di�erent species (to re�ect, for example,
their di�erent masses). Once more, the aim is to equilibrate all the degrees of freedom at
approximately the same rate; however, a poor or unlucky choice of parameters can give
rise to the artefacts mentioned at the start of Section 3.8: an observation of solvent and
solute having di�erent temperatures, for instance, might indicate a problem of this kind.

As mentioned, the Nosé–Hoover equations are not Hamiltonian, and hence do not
have a symplectic structure. An alternative to the approach of this section is to transform
the Nosé–Hoover equations, including reparameterizing the time variable, so as to give a
truly Hamiltonian form (Bond et al., 1999). In this case, a symplectic algorithm may be



Constant-temperature molecular dynamics 139

applied. �is is usually called the Nosé–Poincaré approach. It is possible to extend this
algorithm, as well, by using a chain of thermostats. �is is explained, along with a more
general discussion of the role of the thermal inertia, by Leimkuhler and Sweet (2004; 2005).
Okumura et al. (2007) have combined Nosé–Poincaré with the symplectic integrator for
rotational motion due to Miller et al. (2002). A method to improve conservation in both
Nosé–Hoover and Nosé–Poincaré dynamics has been proposed by Okumura et al. (2014).

Because of the way the momenta are scaled by the thermosta�ing, the Nosé–Hoover
equations are not Galilean-invariant, and they only conserve the total momentum if
it is set to zero initially. Actually, the situation is rather more complicated: if the total
momentum is not zero, the equations do not generate the canonical ensemble (Cho et
al., 1993). �e reasons for this are discussed in detail by Tuckerman et al. (2001); the
problem is not present for Nosé–Hoover chains (Martyna, 1994). In passing, we note that
a Galilean-invariant ‘pairwise’ analogue of the Nosé–Hoover thermostat has also been
derived (Allen and Schmid, 2007).

�ere are thermostats based on the con�gurational temperature (Braga and Travis,
2005; Travis and Braga, 2006; 2008; Pieprzyk et al., 2015), which are Galilean-invariant in
the absence of external forces. An example (Braga and Travis, 2005) is

ṙ = p/m +
pη

Q
f , ṗ = f , (3.76a)

η̇ =
pη

Q
, ṗη = ∇V · ∇V − kBT∇

2V . (3.76b)

An extra momentum pη appears, which is driven by the di�erence between two terms. �e
squared force ∇V · ∇V = f · f =

∑
iα f 2

iα , and the Laplacian ∇2V =
∑

iα ∂
2V/∂r 2

iα , are
sums over atoms and Cartesian components of the terms which appear in the de�nition of
the con�gurational temperature, eqn (2.56). Q as usual represents a thermostat mass, and
the desired temperature is T ; Braga and Travis (2005) show that the canonical ensemble
is generated by these equations and present an integration scheme based on Liouville
operator spli�ing.

Our �nal deterministic method for temperature control is the ‘weak coupling’ algo-
rithm of Berendsen et al. (1984), more usually termed the ‘Berendsen thermostat’. At each
timestep, momenta are scaled as follows

p′ = p

√
1 + δt

τ

( T
T
− 1

)
(3.77)

where τ is a preset time constant. �e aim is to make the temperature relax towards the
desired value, with the prescribed time constant. As pointed out by Hoover (1985), this
can be regarded as the solution of eqns (3.62a), (3.62b), with friction coe�cient given by

ξ =
1
2τ

(
1 − T

T

)
.

�is means that the equations of motion are no longer time-reversible. Also, the distribu-
tion is not canonical, and in fact depends on the parameter τ : an analysis due to Morishita
(2000) suggests that it tends to isokinetic as τ → 0 and microcanonical as τ → ∞. Hence,
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�uctuations in temperature can never be as large as those in the canonical ensemble. �e
Berendsen thermostat is quite widely used, but its non-canonical nature must be borne in
mind.

3.9 Constant-pressure molecular dynamics
To simulate a system at a prescribed pressure, it is inevitable that the system box must
change its volume. Andersen (1980) originally proposed a method which included V as
a dynamical variable, associated with an inertia, or ‘piston mass’,W , and an additional
potential-energy term PV . Equations of motion, employing reduced positional variables,
were obtained from a Lagrangian: there is a conserved, extended Hamiltonian, and the
trajectories were shown to sample the constant-NPH (isobaric–isoenthalpic) ensemble.
Combination with one of the thermostats of the previous section would generate the
isothermal–isobaric NPT ensemble.

�ese equations were reformulated in real-space variables by Hoover (1985; 1986),
Melchionna et al. (1993), and Martyna et al. (1994), amongst others. As discussed in detail
by Tuckerman et al. (2001), only the last formulation generates the correct ensemble in
all circumstances (although the others generate a closely related distribution, if the total
momentum is set to zero). �e NPT equations of Martyna et al. (1994), in d dimensions,
are

ṙ = p/m +
(pε
W

)
r, (3.78a)

ṗ = f − α
(pε
W

)
p −

(pη1

Q1

)
p, (3.78b)

V̇ = d
(pε
W

)
V or ε̇ =

pε
W
, (3.78c)

ṗε = dV (P ′ − P ) −
(pη′1
Q ′1

)
pε , (3.78d)

together with a thermosta�ing scheme which we will come to shortly. Here we have
introduced

α = 1 + d

д
= 1 + 1

N

where the last equation applies for a system with no constraints, when the number of
degrees of freedom is д = dN . In these equations, the positions and (in a consistent
way) the volume, are dynamically scaled by a factor depending on the new ‘momentum’
variable pε . �is corresponds to a ‘rate of strain’

ξε =
pε
W
= ε̇ =

d
dt ln

(
V 1/d

)
=

d
dt lnL,

where the strain is ε (t ) =
1
d

ln
(
V (t )

V (0)

)
= ln

(
L(t )

L(0)

)
,

if we specialize to the case of a cubic box withV = Ld . �ere is an associated ‘piston mass’
W , which can control the damping of the volume �uctuations; W has units of energy
× time2. �e driving force for pε is the di�erence between the desired pressure P and
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the instantaneous pressure. We de�ne this, purely for convenience in writing down the
algorithm,

P ′ = P + (d/д)p · p/m =
1
dV

(
αp · p/m − r · f

)
−
∂V

∂V
.

Note the inclusion of a (small) extra kinetic term; also, any explicit volume dependence
of the potential-energy function has been included. In the common case of periodic
boundaries with no external forces, the r · f term should be re-expressed as usual in a
translationally invariant form. Martyna et al. (1994) and Tuckerman (2010) discuss some
subtle dependencies of the conserved variables and distributions on the conservation, or
non-conservation, of total momentum.

Two Nosé–Hoover thermostat chains act on, respectively, the particle momenta and
the barostat:

η̇j =
pηj
Q j
, η̇′j =

pη′j
Q ′j
, j = 1, . . . ,M

ṗηj = G j −

(pηj+1

Q j+1

)
pηj , ṗη′j = G

′
j −

(pη′j+1

Q ′j+1

)
pη′j , j = 1, . . . ,M − 1

ṗηM = GM , ṗη′M = G
′
M .

�e thermostat driving forces G j are given by eqns (3.69), and the G ′j terms are similarly
given by

G ′1 = G
′
1 (pε ) =

p2
ε

W
− kBT , (3.79a)

G ′j = G
′
j (pη′j−1

) =
p2
η′j−1

Q ′j−1
− kBT , j > 1. (3.79b)

�e thermostat massesQ j andQ ′j are chosen along the same lines as discussed previously; it
is recommended to use two di�erent thermostats, because the natural timescales associated
with particle motions and volume �uctuations may be signi�cantly di�erent.

�e equations of this section conserve the energy-like function

H = K (p) +V (r) + PV +
p2
ε

2W +

M∑
j=1

*.
,

p2
ηj

2Q j
+

p2
η′j

2Q ′j
+ kBTη

′
j
+/
-
+ дkBTη1 +

M∑
j=2

kBTηj .

�ey correctly generate the isothermal–isobaric distribution for r, p, and V , multiplied
by Gaussian distributions in the physically uninteresting variables pε , pηj and pη′j . If the
thermosta�ing is completely removed, the scheme generates the constant-NPH ensemble,
apart from the small �uctuating term p2

ε/2W .
An integration scheme for these equations of motion was originally proposed by

Martyna et al. (1996), but did not satisfactorily conserve the appropriate measure. A
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corrected scheme has been presented by Tuckerman et al. (2006). Consider the following
operator spli�ing

iL = iL1 + iL′1 + iL2 + iL′2 + iL3 + iL′3 + iL4 + iL′4.

�e �rst four operators act on the particle coordinates and volume:

iL1 = (v + ξε r) ·
∂

∂r
, iL′1 = ξε

∂

∂ε
,

iL2 = (f − αξεp) ·
∂

∂p
, iL′2 = (P ′ − P )V

∂

∂pε
,

where, for short, v = p/m (not equal to ṙ, note) and ξε = pε/W . �e remaining con-
tributions are the thermostats. iL3 and iL4 are de�ned as in eqn (3.71), while iL′3 and
iL′4 are de�ned in exactly the same way, in terms of the primed variables η′j , pη′j , G

′
j ,

etc. �e propagators are nested together in exactly the same manner as eqn (3.66), with
the thermostat parts U3&4

(
1
2δt

)
on the ‘outside’ and the particle parts U1&2 (δt ) on the

‘inside’. Consider U3&4 �rst. �e two thermostat chains are independent of each other
(the corresponding Liouville operators commute), so each can be updated separately, and
the order does not ma�er. As in the case of NVT Nosé–Hoover chains, eqn (3.75), the
U4,M propagator is outermost, and we count inwards to U4,1, updating each thermostat
momentum pηj according to eqns (3.73), (3.74). �e U ′4 propagator acts similarly on the
pη′j . For the innermost thermostat stage, U3 acts on the variables ηj and the momenta p
according to eqn (3.72), and U ′3 acts on η′j and pε according to

U ′3 (t )η
′
j = exp(iL′3t )η′j = η′j + ξ ′j t j = 1, . . . ,M, (3.80a)

U ′3 (t )pε = exp(iL′3t )pε = pε exp
(
−ξ ′1t

)
. (3.80b)

Once more, depending on the speed of the thermostat variables, it is possible to use a
Suzuki–Yoshida decomposition (Tuckerman et al., 2006) to improve the accuracy. �is is
more critical for the particle thermostats, since the box volume typically evolves much
more slowly, and the corresponding thermostat will ideally match this timescale.

Now we turn to the inner, particle and volume, propagator, U1&2. �e two operators
iL1 and iL′1 commute, and so we may advance both the coordinates r and ε (and hence the
volume V ), without worrying about the order; both parts are exactly soluble:

U1 (t )r = r exp(ξεt ) + v t
exp(ξεt ) − 1

ξεt

U ′1 (t )ε = ε + ξε t .

As seen before, a Taylor expansion is advisable for small values of ξεt . �e two operators
iL2 and iL′2 do not commute (remember, ξε = pε/W , and the momenta p appear inside
P ′), but each part is exactly soluble; Tuckerman et al. (2006) write

U1&2 (δt ) ≈ U
′
2
(

1
2δt

)
U2

(
1
2δt

)
U1 (δt )U

′
1 (δt )U2

(
1
2δt

)
U ′2

(
1
2δt

)
,
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Code 3.9 Measure-preserving constant-NPT MD algorithm
�ese �les are provided online. �e program md_npt_lj.f90 controls the simulation,
reads in the run parameters, implements the algorithm of Tuckerman et al. (2006),
and writes out the results. Routines in the �le md_lj_module.f90 (see Code 3.4) are
used for the forces, and various utility module routines (see Appendix A) handle
input/output and simulation averages.

! md_npt_lj.f90
! Molecular dynamics , NPT ensemble
PROGRAM md_npt_lj

where

U2 (t )p = p exp(−αξεt ) + f t
1 − exp(−αξεt )

αξεt
(3.81a)

U ′2 (t )pε = pε + (P ′ − P )V t , (3.81b)

with the usual comment about Taylor expanding for small ξεt . Although the prescription
may seem lengthy, it is very easy to translate into computer code, as shown in Code 3.9.

All of these equations consider isotropic changes in the simulation box. An important
extension of this approach is to allow the box shape, as well as size, to vary. �is is vital
to allow the relaxation of stress, as well as crystal structure transformations in solid-
state simulations, and the relevant equations were originally formulated by Parrinello
and Rahman (1980; 1981; 1982) and further discussed by Nosé and Klein (1983). Measure-
preserving integrators for this case are discussed by Yu et al. (2010), who also describe
how to combine the algorithm with holonomic constraints. Fully �exible boxes are of
limited use in liquid state simulations, since they may become extremely thin in one or
more dimensions, in the absence of elastic restoring forces. However, when studying
liquid–solid coexistence in slab geometry (see Chapter 14) or bilayer membranes which
span the cross-section of the box, it may be important to allow anisotropic variations.
Sometimes, it is desired to hold the area in the xy-plane �xed, while prescribing a pressure
Pzz in the z-direction; a suitable algorithm for this is described by Romero-Bastida and
López-Rendón (2007). Ikeguchi (2004) has also discussed integrators for this case, and
other constant-P ensembles, as well as combining with algorithms for rotational motion.

As in the NVT case, there is an alternative to the non-Hamiltonian equations just
described. �e Nosé–Poincaré approach may also be applied to the isothermal–isobaric
ensemble (Sturgeon and Laird, 2000), and the resulting equations of motion are Hamil-
tonian in form. A con�gurational constant-pressure algorithm has also been proposed
(Braga and Travis, 2006).

A deterministic thermostat is not the only choice for performing simulations in the
constant-NPT ensemble. As an extreme alternative, one might combine Monte Carlo
volume moves (see Chapter 4), and the stochastic Andersen thermostat, with conventional
constant-NVE dynamics; this is actually a sensible idea for hard-sphere md, where the
simplicity of free-�ight motion is compromised by modifying the equations of motion.



144 Molecular dynamics

A less dramatic approach is to replace the Nosé–Hoover thermostat by the Andersen
thermostat, as originally proposed by Andersen (1980). �igley and Probert (2004) have
advocated using Langevin dynamics to thermostat constant-pressure simulations.

We note that equations of motion have been devised (Evans and Morriss, 1983a,b;
1984a) which constrain both the kinetic energy and the instantaneous (virial) pressure to
�xed values. �e ensemble is well de�ned, but it is not generally as useful as the constant-
NPT ensemble discussed in this section. Also, there is a ‘weak coupling’ barostat, which
relaxes the pressure towards a desired value, in the same way as the Berendsen thermostat
(Berendsen et al., 1984). �is is a widely available option in simulation packages, but the
user should be aware that the ensemble (just as for the thermostat) is not the isothermal–
isobaric one, and is not known.

3.10 Grand canonical molecular dynamics
In the grand canonical ensemble, the number of particles may vary, so it is natural to use a
Monte Carlo approach in which creation or destruction of a particle is one of the options.
We turn to this in Chapter 4. Is it possible to use md to sample states in this ensemble? One
can imagine a hybrid method, combining dynamical trajectories with particle creation and
destruction, although such moves would have a dramatic e�ect when they occurred. �ey
may be con�ned to a designated region of the simulation box (Papadopoulou et al., 1993),
and two such control regions may be used to generate a steady di�usive �ux (He�el�nger
and van Swol, 1994).

Pure md simulation of systems in this ensemble rely on extending it to allow con-
tinuous variation of N in some way, and writing down a corresponding Lagrangian
and Hamiltonian (Çağin and Pe�i�, 1991a,b; Weerasinghe and Pe�i�, 1994; Palmer and
Lo, 1994; Lo and Palmer, 1995; Lynch and Pe�i�, 1997; Boinepalli and A�ard, 2003). �e
most recent version of this kind (Eslami and Müller-Plathe, 2007) uses a scaling variable
0 ≤ ν ≤ 1 for one of the particles in the system: this variable a�ects both the mass and the
interaction potential of the particle with the rest of the system. An equation of motion is
developed for ν . Whenever ν approaches 0, the scaled particle is deleted, a new particle is
chosen to be the scaled particle with ν = 1, and N is replaced by N −1. When ν approaches
1, the scaled particle is converted into a regular particle, N is replaced by N + 1, and a new
scaled particle with ν = 0 is created at a random location in space. Although the method
has been tested on model systems such as Lennard-Jones atoms and water (Eslami and
Müller-Plathe, 2007) it is not widely used.

We mention in passing the simpler approach of actually including a particle reservoir
in the simulation, allowing physical transfer into and out of the sub-system of interest.
Otherwise, the simulation algorithm is conventional md; the method has been applied to
the study of con�ned systems (Gao et al., 1997a,b). Potential drawbacks are the expense
of simulating a relatively large reservoir, which is not itself of interest, or the hysteresis
that may a�ect transfer of particles between reservoir and sub-system, depending on the
geometry. �e chemical potential is controlled indirectly by adjusting the thermodynamic
state of the reservoir in some way. Recently, it has been suggested to combine this with
a coarse-grained model of the particles in the reservoir (Wang et al., 2013; Perego et al.,
2015); this general type of ‘adaptive resolution’ simulation is discussed in Chapter 12.
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3.11 Molecular dynamics of polarizable systems
We have already discussed the inclusion of polarization in the molecular model, via induced
atomic dipoles, in Section 1.3.3. How is this handled, in practice, in an md simulation? A
useful summary of models and methods is given by Rick and Stuart (2003).

Souaille et al. (2009) have described an implementation of the induced atomic dipole
model, with �ole screening. �e traditional approach is to iterate the self-consistent
equations (1.20) until a convergence criterion is met. A typical scheme sets

[
∆µaγ

]n+1
= (1 − ω)

[
∆µaγ

]n
+ ωαaαγ

(
Eaα +

∑
b,a

Tα β
[
∆µbβ

]n)
,

where [· · · ]n indicates iteration number n. �is procedure is carried out every step; the
iterations begin with the values of µa obtained in the previous step. Souaille et al. (2009)
give ω = 0.7 as a typical mixing factor.

An alternative approach was pioneered by Sprik and Klein (1988) in connection with a
polarizable water model. It is based on the idea of relaxing degrees of freedom through an
extended Lagrangian formalism, as originally applied by Car and Parrinello to electronic
structure (this will be discussed in Section 13.2). �e dipoles µa are added as dynamical
variables alongside the atomic coordinates, and are given momenta pµa = mµa µ̇a . An
additional, �ctitious, kinetic-energy term appears in the Hamiltonian∑

a

���pµa
���
2
/mµa ,

along with the electrostatic potential terms, which also depend on the µa . �e extended
equations of motion are solved by standard algorithms, in which the dipole momenta
have a Nosé–Hoover thermostat applied to keep their temperature extremely low (of
order 1 K). �e idea is that the dynamics keeps all the dipole values very close to the
values that they would have by minimizing the corresponding potential energy, which
are in turn the values given by the self-consistent equations (1.20). Of course, in principle,
maintaining their temperature at a low value is not su�cient: energy will tend to �ow
into the dipoles from the other degrees of freedom, as the system is not at equilibrium. To
prevent this, there needs to be only weak coupling between the dipolar variables and the
nuclear motion. �e �ctitious masses are chosen to make this the case, in other words,
to guarantee a time scale separation. Souaille et al. (2009) report the extended dynamics
method to be an order of magnitude faster than solving the self-consistent equations,
while being just as accurate, for a test using a polarizable water potential.

�e induced atomic dipole approach is not the only way of introducing polarization.
�e charges themselves may be allowed to vary, without introducing any more variables.
�e underlying idea of �uctuating charges is underpinned by the idea of electronegativity
equalization, which arises from minimization of the electrostatic energy with respect to
variation of the charges, subject to constraints on the total charge on various molecules
or ions. Instead of treating this as a minimization problem, however, the charges may
be taken as dynamical variables, in an extended Lagrangian formalism (Rick et al., 1994),
similar to the scheme described earlier. �ey are given a �ctitious kinetic energy, and a
self-energy potential term controls their �uctuations; electroneutrality is imposed through
Lagrangian constraints.
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Wilson and Madden (1993) describe a combination of approaches, in the spirit of Sprik
and Klein (1988), involving additional charges which are allowed to vary so as to represent
multipoles. Each multipole is represented as a set of variable charges located on a �xed
framework rather than as a point entity: for example, a dipole would be represented by a
pair of charges separated by a vector of �xed length. Once more, an extended Lagrangian
is introduced; the rotation of the charge framework, as well as the �uctuation of the
charges, is handled by the dynamical equations.

Models of the shell or Drude type involve allowing the separation of charges to vary,
under the in�uence of a ‘spring’ potential, while the charges themselves are �xed. In
the limit of strong springs (i.e. small separations) and correspondingly high charges, this
becomes identical to the point induced dipole approach. Once more, the problem may be
treated on the computer by iterative minimization or dynamically; in the la�er case, the
degrees of freedom are conventional ‘mechanical’ quantities (bond lengths and masses),
but the same ideas apply as in the extended Lagrangian methods. For an early example
see Mitchell and Fincham (1993), and for a recent review see Lamoureux and Roux (2003).
A simple version of this, the charge-on-spring model (Straatsma and McCammon, 1990),
has been implemented in the Groningen molecular simulation (gromos) package (Yu
and van Gunsteren, 2005). �ere is a considerable literature on developing polarizable
force �elds (see e.g. Halgren and Damm, 2001; Rick and Stuart, 2003; Warshel et al., 2007;
Baker, 2015). �ey are widely implemented in a range of simulation packages.



4
Monte Carlo methods

4.1 Introduction
�e Monte Carlo method was �rst developed by von Neumann, Ulam, and Metropolis at
the end of the Second World War to study the di�usion of neutrons in �ssionable material.
�e name ‘Monte Carlo’, coined by Metropolis in 1947 and used in the title of a paper
describing the early work at Los Alamos (Metropolis and Ulam, 1949), derives from the
extensive use of random numbers in the approach.

�e method is based on the idea that a determinate mathematical problem can be
treated by �nding a probabilistic analogue which is then solved by a stochastic sampling
experiment (von Neumann and Ulam, 1945). For example, the con�gurational energy of
a liquid can be calculated by solving the coupled equations of motion of the atoms and
averaging over time. Alternatively, one can set up an ensemble of states of the liquid,
choosing individual states with the appropriate probability, and calculating the con�gura-
tional energy by averaging uniformly over the ensemble. �ese sampling experiments
involve the generation of random numbers followed by a limited number of arithmetic
and logical operations, which are o�en the same at each step. �ese are tasks that are
well suited to a computer and the growth in the importance of the method can be linked
to the rapid development of these machines. �e arrival of the maniac computer at Los
Alamos in 1952 prompted the study of the many-body problem by Metropolis et al. (1953)
and the development of the Metropolis Monte Carlo method (Wood, 1986), which is the
subject of this chapter. Today, the Monte Carlo method is widely applied in all branches
of the natural and social sciences and is, arguably, ‘the most powerful and commonly
used technique for analysing complex problems’ (Rubinstein, 1981).

4.2 Monte Carlo integration
As outlined in Chapter 2, the Metropolis Monte Carlo method aims to generate a trajectory
in phase space which samples from a chosen statistical ensemble. �ere are several
di�culties involved in devising such a prescription and making it work for a system of
molecules in a liquid. So we take care to introduce the Monte Carlo method with a simple
example.

Consider the problem of �nding the volume,V , of the solid bounded by the coordinate
axes, and the planes z = 1 + y and 2x + y = 2. �is is the volume below the dark-grey

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
© M. P. Allen and D. J. Tildesley 2017. Published in 2017 by Oxford University Press.
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Fig. 4.1 �e solid volumeV , below the dark-grey triangle and above the light-grey triangle can be
evaluated from the integral in eqn (4.1).

triangle in Fig. 4.1. �e volume is exactly given by

V =

∫ 1

0
dx

∫ 2−2x

0
dy (1 + y ) = 5

3 . (4.1)

Here we consider two simple Monte Carlo methods to evaluate it numerically.

4.2.1 Hit and miss

In a Monte Carlo evaluation of the integral, the volume of interest,V , would be surrounded
by a sampling region of a simple geometry whose volume is known. In this case we choose
the rectangular box of volume V0 = 6 indicated by the dashed lines in Fig. 4.1. A random
position is chosen within the rectangular box rτ = (xτ ,yτ , zτ ); this is a shot, τ . If this shot
is within the required volume, V , it is a hit. If a total of τshot shots are �red and τhit hits
scored then

V =
V0 τhit
τshot

. (4.2)

�e key to this method is the generation of 3τshot random numbers from a uniform distri-
bution. A sample program to perform this integration is given in Code 4.1. RANDOM_SEED()
and RANDOM_NUMBER() are built-in Fortran functions for generating uniform random num-
bers on (0, 1). Random number generators are discussed brie�y in Appendix E.

4.2.2 Sample mean integration

Hit-and-miss integration is conceptually easy to understand but the sample mean method
is more generally applicable and o�ers a more accurate estimate for most integrals
(Hammersley and Handscomb, 1964; Rubinstein, 1981). In this case the integral of interest

F =

∫ x2

x1

dx f (x ) (4.3)

is rewri�en as
F =

∫ x2

x1

dx
(
f (x )

ρ (x )

)
ρ (x ) (4.4)
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Code 4.1 Hit-and-miss integration
�is program is also available online in the �le hit_and_miss.f90.

PROGRAM hit_and_miss
USE , INTRINSIC :: iso_fortran_env , ONLY : output_unit
IMPLICIT NONE
REAL :: v
REAL , DIMENSION (3) :: r, zeta
REAL , DIMENSION (3), PARAMETER :: r_0 = [1.0, 2.0, 3.0]
REAL , PARAMETER :: v_0 = PRODUCT(r_0)
INTEGER :: tau , tau_shot , tau_hit

CALL RANDOM_SEED ()
tau_hit = 0
tau_shot = 1000000

DO tau = 1, tau_shot
CALL RANDOM_NUMBER ( zeta (:) ) ! uniform in range (0,1)
r = zeta * r_0 ! uniform in v_0
IF ( r(2) < ( 2.0 - 2.0*r(1) ) .AND. &

& r(3) < ( 1.0 + r(2) ) ) THEN ! in polyhedron
tau_hit = tau_hit + 1

END IF
END DO
v = v_0 * REAL ( tau_hit ) / REAL ( tau_shot )
WRITE (UNIT=output_unit ,FMT='(a,f10.5)') 'Estimate␣=␣', v

END PROGRAM hit_and_miss

where ρ (x ) is an arbitrary probability density function. Consider performing a number of
trials τ , each consisting of choosing a random number ζτ , from the distribution ρ (x ) in
the range (x1, x2). �en

F =

〈
f (ζτ )

ρ (ζτ )

〉
trials

(4.5)

where the brackets represent an average over all trials. A simple application would be to
choose ρ (x ) to be uniform, that is,

ρ (x ) =
1

(x2 − x1)
x1 ≤ x ≤ x2 (4.6)

and then the integral F can be estimated as

F ≈
(x2 − x1)

τmax

τmax∑
τ=1

f (ζτ ). (4.7)
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Code 4.2 Sample mean integration
�is program is also available online in the �le sample_mean.f90.

PROGRAM sample_mean
IMPLICIT NONE
REAL :: v, f
REAL , DIMENSION (2) :: r, zeta
REAL , DIMENSION (2), PARAMETER :: r_0 = [1.0, 2.0]
REAL , PARAMETER :: a_0 = PRODUCT(r_0)
INTEGER :: tau , tau_max

CALL RANDOM_SEED ()
tau_max = 1000000

f = 0.0
DO tau = 1, tau_max

CALL RANDOM_NUMBER ( zeta ) ! uniform in (0,1)
r = zeta * r_0 ! uniform in xy rectangle
IF ( r(2) < 2.0 -2.0*r(1) ) THEN ! in xy triangle

f = f + ( 1.0 + r(2) ) ! value of z
END IF

END DO
v = a_0 * f / REAL ( tau_max )
WRITE (UNIT=output_unit ,FMT='(a,f10.5)') 'Estimate␣=␣', v

END PROGRAM sample_mean

�e method can be readily generalized to multiple integrals. A Monte Carlo sample mean
evaluation of the volume in Fig. 4.1 can be performed with the program in Code 4.2. In
this case, the integration is carried out by selecting points in a rectangle in the xy plane.
�e function f to be summed is zero if the points lie outside the light-grey triangle, and
equal to z = 1 + y inside. �e sample mean method can be used to calculate many of
the multiple integrals of liquid state theory, for example the long-range correction to the
three-body potential energy in eqn (2.149).

4.2.3 A direct evaluation of the partition function?

For the multidimensional integrals of statistical mechanics, the sample mean method, with
a suitable choice of ρ (x ), is the only sensible solution. To understand this, we consider
the evaluation of the con�gurational integral ZNVT =

∫
dr exp(−βV ), eqn (2.26), for a

system of, say, N = 100 molecules in a cube of side L. �e sample mean approach to this
integral, using a uniform distribution could involve the following trials:
(a) pick a point at random in the 300-dimensional con�guration space, by generating

300 random numbers, on (− 1
2L,

1
2L), which, taken in triplets, specify the coordinates

of each molecule;



Importance sampling 151

(b) calculate the potential energy,V (τ ), and hence the Boltzmann factor for this con�g-
uration.

�is procedure is repeated for many trials and the con�gurational integral is estimated
using

ZNVT ≈
V N

τmax

τmax∑
τ=1

exp
(
−βV (τ )

)
. (4.8)

In principle, the number of trials τmax may be increased until ZNVT is estimated to the
desired accuracy. Unfortunately, a large number of the trials would give a very small
contribution to the average. In such a random con�guration, molecules would overlap,
V (τ ) would be large and positive, and the Boltzmann factor vanishingly small. An accurate
estimation ofZNVT for a dense liquid using a uniform sample mean method is not possible,
although methods of this type have been used to examine the structural properties of the
hard-sphere �uid at low densities (Alder et al., 1955). �e di�culties in the calculation of
ZNVT apply equally to the calculation of ensemble averages such as

〈
A

〉
NVT

=

∫
drA exp

(
−βV

)
∫

dr exp
(
−βV

) ≈

∑τmax
τ=1 A (τ ) exp

(
−βV (τ )

)
∑τmax
τ=1 exp

(
−βV (τ )

) , (4.9)

if we a�empt to estimate the numerator and denominator separately by using the uniform
sample mean method. However, at realistic liquid densities the problem might be solved
using a sample mean integration where the random coordinates are chosen from a non-
uniform distribution. �is method of ‘importance sampling’ is discussed in the next
section.

4.3 Importance sampling
Importance sampling techniques choose random numbers from a distribution ρ (x ), which
allows the function evaluation to be concentrated in the regions of space that make
important contributions to the integral. Consider the canonical ensemble. In this case the
desired integral is

〈A〉 =

∫
dΓρNVT (Γ)A (Γ)

that is, the integrand is f = ρNVTA. By sampling con�gurations at random, from a
chosen distribution ρ (Γ) we can estimate the integral as

〈A〉NVT = 〈A ρNVT /ρ〉trials. (4.10)

For most functions A (Γ), the integrand will be signi�cant where ρNVT (Γ) is signi�cant.
In these cases choosing ρ (Γ) = ρNVT (Γ) should give a good estimate of the integral. In
this case

〈A〉NVT = 〈A〉trials. (4.11)
(�is is not always the best choice, and sometimes we choose alternative distributions
ρ (Γ); see Section 9.2.3.)

Such a method, with ρ (Γ) = ρNVT (Γ) was originally developed by Metropolis et al.
(1953). �e problem is not solved, simply rephrased. �e di�cult job is �nding a method
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of generating a sequence of random states so that by the end of the simulation each state
has occurred with the appropriate probability. It turns out that it is possible to do this
without ever calculating the normalizing factor for ρNVT , that is, the partition function
(see eqns (2.11)–(2.13)).

�e solution is to set up a Markov chain of states of the liquid, which is constructed
so that it has a limiting distribution of ρNVT (Γ). A Markov chain is a sequence of trials
that satis�es two conditions:
(a) �e outcome of each trial belongs to a �nite set of outcomes, {Γ1, Γ2, . . .}, called the

state space.
(b) �e outcome of each trial depends only on the outcome of the trial that immediately

precedes it.
Two such states Γm and Γn are linked by a transition probability πmn which is the

probability of going from statem to state n. �e properties of a Markov chain are best
illustrated with a simple example. Suppose the reliability of your computer follows a
certain pa�ern. If it is up and running on one day it has a 60 % chance of running correctly
on the next. If however, it is down, it has a 70 % chance of also being down the next day.
�e state space has two components, up (↑) and down (↓), and the transition matrix has
the form

π =

( ↑ ↓

↑ 0.6 0.4
↓ 0.3 0.7

)
. (4.12)

If the computer is equally likely to be up or down to begin with, then the initial probability
can be represented as a vector, which has the dimensions of the state space

ρ (1) =
( ↑ ↓

0.5 0.5
)
. (4.13)

�e probability that the computer is up on the second day is given by the matrix equation

ρ (2) = ρ (1)π = (0.45, 0.55) (4.14)

that is, there is a 45 % chance of running a program. �e next day would give

ρ (3) = ρ (2)π = ρ (1)ππ = ρ (1)π 2 = (0.435, 0.565), (4.15)

and a 43.5 % chance of success. If you are anxious to calculate your chances of running a
program in the long run, then the limiting distribution is given by

ρ = lim
τ→∞

ρ (1)πτ . (4.16)

A few applications of eqn (4.16) show that the result converges to ρ = (0.4286, 0.5714).
It is clear from eqn (4.16) that the limiting distribution, ρ, must satisfy the eigenvalue
equation

ρπ = ρ, or
∑
m

ρmπmn = ρn ∀n, (4.17)
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with eigenvalue unity. π is termed a stochastic matrix since its rows add to 1∑
n

πmn = 1 ∀m. (4.18)

It is the transition matrix for an irreducible Markov chain. (An irreducible or ergodic
chain is one where every state can eventually be reached from another state.) More
formally, we note that the Perron–Frobenius theorem (Chung, 1960; Feller, 1957) states
that an irreducible stochastic matrix has one le� eigenvalue which equals unity, and the
corresponding eigenvector is the limiting distribution of the chain. �e other eigenvalues
are less than unity and they govern the rate of convergence of the Markov chain. �e
limiting distribution, ρ, implied by the chain is quite independent of the initial condition
ρ (1) (in the long run, it ma�ers nothing if your computer is down today). In the case
of a liquid, we must construct a much larger transition matrix, which is stochastic and
ergodic (see Chapter 2). In contrast to the previous problem, the elements of the transition
matrix are unknown, but the limiting distribution of the chain is the vector with elements
ρm = ρNVT (Γm ) for each point Γm in phase space. It is possible to determine elements
of π which satisfy eqns (4.17) and (4.18) and thereby generate a phase space trajectory
in the canonical ensemble. We have considerable freedom in �nding an appropriate
transition matrix, with the crucial constraint that its elements can be speci�ed without
knowing QNVT . A useful trick in searching for a solution of eqn (4.17) is to replace it by
the unnecessarily strong condition of ‘microscopic reversibility’:

ρmπmn = ρnπnm . (4.19)

Summing over all statesm and making use of eqn (4.18) we regain eqn (4.17)∑
m

ρmπmn =
∑
m

ρnπnm = ρn
∑
m

πnm = ρn . (4.20)

A suitable scheme for constructing a phase space trajectory in the canonical ensemble
involves choosing a transition matrix which satis�es eqns (4.18) and (4.19) . �e �rst such
scheme was suggested by Metropolis et al. (1953) and is o�en known as the asymmetrical
solution. If the statesm and n are distinct, this solution considers two cases

πmn = αmn ρn ≥ ρm m , n (4.21a)
πmn = αmn (ρn/ρm ) ρn < ρm m , n. (4.21b)

It is also important to allow for the possibility that the liquid remains in the same state,

πmm = 1 −
∑
n,m

πmn . (4.21c)

In this solution α is a symmetrical stochastic matrix, αmn = αnm , o�en called the
underlying matrix of the Markov chain. �e symmetric properties of α can be used
to show that for the three cases (ρm = ρn , ρm < ρn , and ρm > ρn) the transition ma-
trix de�ned in eqn (4.21) satis�es eqns (4.18) and (4.19). It is worth stressing that it is
the symmetric property of α that is essential in satisfying microscopic reversibility in
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this case. Non-symmetrical α matrices which satisfy microscopic reversibility or just
the weaker condition, eqn (4.17), can be constructed but these are not part of the basic
Metropolis recipe (Owicki and Scheraga, 1977b). �ese cases are considered in more detail
in Chapter 9. �is Metropolis solution only involves the ratio ρn/ρm and is therefore
independent of QNVT which is not required to perform the simulations.

�ere are other solutions to eqns (4.18) and (4.19). �e symmetrical solution (Wood
and Jacobson, 1959; Flinn and McManus, 1961; Barker, 1965) is o�en referred to as Barker
sampling:

πmn = αmn ρn/(ρn + ρm ) m , n (4.22a)

πmm = 1 −
∑
n,m

πmn . (4.22b)

Equation (4.22) also satis�es the condition of microscopic reversibility.
If states of the �uid are generated using transition matrices such as eqns (4.21) and

(4.22), then a particular property, 〈A〉run, obtained by averaging over the τrun trials in the
Markov chain, is related to the average in the canonical ensemble (Chung, 1960; Wood,
1968b)

〈A〉NVT = 〈A〉run + O
(
τ−1/2

run
)
. (4.23)

As mentioned in Chapter 2, we usually restrict simulations to the con�gurational part of
phase space, calculate average con�gurational properties of the �uid, and add the ideal
gas parts a�er the simulation.

Since there are a number of suitable transition matrices, it is useful to choose a
particular solution which minimizes the variance in the estimate of 〈A〉run. Suitable
prescriptions for de�ning the variance in the mean, σ 2 (〈A〉run) are discussed in Chapter 8.
In particular, the statistical ine�ciency (Section 8.4.1)

s = lim
τrun→∞

τrunσ
2 (〈A〉run)/σ

2 (A) (4.24)

measures how slowly a run converges to its limiting value. Peskun (1973) has shown that
it is reasonable to order two transition matrices,

π1 ≤ π2 (4.25)

if each o�-diagonal element of π1 is less than the corresponding element in π2. If this is
the case, then

s (〈A〉 , π1) ≥ s (〈A〉 , π2) (4.26)

for any property A. If the o�-diagonal elements of π are large then the probability of
remaining in the same state is small and the sampling of phase space will be improved.
With the restriction that ρm and ρn are positive, eqns (4.21) and (4.22) show that the
Metropolis solution leads to a lower statistical ine�ciency of the mean than the Barker
solution.

Valleau and Whi�ington (1977b) stress that a low statistical ine�ciency is not the only
criterion for choosing a particularπ . Since the simulations are of �nite length, it is essential
that the Markov chain samples a representative portion of phase space in a reasonable
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R

δrmax

i

Fig. 4.2 State n is obtained from statem by moving atom i with a uniform probability to any point
in the shaded region R.

number of moves. All the results derived in this section depend on the ergodicity of the
chain (i.e. that there is some non-zero multi-step transition probability of moving between
any two allowed states of the �uid). If these allowed states are not connected, the mc
run may produce a low s but in addition a poor estimate of the canonical average. When
the path between two allowed regions of phase space is di�cult to �nd, the situation is
described as a bo�leneck. �ese bo�lenecks are always a worry in mc simulations but
are particularly troublesome in the simulation of two-phase coexistence (Lee et al., 1974),
in the simulation of phase transitions (Evans et al., 1984), and in simulations of ordinary
liquids at unusually high density.

Where a comparison has been made between the two common solutions to the
transition matrix, eqns (4.21) and (4.22), the Metropolis solution appears to lead to a
faster convergence of the chain (Valleau and Whi�ington, 1977b). �e Metropolis method
becomes more favourable as the number of available states at a given step increases and
as the energy di�erence between the states increases. (For two-state problems such as
the Ising model the symmetric algorithm may be favourable (Cunningham and Meijer,
1976).) In the next section we describe the implementation of the asymmetric solution.

4.4 �e Metropolis method
To implement the Metropolis solution to the transition matrix, it is necessary to specify
the underlying stochastic matrix α . �is matrix is designed to take the system from state
m into any one of its neighbouring states n. In this chapter, we normally consider the use
of a symmetric underlying matrix, that is, αmn = αnm . A useful but arbitrary de�nition of
a neighbouring state is illustrated in Fig. 4.2. �is diagram shows six atoms in a state m;
to construct a neighbouring state n, one atom (i) is chosen at random and displaced from
its position rmi with equal probability to any point rni inside the square R. �is square is
of side 2δrmax and is centred at rmi . In a three-dimensional example, R would be a small
cube. On the computer there is a large but �nite number of new positions, NR , for the
atom i and in this case αmn can be simply de�ned as

αmn =



1/NR rni ∈ R
0 rni < R .

(4.27)
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rmi rni

(a) m

rmi rni

(b) n

Fig. 4.3 (a) State n is generated from statem by displacing atom i from rmi to rni (dashed circle).
(b) �e reverse move. To ensure microscopic reversibility, in the simple Metropolis method the
probabilities of a�empting the forward and reverse moves should be equal, αmn = αnm .

With this choice of α , eqn (4.21) is readily implemented. At the beginning of an mc move
an atom is picked at random and given a uniform random displacement along each of the
coordinate directions. �e maximum displacement, δrmax is an adjustable parameter that
governs the size of the region and controls the convergence of the Markov chain. �e
new position is obtained with the following code; dr_max is the maximum displacement
δrmax, and the simulation box has unit length.

REAL , DIMENSION(3,n) :: r
REAL , DIMENSION (3) :: ri, zeta

CALL RANDOM_NUMBER ( zeta ) ! uniform in range (0,1)
zeta = 2.0* zeta - 1.0 ! now in range (-1,+1)
ri(:) = r(:,i) + zeta * dr_max ! trial move to new position
ri(:) = ri(:) - ANINT ( ri(:) ) ! periodic boundaries

�e appropriate element of the transition matrix depends on the relative probabilities
of the initial state m and the �nal state n. �ere are two cases to consider. If δVnm =

Vn − Vm ≤ 0 then ρn ≥ ρm and eqn (4.21a) applies. If δVnm > 0 then ρn < ρm and
eqn (4.21b) applies. (�e symbolVm is used as a shorthand forV (Γm ).) �e next step in an
mc move is to determine δVnm . �e determination of δVnm does not require a complete
recalculation of the con�gurational energy of statem, just the changes associated with
the moving atom. For example (see Fig. 4.3), the change in potential energy is calculated
by computing the energy of atom i with all the other atoms before and a�er the move

δVnm =

( N∑
j=1

v(rni j ) −
N∑
j=1

v(rmij )

)
(4.28)

where the sum over the atoms excludes atom i . In calculating the change of energy,
the explicit interaction of atom i with all its neighbours out to a cuto� distance rc is
considered. �e contribution from atoms beyond the cuto� could be estimated using a
mean �eld correction (see Section 2.8), but in fact the correction for atom i in the old
and new positions is exactly the same in a homogeneous �uid, and does not need to be
included explicitly in the calculation of δVnm .
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0 δVnm δV

1

exp(−βδV )

ζ1accept

ζ2reject

Fig. 4.4 Accepting uphill moves in the mc simulation

If the move is downhill in energy δVnm ≤ 0, then the probability of state n is greater
than statem and the new con�guration is accepted. �e method of choosing trial moves
ensures that the transition probability πmn = αnm , the value required by eqn (4.21a).

If the move is uphill in energy δVnm > 0, then the move is accepted with a probability
ρn/ρm according to eqn (4.21b). Again the factor αmn is automatically included in making
the move. �is ratio can be readily expressed as the Boltzmann factor of the energy
di�erence:

ρn
ρm
=

Z−1
NVT exp

(
−βVn

)
Z−1
NVT exp

(
−βVm

) = exp
(
−βVn

)
exp

(
−βδVnm

)
exp

(
−βVn

) = exp
(
−βδVnm

)
. (4.29)

To accept a move with a probability of exp(−βδVnm ), a random number ζ is generated
uniformly on (0, 1). �e random number is compared with exp(−βδVnm ). If it is less than
exp(−βδVnm ) the move is accepted. �is procedure is illustrated in Fig. 4.4. During the
run, suppose that a particular uphill move, δVnm is a�empted. If at that point a random
number ζ1 is chosen (see Fig. 4.4), the move is accepted. If ζ2 is chosen the move is rejected.
Over the course of the run the net result is that energy changes such as δVnm are accepted
with a probability exp(−βδVnm ). If the uphill move is rejected, the system remains in
state m in accord with the �nite probability πmm of eqn (4.21c). In this case, the atom
is retained at its old position and the old con�guration is recounted as a new state in
the chain. �is procedure can be summarized by noting that we accept any move (uphill
or downhill) with probability min[1, exp(−βδVnm )], where the min function returns a
value equal to the minimum of its arguments (as does the Fortran function with the same
name).

A complete mc program for a �uid of Lennard-Jones atoms is given in Code 4.3. Here,
we show the typical code for the heart of the program, the acceptance and rejection of
moves. In this code, pot_old and pot_new are the potential energies of atom i summed
over all its neighbours j, as in eqn (4.28). We also expect that, in calculating pot_new,
a logical �ag overlap is set if a signi�cant molecular overlap is detected, that is, an
interaction with a very high potential energy, which may be regarded as in�nite for



158 Monte Carlo methods

Code 4.3 Monte Carlo NVT -ensemble for Lennard-Jones atoms
�ese �les are provided online. �e program mc_nvt_lj.f90 controls the simula-
tion, reads in the run parameters, selects moves, and writes out the results. It uses
the routines in mc_lj_module.f90 to evaluate the Lennard-Jones potential, and actu-
ally implement the moves, and utility modules (see Appendix A) for the Metropolis
function, input/output and simulation averages.

! mc_nvt_lj.f90
! Monte Carlo , NVT ensemble
PROGRAM mc_nvt_lj

! mc_lj_module.f90
! Energy and move routines for MC simulation , LJ potential
MODULE mc_module

practical purposes. We use this to guard against a trial move with a very large value of
δVnm which might cause under�ow problems in the computation of exp(−βδVnm ). �e
threshold should be high enough to guarantee that exp(−βδVnm ) is negligibly small at
the chosen temperature; an advantage of including this in the energy calculation is that
the program can immediately save time by se�ing the �ag and leaping out of the energy
loop.

IF ( .NOT. overlap ) THEN ! consider non -overlap only
delta = ( pot_new - pot_old ) / temperature
IF ( metropolis ( delta ) ) THEN ! accept metropolis

pot = pot + pot_new - pot_old ! update potential
r(:,i) = ri(:) ! update position
moves = moves + 1 ! update move counter

END IF ! reject metropolis test
END IF ! reject overlap without calculation

Here pot holds the total potential energy of the system,V , which changes by δVnm if
the move is accepted. �e metropolis function simply returns a .TRUE. or .FALSE. result,
using code like

REAL :: zeta
IF ( delta < 0.0 ) THEN ! downhill , accept

metropolis = .TRUE.
ELSE

CALL RANDOM_NUMBER ( zeta ) ! uniform in range (0,1)
metropolis = EXP(-delta) > zeta ! metropolis test

END IF

In the function referred to by the program of Code 4.3 and other online programs, we
include a further guard against under�ow.
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So far we have said li�le about the maximum allowed displacement of the atom,
δrmax, which governs the size of the trial move. If this parameter is too small then a large
fraction of moves are accepted but the phase space of the liquid is explored slowly, that
is, consecutive states are highly correlated. If δrmax is too large then nearly all the trial
moves are rejected and again there is li�le movement through phase space. In fact δrmax
is o�en adjusted during the simulation so that about half the trial moves are rejected.
�is adjustment can be handled automatically using code similar to the following, at
prede�ned intervals, for example, at the end of every sweep, assuming that move_ratio
is the ratio of accepted to a�empted moves during the sweep.

IF ( move_ratio > 0.55 ) THEN
dr_max = dr_max * 1.05

ELSE IF ( move_ratio < 0.45 ) THEN
dr_max = dr_max * 0.95

END IF

It is not clear that an acceptance ratio of 0.5 is optimum. A reported study of the parameter
δrmax (Wood and Jacobson, 1959) suggests that an acceptance ratio of only 0.1 maximizes
the root-mean-square displacement of atoms as a function of computer time. �e root-
mean-square displacement is one possible measure of the movement through phase space
and the work suggests that a small number of large moves is most cost-e�ective. Few
simulators would have the courage to reject nine out of ten moves on this limited evidence
and an acceptance ratio of 0.5 is still common. �is issue highlights a di�culty in assessing
particular simulation methods. �e work of Wood and Jacobson was performed on 32
hard spheres, at a particular packing fraction, on a �rst-generation computer. �ere is
no reason to believe that their results would be the same for a di�erent potential, at a
di�erent state point, on a di�erent machine. �e mc technique is time-consuming and
since most researchers are more interested in new results rather than methodology there
has been li�le work on the optimization of parameters such as δrmax and the choice of
transition matrix.

In the original Metropolis method one randomly chosen atom is moved to generate a
new state. �e underlying stochastic matrix can be changed so that several or all of the
atoms are moved simultaneously (Ree, 1970; Ceperley et al., 1977). δVnm is calculated
using a straightforward extension of eqn (4.28) and the move is accepted or rejected
using the normal criteria. Chapman and �irke (1985) have performed a simulation of
32 Lennard-Jones atoms at a typical liquid density and temperature. In this study, all 32
atoms were moved simultaneously, and an acceptance ratio of ≈ 30 % was obtained using
δrmax ≈ 0.3σ . Chapman and �irke found that equilibration (see Chapter 5) was achieved
more rapidly by employing multi-particle moves rather than single-particle moves. �e
relative e�ciency of multi-particle and single-particle moves, as measured by their ability
to sample phase space in a given amount of computer time, has not been subjected to
systematic study.

A common practice in mc simulation is to select the atoms to move sequentially
(i.e. in order of atom index) rather than randomly. �is cuts down on the amount of
random number generation and is an equally valid method of generating the correctly
weighted states (Hastings, 1970). �e length of an mc simulation is conveniently measured
in ‘cycles’; that is, N trial moves whether selected sequentially or randomly. �e computer
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Code 4.4 Monte Carlo of hard spheres
�ese �les are provided online. �e program mc_nvt_hs.f90 controls the simulation,
reads in the run parameters, selects moves, and writes out the results. It uses the
overlap routines in mc_hs_module.f90, and utility module routines (see Appendix A)
for input/output and simulation averages.

! mc_nvt_hs.f90
! Monte Carlo , NVT ensemble , hard spheres
PROGRAM mc_nvt_hs

! mc_hs_module.f90
! Overlap routines for MC simulation , hard spheres
MODULE mc_module

time involved in an mc cycle is comparable (although obviously not equivalent) to that in
an md timestep.

�e simulation of hard spheres is particularly easy using the mc method. �e same
Metropolis procedure is used, except that, in this case, the overlap of two spheres results
in an in�nite positive energy change and exp(−βδVnm ) = 0. All trial moves involving an
overlap are immediately rejected since exp(−βδVnm ) would be smaller than any random
number generated on (0, 1). Equally, all moves that do not involve overlap are immediately
accepted. As before in the case of a rejection, the old con�guration is recounted in the
average. As discussed in Section 2.4, one minor complication is that the pressure must be
calculated by a box-scaling (or related) method. An example program is given in Code 4.4.

�e importance sampling technique, as described, only generates states that make a
substantial contribution to ensemble averages such as the energy. In practice we cannot
sum over all the possible states of the �uid and so cannot calculate ZNVT . Consequently,
this is not a direct route to the ‘statistical’ properties of the �uid such as A, S , and µ.
In the canonical ensemble there are a number of ways around this problem, such as
thermodynamic integration and the particle insertion methods (see Section 2.4). It is
also possible to estimate the free energy di�erence between the simulated state and
a neighbouring state point, and a modi�cation of the sampled distribution, so-called
umbrella sampling or non-Boltzmann sampling can make this more e�cient. A process
of iterative re�nement may allow the simulation to sample a greatly extended range of
energies, and hence estimate the entropy. We return to these approaches in Chapter 9.
Alternatively the problem can be tackled at root by conducting simulations in the grand
canonical ensemble (Section 4.6), but as we shall see, this approach may have limited
application to dense liquids.

4.5 Isothermal–isobaric Monte Carlo
An advantage of the mc method is that it can be readily adapted to the calculation of
averages in any ensemble. Wood (1968a,b; 1970) �rst showed that the method could be
extended to the isothermal–isobaric ensemble. �is ensemble was introduced in Section 2.2,
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and in designing a simulation method we should recall that the number of molecules,
the temperature, and the pressure are �xed while the volume of the simulation box is
allowed to �uctuate. �e original constant-NPT simulations were performed on hard
spheres and disks, but McDonald (1969; 1972) extended the technique to cover continuous
potentials in his study of Lennard-Jones mixtures. �is ensemble was thought to be
particularly appropriate for simulating mixtures since experimental measurements of
excess properties are recorded at constant pressure and theories of mixing are o�en
formulated with this assumption. �e method has also been used in the simulation of
single-component �uids (Voronstov-Vel’Yaminov et al., 1970), and in the study of phase
transitions (Abraham, 1982). It is worth recalling that at constant N , P , T we should not
see two phases coexisting in the same simulation cell, a problem which bedevils the
simulation of phase transitions in the canonical ensemble.

In the constant-NPT ensemble the con�gurational average of a property A, is given
by

〈A〉NPT =

∫∞
0 dV exp(−βPV )V N

∫
dsA (s) exp

(
−βV (s)

)
ZNPT

. (4.30)

In eqn (4.30), ZNPT is the appropriate con�gurational integral eqn (2.30) and V is the
volume of the �uid. Note that in this equation we use a set of scaled coordinates, s =
(s1, s2, . . . sN ), where

s = L−1r. (4.31)

In this case the con�gurational integral in eqn (4.30) is over the 3N -dimensional unit
cube and the additional factor of V N comes from the volume element dr. (In this section
the simulation box is assumed to be a cube of side L = V −1/3; the arguments can be easily
extended to non-cubic boxes.)

�e Metropolis scheme is implemented by generating a Markov chain of states which
has a limiting distribution proportional to

exp
[
−β

(
PV +V (s)

)
+ N lnV

]

and the method used is a direct extension of the ideas discussed in Section 4.4.
A new state is generated by displacing a molecule randomly and/or making a random

volume change from Vm to Vn

sni = smi + δsmax (2ζ − 1) (4.32)
Vn = Vm + δVmax (2ζ − 1).

Here, as usual, ζ is a random number generated uniformly on (0, 1), while ζ is a vector
whose components are also uniform random numbers on (0, 1) and 1 is the vector (1, 1, 1).
δsmax and δVmax govern the maximum changes in the scaled coordinates of the particles,
and in the volume of the simulation box, respectively. �eir precise values will depend on
the state point studied and they are chosen to produce an acceptance ratio of 35 %–50 %
(McDonald, 1972). �ese values are initial guesses and can be automatically adjusted by
the program, although in this case there are two independent maximum displacements
and many di�erent combinations will produce a given acceptance ratio.
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Once the new state n has been produced the quantity δH is calculated,

δHnm = δVnm + P (Vn −Vm ) − N β−1 ln(Vn/Vm ). (4.33)

δHnm is closely related to the enthalpy change in moving from statem to staten. Moves are
accepted with a probability equal to min[1, exp(−βδHnm )] using the techniques discussed
in Section 4.4. A move may proceed with a change in particle position or a change in
volume or a combination of both.

Eppenga and Frenkel (1984) have pointed out that it may be more convenient to make
random changes in lnV rather than in V itself. A random number δ (lnV ) is chosen uni-
formly in some range [−δ (lnV )max,δ (lnV )max], the volume multiplied by exp[δ (lnV )]
and the molecular positions scaled accordingly. �e only change to the acceptance/rejec-
tion procedure is that the factor N in eqn (4.33) is replaced by N + 1.

One important di�erence between this ensemble and the canonical ensemble is that
when a move involves a change in volume, the density of the liquid changes. In this case
the long-range corrections to the energy in states m and n are di�erent and must be
included directly in the calculation of δVnm (see Section 2.8).

In the general case, changing the volume is computationally more expensive than
displacing a molecule. For a molecule displacement there are at most 2(N −1) calculations
of the pair potential in calculating δVnm . In general, a volume change in a pair-additive
�uid requires the recalculation of all the 1

2N (N − 1) interactions. Fortunately, for the
simplest potentials, the change in V with volume can be calculated by scaling. As an
example, consider the con�gurational energy of a Lennard-Jones �uid in statem:

Vm = 4ϵ
∑
i

∑
j>i

(
σ

Lms
m
ij

)12
− 4ϵ

∑
i

∑
j>i

(
σ

Lms
m
ij

)6

= V
(12)
m −V

(6)
m . (4.34)

Here we have divided up the potential into its separate twel�h-power and sixth-power
components. If the only change between the states m and n is the length of the box then
the energy of the new state is

Vn = V
(12)
m

(
Lm
Ln

)12
+V

(6)
m

(
Lm
Ln

)6

and

δVnm = δV
vol
nm = V

(12)
m

[(
Lm
Ln

)12
− 1

]
+V

(6)
m

[(
Lm
Ln

)6
− 1

]
. (4.35)

�is calculation is extremely rapid and only requires that the two components of the
potential energy,V (12) andV (6) , be stored separately. If the potential cuto� is taken to
scale with the box length (i.e. rc = scL with sc constant) then the separate termsV (12)

LRC and
V

(6)
LRC scale just likeV (12) andV (6) respectively. If in addition to a box-length change a

molecule is simultaneously displaced, then there are two contributions

δVnm = δV
dis
nm + δV

vol
nm (4.36)
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Code 4.5 Monte Carlo NPT -ensemble for Lennard-Jones atoms
�ese �les are provided online. �e program mc_npt_lj.f90 controls the simulation,
reads in the run parameters, selects moves, and writes out the results. It uses the
routines in mc_lj_module.f90 (see Code 4.3) to evaluate the Lennard-Jones potential
and actually implement the moves. It also uses utility modules (see Appendix A) for
the Metropolis function, input/output, and simulation averages.

! mc_npt_lj.f90
! Monte Carlo , NPT ensemble
PROGRAM mc_npt_lj

where δVvol
nm is given by eqn (4.35) and

δVdis
nm = Vn (Ln ) −Vm (Ln ). (4.37)

�us the energy change on displacement is obtained using the new box length Ln (think
of scaling the box, followed by moving the molecule).

�is simple prescription for the calculation of δVnm relies on there being just one char-
acteristic length in the potential function. �is may not be the case for some complicated
pair potentials, and it is also not true for most molecular models, where intramolecular
bond lengths as well as site–site potentials appear. For an interaction site model, simple
scaling would imply a non-physical change in the molecular shape. Note that for non-
conformal potentials, such as the site–site model, the energy change on scaling can be
estimated quickly and accurately (but not exactly) using a Taylor series expansion ofVm
in the scaling ratio, Ln/Lm (Brennan and Madden, 1998). �e code for a constant-NPT
simulation is given in Code 4.5.

By averaging over the states in the Markov chain it is possible to calculate mechanical
properties such as the volume and the enthalpy as well as various properties related
to their �uctuations. In common with the constant-NVT simulation, this method only
samples important regions of phase space and it is not possible to calculate the ‘statistical’
properties such as the Gibbs free energy. During the course of a particular run the virial can
be calculated in the usual manner to produce an estimate of the pressure. �is calculated
pressure (including the long-range correction) should be equal to the input pressure, P ,
used in eqn (4.33) to generate the Markov chain. �is test is a useful check of a properly
coded constant-NPT program.

From the limited evidence available, it appears that the �uctuations of averages
calculated in a constant-NPT mc simulation are greater than those associated with the
averages in a constant-NVT simulation. However, the error involved in calculating excess
properties of mixtures in the two ensembles is comparable, since they can be arrived at
more directly in a constant-NPT calculation (McDonald, 1972).

Finally, constant-pressure simulations of hard disks and spheres (Wood, 1968a; 1970)
can be readily performed using the methods described in this section. Wood (1968a)
has also developed an elegant method for hard-core systems in which the integral over
exp(−βPV ) in eqn (4.30) is used to de�ne a Laplace transform. �e simulation is performed
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by generating a Markov chain in the transform space using a suitably de�ned pseudo-
potential. �is method avoids direct scaling of the box; details can be found in the original
paper.

Constant-pressure mc simulation can be particularly di�cult to apply to atomic and
molecular solids. In this case, even a small, random scaling of the box can change the
atom separations far from those associated with a perfect la�ice, causing a large change
in δVnm and a likely rejection of the trial move. Schultz and Ko�e (2011) have suggested
a new approach which involves a scaling of the perfect la�ice positions, ri, la�, during a
volume change δVnm and a separate scaling of the relative positions of atoms with respect
to their associated la�ice sites. �is second scaling depends on the imposed value of the
pressure. It is necessary to calculate both δVnm for the atoms and δV la�

nm for the atoms on
a perfect la�ice, during the trial volume change. �is method improves the convergence
of the Markov chain for solids of Lennard-Jones atoms, hard spheres, and hard dumbbells
(Schultz and Ko�e, 2011).

4.6 Grand canonical Monte Carlo
In grand canonical Monte Carlo (gcmc) the chemical potential is �xed while the number
of molecules �uctuates. �e simulations are carried out at constant µ, V , and T , and the
average of some property A, is given by

〈A〉µVT =

∑∞
N=0 (N !)−1V N zN

∫
dsA (s) exp

(
−βV (s)

)
QµVT

(4.38)

where z = exp(βµ )/Λ3 is the activity, Λ is de�ned in eqn (2.24), and QµVT in eqn (2.32).
Again it is convenient to use a set of scaled coordinates s = (s1, s2, . . . sN ) de�ned as in
eqn (4.31) for each particular value of N . In common with the other ensembles discussed
in this chapter only the con�gurational properties are calculated during the simulation
and the ideal gas contributions are added at the end. A minor complication is that these
contributions will depend on 〈N 〉µVT , which must be calculated during the run. N is not
a continuous variable (the minimum change in N is one), and the sum in eqn (4.38) will
not be replaced by an integral.

In gcmc the Markov chain is constructed so that the limiting distribution is propor-
tional to

exp
[
−β

(
V (s) − N µ

)
− lnN ! − 3N lnΛ + N lnV

]
. (4.39)

A number of methods of generating this chain have been proposed. A method applied in
early studies of la�ice systems (Salsburg et al., 1959; Chesnut, 1963), uses a set of variables
(c1, c2, . . .), each taking the value 0 (unoccupied) or 1 (occupied), to de�ne a con�guration.
In the simplest approach a trial move a�empts to turn either a ‘ghost’ site (ci = 0) into a
real site (ci = 1) or vice versa.

�is method has been extended to continuous �uids by Rowley et al. (1975) and Yao
et al. (1982). In this application real and ghost molecules are moved throughout the system
using the normal Metropolis method for displacement. �is means that ‘ghost’ moves
are always accepted because no interactions are involved. In addition there are frequent
conversion a�empts between ‘ghost’ and real molecules. Unfortunately a ‘ghost’ molecule
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tends to remain close to the position at which its real precursor was destroyed, and is
likely to rematerialize, at some later step in the simulation, in this same ‘hole’ in the
liquid. �is memory e�ect does not lead to incorrect results (Barker and Henderson, 1976),
but may result in a slow convergence of the chain. �e total number of real and ghost
molecules, M , must be chosen so that if all the molecules became real,V would be very
high for all possible con�gurations. In this case the sum in eqn (4.38) can be truncated at
M . �is analysis makes it clear that in gcmc simulations, we are essentially transferring
molecules between our system of interest and an ideal gas system, each of which is limited
to a maximum of M molecules. �us the system properties are measured relative to those
of this restricted ideal gas; if M is su�ciently large this should not ma�er.

Most workers now adopt the original method of Norman and Filinov (1969). In this
technique there are three di�erent types of move:
(a) a molecule is displaced;
(b) a molecule is destroyed (no record of its position is kept);
(c) a molecule is created at a random position in the �uid.

Displacement is handled using the normal Metropolis method. If a molecule is destroyed
the ratio of the probabilities of the two states is

ρn
ρm
= exp(−βδVnm ) exp(−βµ )NΛ3

V
(4.40)

where N is the number of molecules initially in statem. In terms of the activity this is

ρn
ρm
= exp

[
−βδVnm + ln

( N
zV

)]
≡ exp(−βδDnm ). (4.41)

Here we have de�ned the ‘destruction function’ δDnm . A destruction move is accepted
with probability min[1, exp(−βδDnm )] using the methods of Section 4.4. Finally, in a
creation step, similar arguments give

ρn
ρm
= exp

[
−βδVnm + ln

( zV

N + 1

)]
≡ exp(−βδCnm ) (4.42)

(de�ning the ‘creation function’ δCnm) and the move is accepted or rejected using the
corresponding criterion.

�e underlying matrix for the creation of an additional molecule in a �uid of N existing
molecules is αnm = α c/(N + 1), where α c is the probability of making an a�empted
creation. �e underlying matrix for the reverse move is αmn = α

d/(N + 1). �e condition
of microscopic reversibility for a creation/destruction a�empt is satis�ed if αmn = αnm ,
that is αc = αd (Nicholson and Parsonage, 1982). �e method outlined allows for the
destruction or creation of only one molecule at a time. Except at low densities, moves
which involve the addition or removal of more than one molecule would be highly
improbable and such changes are not cost-e�ective (Norman and Filinov, 1969).

Although αd must equal α c there is some freedom in choosing between creation/de-
struction and a simple displacement, αm. Again Norman and Filinov (1969) varied αm and
found that αm = αd = α c = 1/3 gave the fastest convergence of the chain, and these are
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the values commonly employed. �us moves, destructions, and creations are selected at
random, with equal probability.

Typically, the con�gurational energy, pressure, and density are calculated as ensemble
averages during the course of the gcmc simulations. �e beauty of this type of simulation
is that the free energy can be calculated directly,

A/N = µ − 〈P〉µVTV /〈N 〉µVT (4.43)

and using eqn (4.43) it is possible to determine all the ‘statistical’ properties of the liquid.
Variations on the method described in this section have been employed by a number

of workers. �e Metropolis method for creation and destruction can be replaced by
a symmetrical algorithm. In this case the decisions for creation and destruction are
respectively

create if
(
1 + N + 1

zV
exp(βδVnm )

)−1
≥ ζ

destroy if
(
1 + zV

N
exp(βδVnm )

)−1
≥ ζ

with ζ generated uniformly on (0, 1).
Adams (1974; 1975) has also suggested an alternative formulation which splits the

chemical potential into the ideal gas and excess parts:

µ = µex + µ id

=
(
µex + kBT ln〈N 〉µVT

)
+ kBT ln

(
Λ3/V

)
= kBTB + kBT ln(Λ3/V ). (4.44)

Adams performed the mc simulation at constant B, V , and T , where B is de�ned by
eqn (4.44). µ can be obtained by calculating 〈N 〉µVT during the run and using it in eqn (4.44).
�e technique is completely equivalent to the normal method at constant z, V , and T .

�ere are a number of technical points to be considered in performing gcmc. In
common with the constant-NPT ensemble, the density is not constant during the run.
In these cases the long-range corrections must be included directly in the calculation of
δVnm . �e corrections should also be applied during the run to other con�gurational
properties such as the virial. If this is not done, di�culties may arise in correcting the
pressure at the end of the simulation: this can a�ect the calculation of the free energy
through eqn (4.43) (Barker and Henderson, 1976; Rowley et al., 1978).

A problem which is peculiar to gcmc is that when molecules are created or destroyed,
the storage of coordinates needs to be properly updated. One approach is to label the
molecules as being ‘active’ or ‘inactive’, and use an array to look up the indices of the
active ones (Nicholson, 1984). In this way, the coordinates of a deleted molecule are
le� in place, but never referred to; subsequently they may be overwri�en when a new
molecule is created. A simpler approach is to replace the coordinates of the deleted
molecule immediately with those of the molecule currently stored in the last position
of the coordinate array, prior to reducing the number of molecules by one. In this case,
newly created molecules are added to the end of the array.
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Code 4.6 Monte Carlo µVT -ensemble for Lennard-Jones atoms
�ese �les are provided online. �e program mc_zvt_lj.f90 controls the simulation,
reads in the run parameters, selects moves, and writes out the results. It uses the
routines in mc_lj_module.f90 (see Code 4.3) to evaluate the Lennard-Jones potential,
and actually implement the moves (including creation and destruction of atoms)
and utility modules (see Appendix A) for the Metropolis function, input/output, and
simulation averages.

! mc_zvt_lj.f90
! Monte Carlo , zVT (grand) ensemble
PROGRAM mc_zvt_lj

An example grand canonical simulation program is given in Code 4.6. Grand canonical
simulations are more complicated to program than those in the canonical ensemble. �e
advantage of the method is that it provides a direct route to the ‘statistical’ properties
of the �uid. For example, by determining the free energy of two di�erent phases in two
independent gcmc simulations we can say which of the two is thermodynamically stable
at a particular µ and T . Gcmc is particularly useful for studying inhomogeneous systems
such as monolayer and multilayer adsorption near a surface (Whitehouse et al., 1983)
or the electrical double-layer (Carnie and Torrie, 1984; Guldbrand et al., 1984). In these
systems the surface o�en a�racts the molecules strongly so that when a molecule di�uses
into the vicinity of the surface it may tend to remain there throughout the simulation.
Gcmc additionally destroys particles in the dense region near the surface and creates
them in the dilute region away from the surface. In this way it should encourage e�cient
sampling of some less likely but allowed regions of phase space as well as helping to
break up metastable structures near the surface.

Gcmc simulations of �uids have not been used widely. �e problem is that as the
density of the �uid is increased the probability of successful creation or destruction steps
becomes small. Creation a�empts fail because of the high risk of overlap. Destruction
a�empts fail because the removal of a particle without the subsequent relaxation of
the liquid structure results in the loss of a�ractive interactions. Clearly this means that
destructions in the vicinity of a surface may be infrequent and this somewhat o�sets the
advantage of gcmc in the simulation of adsorption (Nicholson, 1984). To address these
problems, Mezei (1980) has extended the basic method to search for cavities in the �uid
which are of an appropriate size to support a creation. Once they are located, creation
a�empts are made more frequently in the region of a cavity. In the Lennard-Jones �uid
at T ∗ = 2.0, the highest density at which the system could be successfully studied was
increased from ρ∗ = 0.65 (conventional gcmc) to ρ∗ = 0.85 (extended gcmc). Techniques
for preferential sampling close to a molecule or a cavity are discussed in Section 9.3.

Gcmc can be readily extended to simulate �uid mixtures. In a two-component mixture
of atoms A and B, the two chemical potentials, µA and µB, are �xed and the mole fractions
〈xA〉 and 〈xB〉 are calculated during the course of simulation. A decision to create or
destroy atoms A or B can be made with a �xed but arbitrary probability; once the species
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has been chosen, a creation or destruction a�empt should be made with equal probability.
In a two-component mixture, it is possible to swap the identities of atoms A and B without
changing their positions. If we swap an atom from A to B, the trial move is accepted with
a probability given by

min
[
1, zBNA

(NB + 1)zA
exp(−βδVnm )

]

where zA and zB are the respective activities (Cracknell et al., 1993; Lachet et al., 1997).

4.7 Semi-grand Monte Carlo
In the semi-grand ensemble the total number of atoms, N , is �xed but the number of atoms
of a particular species i is allowed to vary at a �xed chemical potential di�erence, µi − µ1.
�e partition function, eqn (2.37), is de�ned with the volume, V , and the temperature, T ,
�xed. For simulating mixtures it is o�en more convenient to work at a �xed pressure, P ,
and we can de�ne a new semi-grand partition function using the Legendre transform of
eqn (2.37) (Ko�e and Glandt, 1988)

Q {µi |i,1}NPT =
1
V0

∫
dV exp(−βPV )

V N

Λ3NN !

×

c∑
i1=1
· · ·

c∑
iN =1



c∏
i=1

exp
(
(µi − µ1)Ni/kBT

)

∫
ds exp

(
−V (s)/kBT

)
(4.45)

where the sums are over the c possible identities for each atom and we assume each atom
has the same mass. Eqn (4.45) can be simpli�ed by introducing the fugacity, fi

µi (P ,T , {xi }) = µ
−◦
i (T ) + kBT ln fi (4.46)

where µ−◦i (T ) is the chemical potential in the ideal gas reference state, P = 1 bar. It is more
convenient to introduce the fugacity fraction ξi

ξi =
fi∑c
i=1 fi

. (4.47)

�is is a convenient quantity that varies from zero to unity as the mixture composition
changes from pure species 1 to pure species i (Mehta and Ko�e, 1994). �en the semi-
grand partition function becomes

Q {µi |i,1}NPT =
1
V0

∫
dV exp(−βPV )

V N

Λ3NN !

×

c∑
i1=1
· · ·

c∑
iN =1



c∏
i=1

(
ξi
ξ1

)Ni 

∫
ds exp

(
−βV (s)

)
. (4.48)

�e average of a property, A, in the semi-grand ensemble is

〈A〉 =

∫
dV exp(−βPV )V N

c∑
i1=1
· · ·

c∑
iN =1

c∏
i=1

(ξi/ξ1)
Ni

∫
dsA (s) exp

(
−βV (s)

)
(V0 Λ3N N !)Q {µi |i,1}NPT

. (4.49)
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In the semi-grand Monte Carlo method, the Markov chain is constructed so that the
limiting distribution is proportional to

exp
[
− β

(
V (s) + PV

)
+ N lnV +

c∑
i=1

Ni ln ξi
ξ1

]
. (4.50)

In the course of the simulation, P ,T , N , and {ξi |i , 1} remain �xed, whileV , {Ni }, and the
atom positions, s, are allowed to vary. �is Markov chain is realized with three types of
move: atom displacements, random volume changes, and a switch in the identity of two
atoms. �e �rst two types of move have already been discussed in detail. To switch the
identity of a pair, an atom is chosen at random (this atom is of type i) and it is assigned a
new identity, i ′, chosen randomly from all the atom types. In this way, only the terms
involving i and i ′ in the sum in eqn (4.50) are involved in the identity switch. �en for an
a�empted switch, the ratio of the probabilities in the new trial state and the old state is

ρn
ρm
=

(ξi/ξ1)
Ni−1 (ξi′/ξ1)

Ni′+1

(ξi/ξ1)Ni (ξi′/ξ1)Ni′
exp(−βδVnm ) =

ξi′

ξi
exp(−βδVnm ) (4.51)

where δVnm is the change in con�gurational energy resulting from the identity switch.
�e trial switch is accepted with a probability given by min(1, ρn/ρm ). �e underlying
stochastic transition matrix is symmetric, with αnm = αmn = 1/(Nc ).

�e semi-grand ensemble has been used to simulate simple mixtures (Caccamo et al.,
1998), liquid crystalline mixtures (Bates and Frenkel, 1998), and complex ionic mixtures
(Madurga et al., 2011). �e method is particular suited to the study of �uids with variable
polydispersity. �ese are simulations in which the chemical potential distribution, µ (σ ),
is �xed, and in which the number or density distribution, ρ (σ ), is calculated (Bolhuis and
Ko�e, 1996; Ko�e and Bolhuis, 1999). �e variable σ , describing the polydispersity of the
�uid, could, for example, be the diameter of a polydisperse mixture of hard spheres. In a
semi-grand exchange move, σ is changed by selecting a particle j at random, changing
its diameter by a small amount from σj to σ ′j , and calculating δµnm = µ (σ ′j ) − µ (σj ). �e
trial move is accepted with a probability given by

min
(
1, exp

[
+β (δµnm − δVnm )

] )
.

�e more di�cult case of simulating at �xed polydispersity, ρ (σ ), has also been tackled in
the grand canonical (Wilding and Sollich, 2004) and semi-grand (Wilding, 2009) ensembles.

4.8 Molecular liquids
4.8.1 Rigid molecules

In the mc simulation of a molecular liquid the underlying matrix of the Markov chain is
altered to allow moves which usually consist of a combined translation and rotation of
one molecule. Sequences involving a number of purely translational and purely rotational
steps are perfectly proper but are not usually exploited in the simulation of molecular
liquids. (�ere have been a number of simulations of idealized models of liquid crystals and
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plastic crystals where the centres of the molecules are �xed to a three-dimensional la�ice.
�ese simulations consist of purely rotational moves (see e.g. Luckhurst and Simpson,
1982; O’Shea, 1978)).

�e translational part of the move is carried out by randomly displacing the centre of
mass of a molecule along each of the space-�xed axes. As before, the maximum displace-
ment is governed by the adjustable parameter δrmax. �e orientation of a molecule is o�en
described in terms of the Euler angles ϕ,θ ,ψ mentioned in Section 3.3.1 (see Goldstein,
1980). A change in orientation can be achieved by taking small random displacements in
each of the Euler angles of molecule i .

ϕni = ϕ
m
i + (2ζ1 − 1)δϕmax (4.52a)

θni = θ
m
i + (2ζ2 − 1)δθmax (4.52b)

ψn
i = ψ

m
i + (2ζ3 − 1)δψmax (4.52c)

where δϕmax,δθmax and δψmax are the maximum displacements in the Euler angles.
In an mc step the ratio of the probabilities of the two states is given by

ρn
ρm
=

exp
(
−β (Vm + δVnm )

)
drndΩn

exp(−βVm ) drmdΩm . (4.53)

�e appropriate volume elements have been included to convert the probability densities
into probabilities. dΩm =

∏N
i=1 dΩm

i , and dΩm
i = sinθmi dψm

i dθmi dϕmi /Ω for molecule i
in state m. Ω is a constant which is 8π2 for non-linear molecules. In the case of linear
molecules, the angleψ is not required to de�ne the orientation, and Ω = 4π. �e volume
elements for states m and n have not previously been included in the ratio ρm/ρn (see
eqn (4.29)), for the simple reason that they are the same in both states for a translational
move, and cancel. For a move which only involves one molecule, i ,

ρn
ρm
= exp

(
−βδVnm

) sinθni
sinθmi

. (4.54)

�e ratio of the sines must appear in the transition matrix πmn either in the acceptance/
rejection criterion or in the underlying matrix element αmn . �is last approach is most
convenient. It amounts to choosing random displacements in cosθi rather than in θi , so
eqn (4.52b) is replaced by

cosθni = cosθmi + (2ζ2 − 1)δ (cosθ )max. (4.55)

�en the usual Metropolis recipe of accepting with a probability of min[1, exp(−βδVnm )]
is used. Including the sinθ factor in the underlying chain avoids di�culties with θmi = 0
analogous to the problems mentioned in Section 3.3.1. Equations (4.52a), (4.52c), and (4.55)
move a molecule from one orientational state into any one of its neighbouring orientational
states with equal probability and ful�l the condition of microscopic reversibility.

It is useful to keep the angles which describe the orientation of a particular molecule
in the appropriate range (−π, π) for ψ and ϕ, and (0, π) for θ . �is is not essential, but
avoids unnecessary work and possible over�ow in the subsequent evaluation of any
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trigonometric functions. �is can be done by a piece of code which is rather like that used
to implement periodic boundary conditions. If dphi_max is the maximum change in ϕ and
twopi stores the value 2π, one can use statements similar to

CALL RANDOM_NUMBER ( zeta )
phi = phi + 2.0 * ( zeta - 1.0 ) * dphi_max
phi = phi - ANINT ( phi / twopi ) * twopi

with similar code for ψ . In the case of eqn (4.55), it is necessary to keep cosθ in the
range (−1, 1). One can either simply reject moves which would go outside this range, or
implement the following correction (with dcos_max holding the value of δ (cosθ )max)

cos_theta = cos_theta + 2.0 * ( zeta - 1.0 ) * dcos_max
cos_theta = cos_theta - ANINT ( cos_theta / 2.0 ) * 2.0

Note that when the ANINT function is not zero the molecule is rotated by π. For unsym-
metrical molecules, this may result in a large trial energy change, which is likely to be
rejected; nonetheless the method is correct.

More commonly, the orientation of a linear molecule is stored as a unit vector e, rather
than in terms of angles. �ere are several ways of generating unbiased, small, changes
in the orientation, suitable to use as trial moves in combination with an unmodi�ed
Metropolis formula based on the change in potential. One suggestion (Jansoone, 1974) is
to randomly select new orientations eni , uniformly on the surface of a sphere, until one is
generated that satis�es an inequality

eni · e
m
i > 1 − dmax, (4.56)

where dmax � 1 controls the size of the maximum displacement. When such a trial
orientation is obtained, the algorithm proceeds to calculate the potential-energy change
and apply the Metropolis criterion. Another possibility is to set

eni = emi + δe

where δe is a small vector whose orientation is chosen uniformly in space, and then
renormalize eni a�erwards. A third approach is to rotate the orientation vector by a small,
randomly chosen, angle, using eqn (3.27). �e axis may be chosen randomly in space,
or one of the three Cartesian axes may be chosen at random (Barker and Wa�s, 1969).
Examples of code for these methods of generating a random direction in space, and a new
orientation, are given in the utility modules of Appendix A.

Perhaps the most general approach to describing the orientation of polyatomic
molecules is to use the quaternion parameters introduced in Section 3.3.1. A random orien-
tation in space can be generated by choosing a random unit quaternion on S3 (Marsaglia,
1972; Vesely, 1982). �is can be achieved by repeatedly selecting two random numbers,
ζ1, ζ2 on (−1, 1) until s1 = ζ

2
1 + ζ

2
2 < 1. �en select ζ3, ζ4 on (−1, 1) until s2 = ζ

2
3 + ζ

2
4 < 1.

�e random quaternion is

a = (ζ1, ζ2, ζ3
√
(1 − s1)/s2, ζ4

√
(1 − s1)/s2). (4.57)

�is is an extension of the technique described in Appendix E.4 for generating a random
vector on the surface of a sphere. �e quaternion, a, can be used to construct the rotation
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Code 4.7 Monte Carlo program using quaternions
�ese �les are provided online. �e program mc_nvt_poly_lj.f90 controls the sim-
ulation, reads in the run parameters, selects moves, and writes out the results. It
uses various routines in mc_poly_lj_module.f90, and utility module routines (see
Appendix A) for input/output and simulation averages. �e model is a set of rigid
polyatomic molecules, whose atoms interact through a shi�ed Lennard-Jones poten-
tial.

! mc_nvt_poly_lj.f90
! Monte Carlo , NVT ensemble , polyatomic molecule
PROGRAM mc_nvt_poly_lj

! mc_poly_lj_module.f90
! Routines for MC simulation , polyatomic molecule , LJ atoms
MODULE mc_module

matrix, eqn (3.40), and hence the positions, in a space-�xed frame, of the atoms within a
molecule.

A random orientational displacement can be accomplished, just as in the linear-
molecule case, by rotating a through an angle θ about some arbitrary axis s, controlling the
maximum size of the displacement with a parameter d . �is can be readily accomplished
by selecting s from an arbitrary but even distribution. Karney (2007) suggests that a useful
choice is a three-dimensional Gaussian distribution (see Appendix E.3) of the form

ρ (s) =
exp(−|s|2/2d2)

(2π)3/2d3 , (4.58)

where larger values of d correspond to larger orientational displacements. (Note that the
use of a uniform distribution results in a singularity at |s| = 0.) �e new quaternion, a′ is
given by

a′ = (cos 1
2θ , ŝ sin 1

2θ ) ⊗ a (4.59)
where θ = |s| and ŝ = s/|s| and the quaternion multiplication is de�ned in eqn (3.36a).
If θ = |s| > π, then the orientation will be identical to the wrapped orientation s − 2πŝ.
Karney (2007) recommends rejecting moves with |s| > π to avoid a subtlety associated
with detailed balance.

One di�culty with mc methods for molecular �uids is that there are usually a number
of parameters governing the maximum translational and orientational displacement of
a molecule during a move. As usual, these parameters can be adjusted automatically to
give an acceptance rate of ≈ 0.5, but there is not a unique set of maximum displacement
parameters which will achieve this. A sensible set of values is best obtained by trial
and error for the particular simulation in hand. An example of an mc program using
quaternions is given in Code 4.7.

�e mc method is particularly useful for simulating hard-core molecules. �e compli-
cated md schemes mentioned in Section 3.7.2 can be avoided and the program consists
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Code 4.8 Monte Carlo of hard spherocylinders
�ese �les are provided online. �e program mc_nvt_sc.f90 controls the simulation,
reads in the run parameters, selects moves, and writes out the results. It uses the
spherocylinder overlap routines in mc_sc_module.f90, and utility module routines
(see Appendix A) for input/output and simulation averages.

! mc_nvt_sc.f90
! Monte Carlo , NVT ensemble , linear hard molecules
PROGRAM mc_nvt_sc

! mc_sc_module.f90
! Overlap routines for MC simulation , hard spherocylinders
MODULE mc_module

simply of choosing one of the aforementioned schemes for moving a molecule and an
algorithm for checking for overlap. A simple mc program for hard spherocylinders is
given in Code 4.8. Again, as discussed in Section 2.4, the pressure must be calculated by a
box-scaling or related method.

�e mc method has been used successfully in the canonical ensemble for simulating
hard-core molecules (Stree� and Tildesley, 1978; Wojcik and Gubbins, 1983) and more
realistic linear and non-linear molecules (Barker and Wa�s, 1969; Romano and Singer,
1979). Simulations of molecular �uids have also been a�empted in the isothermal–isobaric
ensemble (Owicki and Scheraga, 1977a; Eppenga and Frenkel, 1984). Simulations of molec-
ular �uids in the grand canonical ensemble use the destruction and creation steps given
by eqns (4.41) and (4.42). In this case the activity z = exp(βµ )qid. For a molecular �uid
qid is a product of a translational term Λ−3 and terms corresponding to the rotation,
vibration and electronic structure of the molecule depending on the precise model (Hill,
1956). In making an a�empted creation it is necessary to insert the molecule at a random
position and to choose a random orientation, possibly using the quaternion method of
eqn (4.59). In dense systems of highly anisotropic molecules, these insertions are likely
to fail without the use of some biasing technique and the method has not been widely
used. For small molecules the method can been used to study the adsorption of gases
and their mixtures into pores (Cracknell et al., 1993; Smit, 1995; Lachet et al., 1997) but
the preferred approach for longer molecules would be the con�gurational-bias method
discussed in Chapter 9.

4.8.2 Non-rigid molecules

Non-rigidity introduces new di�culties into the mc technique. �e problem in this case is
to �nd a suitable set of generalized coordinates to describe the positions and momenta of
the molecules. Once these have been established, the integrations over the momenta can
be performed analytically, which will leave just the con�gurational part of the ensemble
average. However, the integration over momenta will produce complicated Jacobians in
the con�gurational integral, one for each molecule (see Section 2.10). �e Jacobian will
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Fig. 4.5 A possible method for moving a chain molecule (butane), subject to bond length and angle
constraints, in an mc simulation. For illustrative purposes, all the atoms are taken to be coplanar
and the rotation angles are equal to π radians.

be some function, for example, of the angles θ ,ϕ, which describe the overall orientation
of the molecule, and the bond bending and torsion angles which describe the internal
con�guration. A simple example of this type of term is the sinθi in the con�gurational
integral for rigid molecules, which comes from the integration over the momenta (pϕ )i . As
we have already seen in Section 4.8.1, these Jacobians are important in calculating the ratio
ρn/ρm used in generating the Markov chain in the Metropolis method or, correspondingly,
in designing the correct underlying stochastic matrix. For non-rigid molecules, correctly
handling the Jacobian terms is more di�cult.

�is problem can be solved satisfactorily for the class of non-rigid molecules where
the overall moment of inertia is independent of the coordinates of internal rotation
(e.g. isobutane, acetone) (Pitzer and Gwinn, 1942). Generalized coordinates have also
been developed for a non-rigid model of butane, which does not fall into this simple
class (Ryckaert and Bellemans, 1975; Pear and Weiner, 1979), but the expressions are
complicated and become increasingly so for longer molecules.

One way of working with generalized coordinates is as follows. In butane (see Sec-
tion 1.3), it is possible to constrain bond lengths and bond bending angles, while allowing
the torsional angle to change according to its potential function. �e movement of the
molecule in the simulation is achieved by random movements of randomly chosen atoms
subject to the required constraints (Curro, 1974). An example of this is shown for butane
in Fig. 4.5. A typical mc sequence might be (assuming that each move is accepted):
(a) atom 1 is moved by rotating around the 2–3 bond;
(b) atoms 1 and 2 are moved simultaneously by rotating around the 3–4 bond;
(c) atom 4 is moved by rotating around the 2–3 bond.

Moves (a) and (c) involve a random displacement of the torsional angle ϕ, in the range
(−π, π). �e entire molecule is translated and rotated through space by making random
rotations of atoms around randomly chosen bonds. We can also include an explicit
translation of the whole molecule, and an overall rotation about one of the space-�xed
axes. �e disadvantage of this simple approach at high density is that a small rotation
around the 1–2 bond can cause a substantial movement of atom 4, which is likely to result
in overlap and a high rejection rate for new con�gurations.
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If we consider the case of the simpli�ed butane molecule introduced in Sections 1.3.3
and 2.10, then a trial mc move might consist of a translation and rotation of the whole
molecule and a change in the internal con�guration made by choosing random increments
in d(cosθ ), d(cosθ ′), and dϕ (see Fig. 1.10). To avoid the artefacts associated with the con-
straint approximation, the Markov chain should be generated with a limiting distribution
(see eqns (2.167), (2.170)) proportional to

exp
(
−β (V +Vc)

)
= exp

(
−β

[
V + 1

2kBT ln(2 + sin2 θ + sin2 θ ′)
] )
. (4.60)

If θ and θ ′ stay close to their equilibrium values throughout, it might be possible to
introduce only a small error by neglecting the constraint potentialVc in eqn (4.60). �e
constraint term becomes more complicated and important in the case of bond-angle con-
straints. Small non-rigid molecules can probably be best treated using the con�gurational-
bias mc method (see Chapter 9).

�ere have been many volumes devoted to the study of polymer systems using the mc
method (see e.g. Binder, 1984; Landau and Binder, 2009). Single chains can be simulated
using crude mc methods. In this technique a polymer chain of speci�ed length is built
up randomly in space (Lal and Spencer, 1971) or on a la�ice (Suzuki and Nakata, 1970).
A chain is abandoned if a substantial overlap is introduced during its construction. When
a large number N of chains of the required length have been produced, the average of a
property (such as the end-to-end distance) is calculated from

〈A〉 =

∑N
i=1Ai exp(−βVi )∑N
i=1 exp(−βVi )

(4.61)

where the sums range over all the N polymer chains. �e approach is inapplicable for a
dense �uid of chains.

A more conventional mc method, which avoids this problem, was suggested by Wall
and Mandel (1975). In a real �uid a chain is likely to move in a slithering fashion: the head
of the chain moves to a new position and the rest of the chain follows like a snake or lizard.
�is type of motion is termed ‘reptation’ (de Gennes, 1971). Such ‘reptation mc’ algorithms
have been applied to chains on a three-dimensional la�ice (Wall et al., 1977) and to
continuum �uids (Brender and Lax, 1983). Bishop et al. (1980) have developed a reptation
algorithm which is suitable for a chain with arbitrary intermolecular and intramolecular
potentials in a continuum �uid. �e method exploits the Metropolis solution to the
transition matrix to asymptotically sample the Boltzmann distribution. In the case studied
by Bishop et al., the model consists of N chains each containing ` atoms. All the atoms
in the �uid interact through the repulsive part of the Lennard-Jones potential, vRLJ (r ),
eqn (1.10a); this interaction controls the excluded volume of the chains. Adjacent atoms in
the same chain interact additionally through the fene potential of eqn (1.33) and Fig. 1.12,
with typical parameters R0 = 1.95 and k = 20. �is gives a modi�ed harmonic potential

v
H (r ) = v

FENE (r ) + v
RLJ (r ). (4.62)

Any reasonable forms for the intermolecular and intramolecular potentials can be used in
this approach.
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Fig. 4.6 �e reptation of a polymer chain, where a single atom is transferred from the tail of the
polymer to its head, while atoms 2 to ` are unchanged.

Each chain, see Fig. 4.6, is considered in turn and one end is chosen randomly as the
head. �e initial coordinates of the atoms in a particular chain, i , are

{rmi,1, r
m
i,2, . . . , r

m
i, ` }.

A new position is selected for the head of chain i

rni,1 = rmi, ` + δr. (4.63)

�e direction of δr is chosen at random on the surface of a sphere, and the magnitude
δr is chosen according to the probability distribution corresponding to v

H (δr ) using a
rejection technique (see Appendix E). �us, the intramolecular bonding potential is used
in selecting the trial move (other examples of introducing bias in this way will be seen in
Chapter 9). �e chain has a new trial con�guration

{rni,2, r
n
i,3, . . . , r

n
i, `, r

n
i,1},

where the positions of atoms {2 . . . `} are unchanged in moving from the old statem to
the new state n. �e atom at rmi,1 has been transferred to the other end of the chain in the
new state n. �e change in non-bonded interactions in creating a new con�guration is
calculated by summing over all the atoms

δVnm =
∑̀
a=2

v
RLJ

(
|ri,a − rni,1 |

)
− v

RLJ
(
|ri,a − rmi,1 |

)
+

∑
j,i

∑̀
a=1

v
RLJ

(
|rj,a − rni,1 |

)
− v

RLJ
(
|rj,a − rmi,1 |

)
.

(4.64)

Non-bonded interactions from chain i and from all other chains j are included here; we
highlight the fact that all the rj,a are unchanged, as well as all the ri,a except ri,1, by
omi�ing their superscripts. δVnm is used to decide whether the move should be accepted
or rejected according to the Metropolis criterion. As usual, the state following a rejected
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move is recounted in the calculation of simulation averages. �e approach is simple to
execute when there are no geometrical constraints to take into account. For example, in
the work of Bishop et al. (1980), all the atoms are free to move under the in�uence of the
potentials.

In general, the reptation method is not a particularly e�cient algorithm for dense
polymers because it does not induce signi�cant changes in the internal structure of
the chain. At high density it can produce a series of states in which an atom simply
moves backwards and forwards between the head and the tail. More recently, polymer
simulations have been performed using the con�gurational-bias method which a�empts
to rebuild the entire polymer by searching for regions of low energy (high probability)
for each consecutive atom, and also by the introduction of a number of concerted moves
which involve rotating or replacing complete segments of the chain. �ese lie beyond
the scope of the normal Metropolis approach and we shall consider them in detail in
Chapter 9.

4.9 Parallel tempering
�e parallel tempering technique is a method of simulating a set of systems, each sampling
an equilibrium ensemble, which frequently exchange con�gurations with each other.
�is is particularly useful for exploring a highly corrugated energy surface with deep
local minima. In these circumstances, the application of a normal Metropolis Monte Carlo
method with a value of kBT well below the barrier height, is likely to result in a system
trapped in one of its local minima and the simulated phase space trajectory will be non-
ergodic (see Section 2.1). One way to overcome this problem is to simulate many replicas
of the system simultaneously, each at a di�erent temperature. At the highest temperatures
the system is likely to cross the barriers frequently and explore all of the regions of the
energy surface. By exchanging the coordinates between the replicas, information relating
to many di�erent energy minima is transferred to the systems at lower temperature. For
this reason the method is o�en referred to as replica exchange Monte Carlo (remc).

�is method employs the Metropolis algorithm for atom moves within an individual
replica and introduces additional a�empts to exchange the coordinates of two replicas
(Swendsen and Wang, 1986; Geyer, 1991). Consider a set of M replicas, each containing
the same number of atoms interacting through the same intermolecular potential. �e
temperatures are TM−1 > TM−2 > . . .TI > TJ . . .T2 > T1 > T0, and T = T0 is o�en of most
interest. In an exchange move, two adjacent replicas, I and J , with a small temperature
di�erence, are chosen at random. Since the replicas are independent, the probability of
the initial state is

ρm ∝ exp
(
−βIV (rI )

)
exp

(
−β JV (rJ )

)
(4.65)

where rI = {rI1, r
I
2, . . . , r

I
N } are the coordinates of the atoms in replica I , and similarly for

J . A�er the a�empted exchange of coordinates, the probability of the �nal state is

ρn ∝ exp
(
−βIV (rJ )

)
exp

(
−β JV (rI )

)
. (4.66)

�e random choice of replicas ensures that αnm = αmn and the exchange is accepted with
a probability given by

min
(
1, exp

[
(βI − β J )

(
V (rI ) −V (rJ )

)])
. (4.67)
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�is exchange of atomic coordinates does not upset the equilibrium distribution of a
particular replica and, unlike the simulated annealing methods (Kirkpatrick et al., 1983),
proper equilibrium Monte Carlo simulations are performed at each temperature. Since
the total potential energy of a con�guration is already calculated in the Metropolis
method, exchange moves are relatively inexpensive. Typically in a simulation, 90 % of
the trial moves would be a�empted atom displacements and 10 % a�empted replica
exchanges (Falcioni and Deem, 1999); approximately 20 % of a�empted exchanges should
be accepted (Rathore et al., 2005). �e basic method is well-suited to the simulation of
polymer melts and conformational properties of proteins (Hansmann, 1997) where it
opens up the possibility for e�cient studies of the folding thermodynamics of more
detailed protein models. A�er the simulations have been completed, it is possible to
obtain an optimized estimate of properties at a range of temperatures using reweighted
histogram techniques of the type described in Chapter 9 (Chodera et al., 2007).

�e method can be readily extended to the grand canonical ensemble. In this case, the
two replicas chosen at random are simulations performed at �xed chemical potentials, µI
and µ J , and (inverse) temperatures βI and β J , using the technique described in Section 4.6.
An exchange move consists of swapping the atom coordinates in replica I with those in
replica J . �is move is accepted with a probability given by

min
(
1,

(
βI
β J

)3(NI−N J )/2
exp

[
(βI −β J )

(
V (rI )−V (rJ )

)
− (βI µI −β J µ J ) (NI −N J )

])
. (4.68)

�e factor in front of the exponential arises from the temperature dependence of the
de Broglie wavelength. �is technique has been used by Yan and de Pablo (1999) to
construct a phase diagram for the Lennard-Jones �uid and the restricted primitive model
of an ionic �uid. In these simulations the probability density ρµβ (N ) is calculated, and
the densities, corresponding to the coexisting liquid and gas, are obtained from the two
peaks in this function. We note that at temperatures well below the critical point of the
�uid, these two peaks would not be observed in a normal grand canonical mc simulation
because the energy barrier for the system to move from the liquid to the gas phase would
be too high. However, using the parallel tempering method, it is possible to move the
system up towards the critical point, where such exchanges occur readily, and then back
down to either the liquid or gas region, thus sampling the whole curve. In this case, the
reweighted histogram techniques described in Chapter 9 are particularly useful.

�e method can also be extended to the case where the replicas have the same values
of N and T , but di�erent values of the potential function between the atoms (Bunker and
Dünweg, 2001; Fukunishi et al., 2002). �e method has been used by Bunker and Dünweg
(2001) to simulate polymer melts, each of which has a slightly di�erent repulsive core
potential for the interaction between monomers. �e exchange moves connect the full
excluded-volume potential to an ideal gas of chains. �e parallel tempering, with swaps of
the polymer con�gurations between adjacent potential functions, works with additional
large-scale a�empted pivot and translation moves for the polymer. �ese moves only
have a realistic acceptance probability as the limit of the ideal gas chains is reached. For
chains of length 200 monomers, the parallel tempering technique delivers a speedup of
greater than a factor of eight, as measured by the integrated autocorrelation time for the
�rst Rouse mode of the polymer.
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Returning to the properties of parallel tempering for variable T , it is important to
consider the optimum choice of temperatures for the set of replicas. If the probability
distributions, ρNT (V ), of two replicas at two di�erent temperatures do not exhibit a
signi�cant overlap then the acceptance ratio for the exchange moves between these
replicas will be low and the advantages of the method lost. More quantitatively, Ko�e
(2002) has shown that the acceptance ratio of exchange moves is related to the entropy
di�erence between the replicas

〈pacc〉 ∼ exp(−∆S/kB) ∼

(
TJ

TI

)CV /kB

(4.69)

where ∆S > 0, that is, the entropy of the high-temperature replica TI minus that of the
low-temperature replica, TJ , and CV is the speci�c heat of the system at constant volume.
Equation (4.69) con�rms that the average transition probability decreases with increasing
system size N , since ∆S andCV are extensive properties. �e larger the system, the greater
the number of replicas required to connect the high-temperature and low-temperature
states. �e average transition probability also decreases with increasing temperature
di�erence between replicas. Ko�e’s analysis demonstrates that the acceptance ratio for
exchange can be made uniform across a set of replicas if the ratio of the temperatures
of adjacent replicas is �xed. Kone and Ko�e (2005) suggest that temperatures should be
chosen such that approximately 20 % of swap a�empts are accepted. Iterative methods of
adjusting the temperature di�erences during the simulation are discussed in the review
of Earl and Deem (2005).

Replica exchange is very commonly combined with md packages (remd) because the
actual process of exchanging con�gurations can be handled by an external script rather
than requiring a modi�cation to the code. Some care is needed, however. Velocities or
momenta need to be exchanged as well as positions. It is usual to run the individual
simulations in the canonical ensemble, using one of the thermosta�ing algorithms dis-
cussed in Section 3.8, and to base the exchange acceptance–rejection criterion on the
potential energies alone through eqn (4.67). On exchanging, the momenta are rescaled, to
be consistent with the change in temperature (in other words, to satisfy detailed balance).
�e necessary prescriptions are (Sugita and Okamoto, 1999; Mori and Okamoto, 2010)

pI → pI
√
TJ

TI
, pJ → pJ

√
TI
TJ
, or in general p→ p

√
Tnew
Told

where the momenta pI are for the system going TI → TJ and the pJ are going TJ → TI .
�is applies for Langevin, Andersen, and Nosé–Hoover thermostats. Of course, for the
la�er case, there is a thermostat velocity variable, which should also be rescaled

ζ → ζ

√
Tnew/Qnew
Told/Qold

to cover the case where the thermostat massesQ are di�erent at the di�erent temperatures.
A similar prescription applies to Nosé–Hoover chains. �is is one of those cases where it
is essential that the md thermostat correctly samples the canonical ensemble. Cooke and
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Example 4.1 Sweetening the glass

�e sugars sucrose and trehalose are used in the preservation of biological samples
containing cells, proteins, and DNA. It is thought that the presence of a glassy matrix
around the biological material strengthens the tertiary structure of the proteins and
inhibits the di�usion of small molecules to and from the cells (Smith and Morin,
2005). Although sucrose and trehalose have the same molecular weight, the former
contains one �ve-membered fructose ring and one six-membered glucose ring; the
la�er contains two glucose rings. �ere is considerable interest in the molecular
mechanism of glass formation in concentrated aqueous solutions containing these
two sugars.
Ekdawi-Sever et al. (2001) performed mc simulations of sucrose and trehalose using
a parallel tempering constant-NPT algorithm. In this case all the systems are at a
pressure P = 1 bar and the exchange of the atom coordinates and box volumes are
accepted with a probability given by min[1, exp(P∆β∆V + ∆β∆V )]. Simulations of
the sugars were performed in aqueous solution with concentrations from 6 % to 100 %
by mass, and temperatures between 300 K and 600 K. �e simulated sucrose densities
were calculated as a function of concentration, and for solutions above 80 % by mass,
the replica exchange simulations predict densities that are lower than those found
in conventional constant-NPT simulations, and that are closer to the experimental
densities. A failure to employ parallel tempering in the simulations can result in
the incorrect prediction of the glass transition temperatures. In comparing the two
sugars at 1 bar, the calculated trehalose densities are consistently higher than those
of sucrose over the temperature range. For example, at 500 K the simulated densities
of sucrose and trehalose are 1.366 g cm−3 and 1.393 g cm−3 respectively. �e higher
trehalose density is associated with the hydrogen bonding in the solution. �ere
are more sites available for intermolecular hydrogen bonding in trehalose than in
sucrose, and for this reason trehalose has a higher hydration number than sucrose.
�is may account for the superior cryo- and lyo-protection a�orded by trehalose.
Li et al. (2014) have used remd to study the protection of insulin by trehalose. Starting
from the crystal structure of insulin, the protein was solvated with tip3p water and
simulated using the gromacs package. �e drying process was modelled by the
removal of water molecules. In the absence of trehalose, the drying resulted in
a loss of the secondary structure of the insulin. In contrast, with the addition of
the protectant trehalose, the number of amino acids in the helical conformation
is maintained during drying, and both the secondary and tertiary structure of the
protein are maintained.

Schmidler (2008) and Rosta et al. (2009) have demonstrate the artefacts that may result
from a poor choice of thermostat (see also Lin and van Gunsteren, 2015); other practical
points are emphasized by Sindhikara et al. (2010).

Normally neighbouring replicas are chosen at random for an a�empted exchange,
and with close enough temperatures, an acceptance ratio of ∼ 20 % can be achieved. �is
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method leads to a di�usive walk of replicas in the temperature space. �e round trip rate
for a replica is proportional to M−2 and since we typically choose M ∝ N 1/2 (Hansmann,
1997), the round trip rate is inversely proportional to the system size.

For large systems, such as solvated proteins, the energy landscapes are su�ciently
rugged that many round trips are required to explore all important con�gurations and
the method struggles to sample the system properly. �e ruggedness of the landscape is
normally caused by the high barriers to internal rotation within the protein and not by
the large bath of solvent molecules away from the protein. Yet both the protein and the
bath contribute in an equal manner when a�empting an exchange. �e large number of
degrees of freedom demands a close spacing of the replica temperatures. �is problem
has been addressed using the replica exchange with solute tempering (rest) technique
(Liu et al., 2005).

�e method considers a set of replicas with di�erent temperatures, βI , atom coordinates,
rI ≡ {rI1, r

I
2, . . . , r

I
N }, and potential functions,VI . �e acceptance probability of exchanging

the coordinates of two replicas I and J is given by min(1, ρn/ρm ) where

ρn
ρm
= exp

[
−βI

(
VI (rJ ) −VI (rI )

)
− β J

(
VJ (rI ) −VJ (rJ )

)]
. (4.70)

In the rest approach, the total potential energy for the protein in water is wri�en as the
sum of three terms, corresponding to the isolated protein (P), the solvent (W), and the
coupling between them (WP)

V = VP +VW +VWP. (4.71)

However, this only applies at the lowest temperatureT0. Liu et al. (2005) de�ne a temperature-
dependent potential for replica I as

VI = V
P +

(
β0
βI

)
VW +

(
β0 + βI

2βI

)
VWP. (4.72)

Substituting eqn (4.72) into eqn (4.70) gives

ρn
ρm
= exp

[
(βI − β J )

(
VP (rI ) −VP (rJ ) + 1

2V
WP (rI ) − 1

2V
WP (rJ )

)]
(4.73)

where the potential energy of the protein,VP, depends only on the subset of r correspond-
ing to the protein. �is judicious choice of scaling potential means that the VW term
has disappeared from the acceptance criterion. �e number of replicas required in the
calculation is signi�cantly reduced as the solvent–solvent interactions have been removed
from the a�empted replica exchange. �e Boltzmann factor for a particular replica I using
the scaled potential is

exp
[
−βIV

P − β0V
W − 1

2 (β0 + βI )V
WP

]
.

�is is suggestive of a set of replicas in which the temperature of the protein of interest is
being increased while the temperature of the bath is �xed at the lowest value, β0; only
the solute is tempered. �e choice of scaled potential is not unique and Wang et al. (2011)
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have also suggested simulating all of the replicas at a �xed temperature, β0, with the
scaled potential

VI =
βI
β0
VP +VW +

√
βI
β0
VWP. (4.74)

�is scaling is an improvement over eqn (4.72) when applied to the β-hairpin motif of a
protein. �is improvement in e�ciency is thought to be due to the greater cancellation of
scaled terms,VP andVWP, in the acceptance criterion derived from eqn (4.74), and the
be�er sampling between replica exchanges at high temperature.

�e protein-in-solvent problem can also be tackled using a development of remd
called temperature intervals with global energy reassignment (tiger) (Li et al., 2007b).
�is method uses a much smaller number of replicas, widely spaced in temperature, and
constructs an overlap between the potential-energy distributions of each replica by using
a series of heating–sampling–quenching cycles. Consider three replicas at increasing
temperatures, T0 < T1 < T2. T0 is the baseline temperature where states will be generated
according to a Boltzmann distribution. �e three replicas are evolved with time atT0 using
constant-NVT md. Replicas 1 and 2 are heated to their required temperatures by scaling
the momenta over a period of 1 ps. �e dynamics of the three replicas at the required
temperatures proceeds for a further 1 ps in the sampling phase, and �nally the replicas
are quenched using 30 steps of an adopted basis Newton–Raphson energy minimization.
�is is followed by a heating and equilibration phase of 1.2 ps, for all of the replicas at the
baseline temperature, T0. �e temperatures are �xed using a Nosé–Hoover thermostat
(see Section 3.8.2). �e total cycle time is 3.2 ps and a tiger simulation might typically
comprise ca. 5000 cycles. At the end of a particular cycle the three replicas are at the same
time t in their evolution, at the same temperature T0, and they have potential energies
VI,T0 (r

I ) for I = 0 . . . 2. �us, V1,T0 (r
1) is the potential energy of replica 1, quenched

from T1 to T0, where the coordinates of the N atoms a�er the end of the quench and
re-equilibration are r1 ≡ {r1

1, . . . r
1
N }. Li et al. (2007b) show that it is possible to swap the

replicas I and J at this point by accepting the exchange with a probability given by

min
(
1, exp

[
(βI − β J )

(
VI,T0 (r

I ) −VJ ,T0 (r
J )

)])
(4.75)

where we consider three possible swaps 0–1, 0–2, and 1–2 in that order. �e replicas are
then reheated to their required temperatures in the next cycle.

�e method has been applied to an alanine dipeptide (Ace–Ala–Nme) in 566 tip3p
water molecules. All the replicas were started with the dipeptide in one particular con-
formation; the two dihedral angles ϕ andψ were in the αR region of the Ramachandran
plot (the conformational distribution ρ (ϕ,ψ )). A careful analysis of the evolution of the
Ramachandran plot over the 16 ns of the run demonstrates that the three-level tiger
simulation is more e�ective than a remd simulation with 24 replicas in evolving the
equilibrium conformational distribution of the solvated dipeptide. Note that the number
of replicas used in the tiger method can be readily increased. However, there are two
assumptions in the acceptance criterion, eqn (4.75): that the ratio of the conformational
states of the peptide does not change signi�cantly during quenching, and that the speci�c
heat,CV is not a strong function of the conformational state of the system (in the absence
of a major conformational change). Li et al. (2007b) demonstrate that these approximations
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are accurate for the solvated dipeptide, and a more recent development, tiger2 (Li et al.,
2009), avoids these assumptions.

An extension of remc known as convective replica exchange (Spill et al., 2013) has
been developed to reduce the round trip time by deliberately moving one of the replicas
up and down the temperature ladder. A replica is chosen at random and labelled as the
walking replica; suppose this is initially in state I . �e other M − 1 replicas are passive.
When an exchange move is to be a�empted, a trial exchange is made between the walker,
I , and the higher-temperature state, I + 1. If the move is accepted, the new walking state
is I + 1. If the a�empt fails, a number of atom moves will be a�empted in all replicas;
at the next trial exchange, we return to the walker in state I and try to move it to I + 1
again. �is strategy continues until the exchange is successful. When this happens, the
underlying transition matrix is changed to allow for an exchange between I + 1 and I + 2,
and in this way the walker moves all the way up to the highest-temperature state. At
this point the direction of the walker is reversed, and exchange moves continue down
the ladder of states until the walker reaches the lowest temperature. �en, the direction
of moves is reversed again, and the process continues until the walker climbs back up
the ladder to state I . �e initial walker has accomplished its round trip, visiting every
other state, and another random replica J is chosen to walk. �e essential requirement for
microscopic reversibility in this algorithm is that movements of a walker in one direction
are balanced by movements in the opposite direction.

Spill et al. (2013) demonstrate that the convective replica exchange algorithm has two
advantages over conventional replica exchange. First, the method prevents the formation
of replica-exchange bo�lenecks. By trying exchanges at the bo�leneck until they suc-
ceed, the method makes sampling of the energy landscape more e�cient. Second, in the
simulation of complicated peptides, convective replica exchange is twice as fast as the
conventional method in exploring large numbers of free-energy basins. In these systems,
the use of convective replica exchange increased the number of round trips by a factor
of between 8 and 48 over the conventional method, depending on the complexity of the
peptide.

Parallel tempering has now been applied to polymers, proteins, ligand docking, spin
glasses, solid state structure determinations, and in more general optimization problems
such as image analysis, nmr interpretation, and risk analysis (Earl and Deem, 2005).
Powerful extensions of the methodology are also possible (Coluzza and Frenkel, 2005;
Kouza and Hansmann, 2011; Spill et al., 2013). One of the most useful features of the
technique is that it can be implemented e�ciently, and fairly easily, on a parallel computer.
We return to this in Section 7.3.

4.10 Other ensembles
We have only discussed a few of the enormous number ofmc algorithms that can be devised
to tackle di�erent simulation problems. Some advanced techniques will be described in
Chapter 9. However, it is worth mentioning that mc methods are available to sample
the constant-NVE and NPH ensembles (Ray, 1991; Lustig, 1998) to complement the md
algorithms described in Chapter 3. �e basic idea is to include the ideal gas contribution
to the energy through the speci�ed ensemble constraint, e.g. K = E − V (r) or K =
H−PV −V (r). �en Monte Carlo sampling of the con�gurational variables r uses a weight
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function which includes the ideal gas term (as is done in the NPT and µVT ensembles,
although the formulae are rather di�erent). Escobedo (2005) has described this approach
for a range of ensembles, and given examples of their usefulness. For example, the NPH
ensemble provides a very convenient way of traversing the two-phase region of a single-
component system. Combining with multi-ensemble or replica-exchange methods is
straightforward.



5
Some tricks of the trade

5.1 Introduction
�e purpose of this chapter is to put �esh on the bones of the techniques that have been
outlined in Chapters 3 and 4. �ere is a considerable gulf between understanding the ideas
behind themc andmdmethods, and writing and running e�cient programs. In this chapter,
we describe some of the programming techniques commonly used in the simulation of
�uids. �ere are a number of similarities in the structure of mc and md programs. �ey
involve a start-up from an initial con�guration of molecules, the generation of new
con�gurations in a particular ensemble, and the calculation of observable properties
by averaging over a �nite number of con�gurations. Because of the similarities, most
of the ideas developed in this chapter are applicable to both techniques, and we shall
proceed with this in mind, pointing out any speci�c exceptions. �e �rst part of this
chapter describes the methods used to speed up the evaluation of the interactions between
molecules, which are at the heart of a simulation program. �e second part describes the
overall structure of a typical program and gives details of running a simulation.

5.2 �e heart of the matter
In Chapter 1, we gave an example of the calculation of the potential energy for a system
of particles interacting via the pairwise Lennard-Jones potential. At that point, we paid
li�le a�ention to the e�ciency of that calculation, although we have mentioned points
such as the need to avoid the square root function, and the relative speeds of arithmetic
operations (see Chapter 1 and Appendix A). �e calculation of the potential energy of a
particular con�guration (and, in the case of md, the forces acting on all molecules) is the
heart of a simulation program, and is executed many millions of times. Great care must
be taken to make this particular section of code as e�cient as possible. In this section we
return to the force/energy routine with the following questions in mind. Is it possible to
avoid expensive function evaluations when we calculate the forces on a molecule? What
can we do with much more complicated forms of pair potential?

5.2.1 E�cient calculation of forces, energies, and pressures

Consider, initially, an atomic system with a pairwise potential v(r ). Assume that we have
identi�ed a pair of atoms i and j. Using the minimum image separations, the squared
interatomic distance is readily calculated. �e force on atom i due to j is

f i j = −∇ri v(ri j ) = −∇ri j v(ri j ). (5.1)
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j

ri j

i

f i j

f ji = −f i j

Fig. 5.1 �e separation vector and force between two molecules. ri j is the vector to i from j; f i j is
the force on i due to j; f ji is the force on j due to i . Here the forces are drawn corresponding to an
a�ractive interaction.

�is force is directed along the interatomic vector ri j = ri − rj (see Fig. 5.1) and it is easy
to show that

f i j = −
1
ri j

(dv(ri j )
dri j

)
ri j = −

w(ri j )

r 2
i j

ri j . (5.2)

�is equation makes it clear that if v(ri j ) is an even function of ri j , then the force vector
can be calculated without ever working out the absolute magnitude of ri j : r 2

i j will do. �e
function w(ri j ) is the pair virial function introduced in eqns (2.65)–(2.69). If v(ri j ) is even
in ri j , then so is w(ri j ). Taking the Lennard-Jones potential, eqn (1.6), as our example, we
have

f i j =
24ϵ
r 2
i j

[
2
( σ
ri j

)12
−

( σ
ri j

)6]
ri j . (5.3)

In an md simulation, v(ri j ), w(ri j ), and f i j are calculated within a double loop over all
pairs i and j as outlined in Chapter 1. �e force on particle j is calculated from the force
on i by exploiting Newton’s third law. �ere are one or two elementary steps that can be
taken to make this calculation e�cient, and these appear in Code 3.4. In an mc calculation,
v(ri j ) and w(ri j ) will typically be calculated in a loop over j, with i (the particle being
given a trial move) speci�ed. �is is illustrated in Code 4.3.

�e calculation of the con�gurational energy and the force can be readily extended
to molecular �uids in the interaction site formalism. In this case the potential energy is
given by eqn (1.12) and the virial by (for example) eqn (2.69). If required, the forces are
calculated in a straightforward way. In this case, it may be simplest to calculate the virial
by using the de�nitions (compare eqns (2.65), (2.67))

w(rab ) = −rab · fab , (5.4)

summed over all distinct site–site separations rab and forces fab (including intramolecular
ones) or

w(ri j ) = −ri j · f i j , (5.5)

summed over distinct pairs of molecules, where f i j is the sum of site–site interactions fab
acting between each pair. �ese equations translate easily into code. For more complicated
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intermolecular potentials, for example involving multipoles, the expressions given in
Appendix C may be used.

�ere are some special considerations which apply to mc simulations, and which may
improve the e�ciency of the program. When a molecule i is subjected to a trial move, the
new interactions with its neighbours j are calculated. It is possible to keep a watch for
substantial overlap energies during this calculation: if one is detected, the remainder of
the loop over j is immediately skipped and the move rejected. �e method is particularly
e�ective in the simulation of hard-core molecules, when a single overlap is su�cient
to guarantee rejection. Note that it only makes sense to test the trial con�guration in
this way, since the current con�guration is presumably free of substantial overlaps. For
so�-core potentials, care should be taken not to set the overlap criterion at too low an
energy: occasional signi�cant overlaps may make an important contribution to some
ensemble averages.

If no big overlaps are found, the result of the loops over j is a change in potential
energy which is used in the mc acceptance/rejection test. If the move is accepted, this
number can be used to update the current potential energy (as seen in Section 4.4): there
is no need to recalculate the energy from scratch. It may be worth considering a similar
approach when calculating the virial; that is, compute the change in this function which
accompanies each trial move, and updateW if it is accepted. Whether this is cost-e�ective
compared with a less frequent complete recalculation ofW depends on the acceptance
ratio: it would not be worthwhile if a large fraction of moves were rejected. In any case, a
complete recalculation of the energy and the virial should be carried out at the end of the
simulation as a check that all is well.

�e calculation of the pressure in systems of hard molecules (whether in mc or in md)
is carried out in a slightly di�erent fashion, not generally within the innermost loop of
the program, and we return to this in Section 5.5.

5.2.2 Table look-up and spline �t potentials

As the potentials used in simulations become more complicated, the repeated evaluation of
algebraic expressions for the potential and forces can be avoided by using a prepared table.
�is technique has been used in the simulation of the Barker–Fisher–Wa�s potential for
argon (Barker et al., 1971), which contains 11 adjustable parameters and an exponential.

�e table is constructed once, at the beginning of the simulation program, and the
potential and force are calculated as functions of s = r 2

i j . For example, we might set up a
table to calculate the exponential-6 potential,

v
E6 (r ) = −A/r 6 + B exp(−Cr ) ⇒ v

E6 (s ) = −A/s3 + B exp(−Cs1/2), (5.6)

where A, B, and C are parameters. During the course of the run, values of s = r 2
i j are

calculated for a particular pair of molecules, and the potential is interpolated from the
table. Polynomial or rational function interpolation from a set of tabulated values and
methods for e�ciently searching an ordered table are discussed by Press et al. (2007,
Chapter 3). In a molecular dynamics simulation, of course, we also need to evaluate the
forces. We may compute these by constructing a separate table of values of the function
w(ri j )/r

2
i j , which enters into the force calculation through eqn (5.2). �e success of the

interpolation method depends on the careful choice of the table-spacing. Typically, we
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�nd that δs = δr 2
i j = 0.01r 2

m, where rm is the position of the potential minimum, produces
a su�ciently �ne grid for use in md and mc simulations.

Andrea et al. (1983) suggested an improvement to this method, using a spline �t to
the potential. �e function v(s ) (where once more s = r 2

i j ) is divided into a number of
regions by grid points or knots sk . In each interval (sk , sk+1) the function is approximated
by a ��h-order polynomial

v(s ) ≈
5∑

n=0
c (k )n (s − sk )

n . (5.7)

�e coe�cients c (k )0 · · · c
(k )
5 are uniquely determined by the exact values of v(s ), dv(s )/ds ,

and d2
v(s )/ds2 at the two ends of the interval (Andrea et al., 1983, Appendix). �us, we

need to store the grid points sk (which need not be evenly spaced) and six coe�cients for
each interval. In their simulation of water, Andrea et al. represented the O−O, O−H, and
H−H potentials using 14, 16, and 26 intervals respectively. For md, the forces are easily
obtained by di�erentiating eqn (5.7) and using

w(r 2
i j )

r 2
i j
=

w(s )

s
= 2dv

ds . (5.8)

Another interesting example of a force represented by a polynomial �t is the construction
of the force matched (fm) representation of a spherically truncated Coulomb interaction
as discussed in Section 6.4 (Izvekov et al., 2008). In this case the truncated Coulomb force,
qiqj/s for s1/2 < rc, is represented by the polynomial

f FM
i j (s ) = qiqj

[
1
s
+

7∑
k=0

aks
k/2

]
, rcore < s1/2 < rc, (5.9)

where the coe�cients ak are determined by matching the trajectories from the fm force
and the true long-range Coulomb interaction.

5.2.3 Shi�ed and shi�ed-force potentials

�e truncation of the intermolecular potential at a cuto� introduces some di�culties in
de�ning a consistent potential and force for use in the md method. �e function v(ri j )
used in a simulation contains a discontinuity at ri j = rc: whenever a pair of molecules
crosses this boundary, the total energy will not be conserved. We can avoid this by shi�ing
the potential function by an amount vc = v(rc), that is, using instead the function

v
S (ri j ) =




v(ri j ) − vc ri j ≤ rc

0 ri j > rc.
(5.10)

�e small additional term is constant for any pair interaction, and does not a�ect the
forces, and hence the equations of motion of the system. However, its contribution to
the total energy varies from timestep to timestep, since the total number of pairs within
cuto� range varies. �is term should certainly be included in the calculation of the total
energy, so as to check the conservation law. However, there is a further problem. �e
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Example 5.1 Learning the potentials with a neural network

For complicated intermolecular potentials, such as those developed from ab initio

calculations, it can be cost-e�ective to teach the computer to estimate the potential
energy of a particular atom from a knowledge of its environment in the liquid. �is
can be done by constructing an arti�cial neural network (Behler, 2011).
In this approach, the Cartesian coordinates of a particular atom, i , are used to calculate
a set of µ symmetry functions, Gµ

i . �e �rst of these functions, µ = 1, might depend
on the radial distribution of all the other atoms around i . �e second might depend on
the distribution of triplets around atom i through the variable cosθi jk , and so on (see
e.g. Behler and Parrinello, 2007, eqns (4) and (5)). Symmetry functions of di�erent
order can be combined with weights ws

iµ to produce an overall Gi =
∑
µ w

s
iµG

µ
i . �e

Gi are the input to a simple neural network of the kind shown.
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�ere is a separate network for each atom, containing a number of hidden layers
(two in this example) each with a number of nodes (three in this example). �e
value y`

m held by the network at a particular node, m, in layer, `, is calculated as a
function of the weighted sum of the connected nodes in the previous layer, that is,
y`
m = f (

∑3
n=1 w

`
nmy

`−1
n ) for ` = 2 in our example. �e activation function is o�en

taken to be f (x ) = tanh(x ), although di�erent functions can be used for di�erent
layers. �e output from the network is the potential energy,V1. �e outputs from
all the separate networks can be added to produce the total potential energy,Vnet.
For a number of training con�gurations the fullVQM is also calculated. �e weights,
w, in the network, and symmetry functions, are adjusted to minimize |Vnet −VQM |
for the training set. �e same connectivity and inter-layer weights are used in the
di�erent networks established for each atom. Once the optimum weights have been
established, the network can be used to accurately estimate the potential and forces
for an unknown con�guration.
Morawietz et al. (2016) have employed neural network potentials in ab initio molecu-
lar dynamics simulations of water. �e e�ciency of the approach enabled them to
show that the relatively weak, isotropic van der Waals forces are crucial in producing
the density maximum and the negative volume of melting of the �uid.
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Fig. 5.2 Magnitude of the pair potential v(r ) and the force f (r ), for the Lennard-Jones and shi�ed
Lennard-Jones potentials (solid lines), and the shi�ed-force modi�cation (dashed lines). Note that,
for illustration, we have chosen a very short cuto� distance, rc = 1.6σ .

force between a pair of molecules is still discontinuous at ri j = rc. For example, in the
Lennard-Jones case, the force is given by eqn (5.3) for ri j ≤ rc, but is zero for ri j > rc. �e
magnitude of the discontinuity is ≈ 0.039 ϵσ−1 for rc = 2.5σ . It can cause instability in
the numerical solution of the di�erential equations. To avoid this di�culty, a number of
workers have used a ‘shi�ed-force potential’ (Stoddard and Ford, 1973; Stree� et al., 1978;
Nicolas et al., 1979; Powles et al., 1982). A small linear term is added to the potential, so
that its derivative is zero at the cuto� distance

v
SF (ri j ) =




v(ri j ) − vc − (ri j − rc)

(dv(ri j )
dri j

)
ri j=rc

ri j ≤ rc

0 ri j > rc.

(5.11)

�e discontinuity now appears in the gradient of the force, not in the force itself. �e
shi�ed-force potential for the Lennard-Jones case is shown in Fig. 5.2. �e force goes
smoothly to zero at the cuto� rc, removing problems in energy conservation and any
numerical instability in the equations of motion. Making the additional term quadratic
(Stoddard and Ford, 1973) avoids taking a square root. Of course, the di�erence between
the shi�ed-force potential and the original potential means that the simulation no longer
corresponds to the desired model liquid. However, the thermodynamic properties of
a �uid of particles interacting with the unshi�ed potential can be recovered from the
shi�ed-force potential simulation results, using a simple perturbation scheme (Nicolas
et al., 1979; Powles, 1984).
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5.2.4 �ermodynamic properties with a truncated potential

Comparing simulation results obtained with di�erent versions of a potential can lead to
considerable confusion. Here we discuss the most common situations. First, suppose that
an mc simulation of a model �uid has been performed with a truncated (but not shi�ed)
pair potential, which we write formally as

vc (r ) = v(r )Θ(rc − r ) (5.12)

where rc is the cuto� distance and Θ is the unit step function. �e corresponding virial
function for the calculation of the pressure is

wc (r ) = w(r )Θ(rc − r ) − r v(r )δ (r − rc). (5.13)

�e second term arises from the discontinuity of the potential at the cuto�. Using
eqn (2.102) 〈∑

i

∑
j>i

a(ri j )
〉
= 1

2N ρ

∫ ∞

0
a(r )д(r )4πr 2 dr . (5.14)

and recallingW = − 1
3
∑

i
∑

j>i w(ri j ), we can evaluate the average of the delta function
in calculating the pressure

PcV = NkBT + 〈W〉 +
2πN ρ

3 r 3
cд(rc)v(rc) ≈ NkBT + 〈W〉 +

2πN ρ
3 r 3

c v(rc)︸          ︷︷          ︸
∆PcV

, (5.15)

thereby de�ning the correction ∆Pc for the delta function contribution. �e approximation
results from assuming that the cuto� is large enough that д(rc) ≈ 1. It is understood that
W involves the sum over distinct pairs of the �rst term on the RHS of eqn (5.13), that
is, those pairs within the cuto�. Each of these three terms contributes to the pressure
associated with the truncated potential, hence the notation Pc. �e value of ∆Pc can be
calculated in advance of the simulation. For the Lennard-Jones potential, in reduced units,
it is

∆P∗c =
8
3πρ

∗2
(
r ∗c
−9
− r ∗c

−3) . (5.16)

Although the truncated potential is used to sample the canonical ensemble, it is the
pressure corresponding to the full, untruncated, potential that is normally of interest.
Now, the quantity to be averaged is the pairwise sum of w(r ) functions, that is, it involves
no delta functions. Moreover, in a perturbative, mean-�eld, approach, the long-range term
in the potential is assumed to have no e�ect on the structure. �erefore the pressure of
the full system can be wri�en, assuming д(r ) = 1 for r > rc

PV ≈ NkBT + 〈W〉 −
2π
3 N ρ

∫ ∞

rc

w(r )r 2 dr ≡ NkBT + 〈W〉 + PLRCV . (5.17)

W here has exactly the same interpretation as in eqn (5.15); that is, the sum of the virial
functions of distinct pairs within cuto� range, measured in the simulation using the
truncated potential. �e delta function correction does not appear at all, and eqn (5.17)
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can be used straightforwardly to compute the pressure during the simulation. �e long-
range correction, PLRC, can be computed ahead of the simulation. For the example of the
Lennard-Jones potential, it is given in eqn (2.144)

P∗LRC =
16
9 πρ

∗2
(
2r ∗c
−9
− 3r ∗c

−3) . (5.18)

It may be desirable to measure the pressure Pc corresponding to the actual truncated
potential used in the simulation, and express the pressure for the full potential in terms
of this. In this case, the relevant formula is obtained by combining eqns (5.15) and (5.17):

P = Pc − ∆Pc + PLRC. (5.19)

In other words, the delta function correction used in the calculation of Pc must be sub-
tracted o� again, and the long-range correction added on. �is is a very common approach
to use in constant-pressure Monte Carlo simulations of the truncated potential, because
then the speci�ed input pressure corresponds to Pc, not P . �e average of Pc may be
calculated (as a consistency check) in the simulation, using eqn (5.15), but in any case
the measured average density ρ will correspond to an equation of state ρ (Pc), which we
would normally invert to get Pc (ρ). We can recover P (ρ) a�erwards using eqn (5.19). For
the Lennard-Jones potential, the combined correction term is

P∗ − P∗c = P∗LRC − ∆P∗c = πρ∗2
(

8
9r
∗
c
−9
− 8

3r
∗
c
−3) . (5.20)

�is formula was used by Finn and Monson (1989) and Smit (1992), omi�ing the r ∗c −9 term
which is relatively small, to compare results from the truncated Lennard-Jones potential
with the equation of state of Nicolas et al. (1979).

A li�le thought reveals that the same result will be obtained (on the grounds of
ensemble equivalence) if one uses eqn (5.17) directly, even in a constant-pressure simula-
tion of the truncated potential. However, one must be aware that the value of P obtained
from it will not agree with the speci�ed pressure of the simulation. In this case, the
long-range correction term will vary with density.

Corresponding molecular dynamics simulations are performed with a truncated pair
force

fcs (r ) = f (r )Θ(rc − r ), (5.21)
where the notation stands for ‘cut and shi�ed’. In this case the virial function inside the
cuto� is the same as that of the full potential, but there is no discontinuity at r = rc.
�erefore there is no extra term in the calculation of the pressure for this model

PcsV = NkBT + 〈W〉. (5.22)

Making the same assumptions as before, the pressure for the full potential is straight-
forwardly given by the long-range correction

P = Pcs + PLRC. (5.23)

�e corresponding potential energy function, calculated by integrating the negative
force from in�nity to r is

vcs (r ) =
[
v(r ) − v(rc)

]
Θ(rc − r ), (5.24)
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and the total potential energy is

Vcs =
∑
i

∑
j>i

vcs (ri j ) = V − Ncv(rc), (5.25)

whereV is the total potential energy for all pairs within cuto� range (without shi�ing),
and Nc is the total number of such pairs

Nc =
∑
i

∑
j>i

Θ(rc − ri j ). (5.26)

Vcs is the true potential energy for the truncated force and it is this potential that must
be added to the kinetic energy to check for total energy conservation in the simulation. In
estimating the potential energy for the full Lennard-Jones �uid, it is consistent to calculate
the potential inside the cuto� using just the Lennard-Jones term without the shi� and to
add on the mean-�eld, long-range correction given by eqn (2.143).

Monte Carlo calculations may also be performed using the ‘cut-and-shi�ed’ potential,
and the pressure for the full potential estimated using the long-range correction PLRC.
�e discontinuity term ∆Pc does not arise in this case.

5.3 Neighbour lists
In the inner loops of the md and mc programs, we consider a molecule i and loop over
all molecules j to calculate the minimum image separations. If molecules are separated
by distances greater than the potential cuto�, the program skips to the end of the inner
loop, avoiding expensive calculations, and considers the next neighbour. In this method,
the time to examine all pair separations is proportional to N 2. Verlet (1967) suggested a
technique for improving the speed of a program by maintaining a list of the neighbours
of a particular molecule, which is updated at intervals. Between updates of the neighbour
list, the program does not check through all the j molecules, but just those appearing on
the list. �e number of pair separations explicitly considered is reduced. �is saves time
in looping through j, minimum imaging, calculating r 2

i j , and checking against the cuto�,
for all those particles not on the list. Obviously, there is no change in the time actually
spent calculating the energy and forces arising from neighbours within the potential
cuto�. In this section, we describe some useful time-saving neighbour list methods. �ese
methods are equally applicable to mc and md simulations, and for convenience we use the
md method to illustrate them. �ere are di�erences concerning the relative sizes of the
neighbour lists required in mc and md and we return to this point at the end of the next
section. Related techniques may be used to speed up md of hard systems (Erpenbeck and
Wood, 1977). In this case, the aim is to construct and maintain, as e�ciently as possible,
a table of future collisions between pairs of molecules. �e scheduling of molecular
collisions has been discussed in detail by Rapaport (1980) and Bannerman et al. (2011).

5.3.1 �e Verlet neighbour list

In the original Verlet method, the potential cuto� sphere, of radius rc, around a particular
molecule is surrounded by a ‘skin’ to give a larger sphere of radius r` , as shown in Fig. 5.3.
At the �rst step in a simulation, a list is constructed of all the neighbours of each molecule,
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Fig. 5.3 �e cuto� sphere, radius rc, and its skin, radius r` , around a molecule 1. Molecules 2, 3, 4,
5, and 6 are on the list of molecule 1; molecule 7 is not. Only molecules 2, 3, and 4 are within the
range of the potential at the time the list is constructed.

Code 5.1 Force routine using Verlet neighbour list
�ese �les are provided online. md_lj_vl_module.f90 contains a Lennard-Jones force
routine using a Verlet neighbour list, while verlet_list_module.f90 contains the
routines for constructing and updating the list. �ese two �les together act as a drop-in
replacement for md_lj_module.f90 (see Code 3.4). �ey can be combined with, for
example, md_nve_lj.f90 of Code 3.4 and the utility modules described in Appendix A
to make a molecular dynamics program, as illustrated in the supplied SConstruct �le.

! md_lj_vl_module.f90
! Force routine for MD, LJ atoms , Verlet neighbour list
MODULE md_module

! verlet_list_module.f90
! Verlet list handling routines for MD simulation
MODULE verlet_list_module

for which the pair separation is within r` . �ese neighbours are stored in an array, called,
shall we say, list. list is quite large, of dimension roughly 4πr 3

`
ρN /6. At the same

time, a second indexing array, point, of size N , is constructed. point(i) points to the
position in the array list where the �rst neighbour of molecule i can be found. Since
point(i+1) points to the �rst neighbour of molecule i+1, then point(i+1)-1 points to
the last neighbour of molecule i. �us, using point, we can readily identify the part of
the large list array which contains neighbours of i. Routines for se�ing up the arrays
list and point are given in Code 5.1.

Over the next few timesteps, the list is used in the force/energy evaluation routine.
For each molecule i, the program identi�es the neighbours j, by running over list from
point(i) to point(i+1)-1. �is loop should automatically handle the case when molecule
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i has no neighbours, and can be skipped, in which case point(i+1)-1 will be less than
point(i). �is is certainly possible in dilute systems. A sample force routine using the
Verlet list is given in Code 5.1. From time to time, the neighbour list is reconstructed, and
the cycle is repeated. �e algorithm is successful because the skin around rc is chosen to
be thick enough so that between reconstructions a molecule, such as 7 in Fig. 5.3, which
is not on the list of molecule 1, cannot penetrate through the skin into the important
rc sphere. Molecules such as 3 and 4 can move in and out of this sphere, but since they
are on the list of molecule 1, they are always considered regardless, until the list is next
updated.

�e interval between updates of the table is o�en �xed at the beginning of the
program, and intervals of 10–20 steps are quite common. An important re�nement allows
the program to update the neighbour list automatically. When the list is constructed, a
vector for each molecule is set to zero. At subsequent steps, the vector is incremented with
the displacement of each molecule. �us it stores the total displacement for each molecule
since the last update. When the sum of the magnitudes of the two largest displacements
exceeds r` − rc, the neighbour list should be updated again (Fincham, 1981; �ompson,
1983). �e code for automatic updating of the neighbour list is given in the routine of
Code 5.1.

�e list sphere radius, r` , is a parameter that we are free to choose. As r` is increased,
the frequency of updates of the neighbour list will decrease. However, with a large list,
the e�ciency of the non-update steps will decrease. �is trade-o� is illustrated in Fig. 5.4,
for di�erent system sizes. For systems of a few hundred particles, the initial improvement
re�ects the interval between updates, which is when an all-pairs calculation is needed.
�e actual cost of using the list is relatively small, and a signi�cant speed increase is seen
up to r ∗

`
≈ 2.8. For larger values of r ∗

`
, the cost of looping over all particles within the list

becomes more signi�cant. For systems N > 500, the improvement is dramatic and the
turnover point shi�s to larger r ∗

`
, but as we shall see, the method of Section 5.3.2 becomes

preferable. As the size of the system becomes larger, the size of the list array grows,
approximately ∝ N . If storage is a priority, then a binary representation of the list can be
employed (O’Shea, 1983).

In the mc method, the array point has a size N + 1 rather than N , since the index i
runs over all N atoms rather than N − 1 as in md. In addition, the array list is roughly
twice as large in mc as in a corresponding md program. In the md technique, the list for a
particular molecule i contains only the molecules j with an index greater than i , since
in this method we use Newton’s third law to calculate the force on j from i at the same
time as the force on i from j . In the mc method, particles i and j are moved independently
and the list must contain separately the information that i is a neighbour of j and j a
neighbour of i .

5.3.2 Cell structures and linked lists

As the size of the system increases towards 1000 molecules, the conventional neighbour
list becomes too large to store easily, and the logical testing of every pair in the system
is ine�cient. An alternative method of keeping track of neighbours for large systems is
the cell index method (�entrec and Brot, 1973; Hockney and Eastwood, 1988). �e cubic
simulation box (extension to non-cubic cases is possible) is divided into a regular la�ice of
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Fig. 5.4 Speedup with Verlet list. Example results are shown for the Lennard-Jones potential, with
cuto� r∗c = 2.5, and various values of skin thickness r∗

`
− r∗c , for the indicated system sizes N . �e

state point is ρ∗ = 0.78, T ∗ = 0.85, and the timestep is δt∗ = 0.005. �e curves show timesteps
per cpu-second, normalized by the speed for zero skin thickness (when the list is updated every
step). �e dashed line (also shown in the inset) gives the average number of steps between updates,
which is almost independent of system size.

sc × sc × sc cells. A two-dimensional representation of this is shown in Fig. 5.5. �ese cells
are chosen so that the side of the cell ` = L/sc is greater than the cuto� distance for the
forces, rc. For the two-dimensional example of Fig. 5.5, the neighbours of any molecule in
cell 8 are to be found in the cells 2, 3, 4, 7, 8, 9, 12, 13, and 14. If there is a separate list of
molecules in each of those cells then searching through the neighbours is a rapid process.
For the two-dimensional system illustrated, there are approximately ρ`2 molecules in
each cell (where ρ is the number density per unit area); the analogous result in three
dimensions would be ρ`3, where ρ = N /V . Using the cell structure in two dimensions,
we need only examine 9N ρ`2 pairs (or just 4.5N ρ`2 if we take advantage of the third law
in the md method). �is contrasts with N 2 (or 1

2N (N − 1)) for the brute-force approach.
When the cell structure is used in three dimensions, then we compute 27N ρ`3 interactions
(13.5N ρ`3 for md) as compared with N 2 (or 1

2N (N − 1)). �e cost of the method scales
with N rather than N 2, and the speedup over the brute-force approach is ≈ L2/9`2 in 2D,
or ≈ L3/27`3 in 3D.

�e cell structure may be set up and used by the method of linked lists (Knuth, 1973,
Chapter 2; Hockney and Eastwood, 1988, Chapter 8). �e �rst part of the method involves
sorting all the molecules into their appropriate cells. �is sorting is rapid, and may be
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Fig. 5.5 �e cell method in two dimensions. (a) �e central box is divided into sc × sc cells (sc = 5).
A molecule in cell 8 may interact with molecules in any of the shaded cells. In an md program,
only the light-shaded neighbours of cell 8 need be examined in the inner loop over cells. (b) A
close-up of cells 8 and 9, showing the molecules and the link-list structure. (c) �e head and list

array elements corresponding to these two cells. Each entry gives the position of the next in the
list array.

performed every step. Two arrays are created during the sorting process. �e ‘head-of-
chain’ array (head) has one element for each cell. �is element contains the identi�cation
number of one of the molecules sorted into that cell. �is number is used to address the
element of a linked-list array (list), which contains the number of the next molecule
in that cell. In turn, the list array element for that molecule is the index of the next
molecule in the cell, and so on. If we follow the trail of linked-list references, we will
eventually reach an element of list which is zero. �is indicates that there are no more
molecules in that cell, and we move on to the head-of-chain molecule for the next cell.
To illustrate this, imagine a simulation of particles in two cells: 1, 2, 5, 7, and 8 in cell 8
and 3, 4, 6, 9, and 10 in cell 9 (see Fig. 5.5). �e head and list arrays are illustrated in the
�gure. For cell 8, head(8) = 8 (the last particle found to lie in that cell), while for cell 9,
head(9) = 10; in both cases the route through the linked list is arrowed. �e construction
of head and list is straightforward, and is illustrated in Code 5.2.

In md, the calculation of the forces is performed by looping over all cells. For a given
cell, the program traverses the linked list. A particular molecule on the list may interact
with all molecules in the same cell that are further down the list. �is avoids counting the
ij interaction twice. A particular molecule also may interact with the molecules in the
neighbouring cells. To avoid double counting of these forces, only a limited number of
the neighbouring cells are considered. �is idea is most easily explained with reference
to our two-dimensional example shown in Fig. 5.5. A molecule in cell 8 interacts with
other molecules in the same cell, and with eight neighbouring cells, but the program only



198 Some tricks of the trade

Code 5.2 Building a cell structure with linked lists
�ese are the essential statements for assigning each atom to a cell, and building
the links between atoms lying in each cell. In the usual unit cube simulation box,
the cell length is 1/sc. Here, we identify each cell by a three-dimensional index
denoting its position in space, rather than a single index as in Fig. 5.5. �is means
that the cell c(1:3,i), in which an atom i lies, is essentially a discretized form
of the coordinate vector r(1:3,i); it is convenient to make the indices lie in the
range (0,sc-1) rather than (1,sc). We assume that periodic boundary corrections
have already been applied to r. Correspondingly, the head array is of rank 3, and
each element contains the particle index i of the last particle added to each cell. An
expanded version of the code, including guards against roundo� error, appears in the
online �le link_list_module.f90 of Code 5.3.

REAL , DIMENSION(3,n) :: r
INTEGER , DIMENSION(3,n) :: c
INTEGER , DIMENSION(n) :: list
INTEGER , DIMENSION (0:sc -1,0:sc -1,0:sc -1) :: head

head(:,:,:) = 0
DO i = 1, n

c(:,i) = FLOOR ( ( r(:,i) + 0.5 ) * REAL(sc) )
list(i) = head(c(1,i),c(2,i),c(3,i))
head(c(1,i),c(2,i),c(3,i)) = i

END DO

checks cells 8, 4, 9, 13, and 14. Interactions between cells 7 and 8 are checked when cell 7
is the focus of a�ention, and so on. In this way, we can make full use of Newton’s third
law in calculating the forces. We note that for a cell at the edge of the basic simulation
box (15 for example in Fig. 5.5) it is necessary to consider the periodic cells (6, 11, and 16).
An example of the code for constructing and searching through cells is given in Code 5.3.
�e linked-list method can also be used with the mc technique. In this case, a molecule
move involves checking molecules in the same cell, and in all the neighbouring cells. �is
is illustrated in Code 5.4.

�e cell structure may be used somewhat more e�ciently, by avoiding unnecessary
distance calculations, if the molecules in each cell are sorted into order of increasing
(say) x-coordinate (Hockney and Eastwood, 1988). Extending this idea, Gonnet (2007)
suggests sorting particles according to their projection onto the vector that connects the
cell centres. For each pair of cells, the loops over particle pairs may then be restricted to
those whose projected separation (a lower bound on the true separation) is less than rc.
Similar improvements are reviewed by Heinz and Hünenberger (2004) and Welling and
Germano (2011).

�e linked-list method has been used with considerable success in simulation of
systems such as plasmas, galaxies, and ionic crystals, which require a large number of
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Code 5.3 Force routine using linked lists
�ese �les are provided online. md_lj_ll_module.f90 contains a Lennard-Jones force
routine using a linked list, while link_list_module.f90 contains the routines for
constructing and updating the list. �ese two �les together act as a drop-in replace-
ment for md_lj_module.f90 (see Code 3.4). �ey can be combined with, for example,
md_nve_lj.f90 of Code 3.4 and the utility modules described in Appendix A, to make
a molecular dynamics program, as illustrated in the supplied SConstruct �le.

! md_lj_ll_module.f90
! Force routine for MD simulation , LJ atoms , linked lists
MODULE md_module

! link_list_module.f90
! Link list handling routines for MC or MD simulation
MODULE link_list_module

Code 5.4 Monte Carlo routines using linked lists
�is �le is provided online. mc_lj_ll_module.f90 contains Lennard-Jones energy
routines using a linked list. Together with link_list_module.f90 (Code 5.3) it acts
as a drop-in replacement for mc_lj_module.f90 (see Code 4.3). �ey can be combined
with several of the supplied Lennard-Jones Monte Carlo programs in the common
ensembles, for example mc_nvt_lj.f90 (Code 4.3), mc_zvt_lj.f90 (Code 4.6), plus
the utility modules described in Appendix A, to make complete mc programs, as
illustrated in the SConstruct �le.

! mc_lj_ll_module.f90
! Energy and move routines for MC, LJ potential , linked lists
MODULE mc_module

particles (Hockney and Eastwood, 1988). In both the linked-list methods and the Verlet
neighbour list, the computing time required to run a simulation tends to increase linearly
with the number of particles N rather than quadratically. �is rule of thumb does not take
into account the extra time required to set up and manipulate the lists. For small systems
(N ≈ 100) the overheads involved make the use of lists unpro�table. Mazzeo et al. (2010)
have developed a linked-list method for Monte Carlo simulations, and discuss several
optimization strategies.

Parallel computers o�er a more cost-e�ective route to high-performance computing
than traditional single processor machines. Both the force calculation and integration
steps of molecular dynamics are parallel in nature, and for that reason parallel algorithms
based on the cell-structure, linked-list technique have been developed. �is method is
particularly e�cient when the range of intermolecular potential is much smaller than the
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dimensions of the simulation box. �is domain-decomposition approach was originally
tested for �uids of up to 2 × 106 atoms in two and three dimensions (Pinches et al., 1991). A
detailed implementation using the message passing interface (mpi) is provided by Griebel
et al. (2007, Chapter 4).

One is not restricted to using cells of length rc. A modi�cation of this general approach
employs cells that are su�ciently small that at most one particle can occupy each cell. In
this case, a linked-list structure as described earlier is not required: the program simply
loops over all cells, and conducts an inner loop over the cells that are within a distance rc
of the cell of interest. Advantages of this method are that the list of cells ‘within range’
of each given cell may be computed at the start of the program, remaining unaltered
throughout, and that a simple decision (is the cell occupied or not?) is required at each
stage. However, the number of cells is large, and, of course, many of them are empty.
�is version of the method has been analysed in detail (Ma�son and Rice, 1999; Yao et al.,
2004; Heinz and Hünenberger, 2004).

5.4 Non-bonded interactions and multiple timesteps
In Section 3.5 we introduced the idea of separating the Liouville operator into parts that
vary at di�erent rates in time, due to a division into ‘fast’ and ‘slow’ forces. One obvious
such division is between intramolecular forces, especially bond stretching potentials
which produce rapid vibration, and intermolecular non-bonded forces. �is idea may
be extended, and molecular dynamics packages quite commonly divide non-bonded
potentials into a hierarchy of terms, from short-ranged contributions which have high
gradients, to longer-ranged, more gently varying, terms. �ese are then handled by a
corresponding hierarchy of timesteps. �e rationale is that the number of long-range pair
interactions is much larger than the number of short-range ones (there is a geometrical
factor of r 2

i j ) but they may be computed much less frequently.
A simpli�ed example, following Procacci and Marchi (1996), illustrates the idea. Con-

sider sub-dividing the Lennard-Jones potential according to a set of cuto� distances
R1 < R2 < · · · < Rk < · · · < RK as follows

v
LJ
k (r ) ≡

[
Sk

(
r − Rk
λ

)
− Sk−1

(
r − Rk−1

λ

)]
v

LJ (r ) (5.27)

where the switching functions are de�ned S0 (x ) = 0, SK (x ) = 1, and

Sk (x ) =




1 x < −1
(2x + 3)x2 −1 < x < 0
0 x > 0

k = 1 . . .K − 1.

It is understood that R0 = 0, and RK is the potential cuto� distance. �e parameter λ
de�nes a range of r over which Sk changes smoothly from 1 to 0, and the successive shells
de�ned by the square brackets in eqn (5.27) overlap by this distance. It is easy to show
that

v
LJ (r ) =

K∑
k=1

v
LJ
k (r ).
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Code 5.5 Multiple-timestep algorithm, Lennard-Jones atoms
�ese �les are provided online. md_lj_mts.f90 carries out md using a three-timestep
scheme, for three shells of pair interaction, which are computed using the force routine
supplied in md_lj_mts_module.f90. Utility module routines described in Appendix A
handle input/output and averages. �e example is slightly contrived: for clarity, no
neighbour lists are used.

! md_lj_mts.f90
! Molecular dynamics , NVE , multiple timesteps
PROGRAM md_lj_mts

! md_lj_mts_module.f90
! Force routine for MD, LJ atoms , multiple time steps
MODULE md_module

�en, for a suitable choice of the Rk , each contribution k may be treated using a di�erent
timestep, using a scheme similar to that described in Section 3.5, taking advantage of the
slower variation in time of the longer-range contributions. Of course, as the atoms move
around, the pairs belonging to each shell will change. Also, in calculating the forces from
each separate contribution v

LJ
k (r ), the r -dependence of the switching functions must be

taken into account. Code 5.5 illustrates this approach.
It should be emphasized that this example is oversimpli�ed, and very li�le improve-

ment in e�ciency should be expected for a relatively short-ranged potential such as
Lennard-Jones. �e method comes into its own when electrostatic forces are present,
for which the long-range parts may be handled with a long timestep, and when high-
frequency intramolecular terms may be tackled with a short timestep, as discussed in
Section 3.5. Procacci and Marchi (1996) propose a separation based not on atom pairs,
but on pairs of neutral groups. It is worthwhile pu�ing some e�ort into optimizing the
e�ciency of the arrangement, and in principle it is possible to handle a very large number
of classes based on distance (Kräutler and Hünenberger, 2006).

5.5 When the dust has settled
At the end of the central loop of the program, a new con�guration of molecules is created,
and there are a number of important con�gurational properties that can be calculated. At
this point in the program, the potential energy and the forces on particular molecules
are available. �ese quantities, and functions derived from them, may be added to the
accumulators used to eventually calculate simulation run averages. For example, the
square of the con�gurational energy,V2, is calculated so that, at the end of the simulation,
〈V2〉 − 〈V〉2 can be used in eqns (2.80) or (2.89) to calculate the speci�c heat in the
canonical or microcanonical ensemble. Although the average force and torque on a
molecule in a �uid are zero, the mean-square values of these properties can be used to
calculate the quantum corrections to the free energy given by eqns (2.153), (2.155). In an
md simulation, the force f i on molecule i from its neighbours is calculated anyway, to
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move the molecules. �e forces are not required in the implementation of the Metropolis
mc method, so that they must be evaluated in addition to the potential energy if the
quantum corrections are to be evaluated. �e alternative of calculating the corrections
via д(r ) (eqn (2.154)) is less accurate. �e mean-square forces, as well as the average of
the Laplacian of the potential, are needed to calculate the con�gurational temperature of
eqn (2.56) and Appendix F.

�is is the point in the simulation at which a direct calculation of the chemical
potential can be carried out. A test particle, which is identical to the other molecules
in the simulation, is inserted into the �uid at random (Widom, 1963). �e particle does
not disturb the phase trajectory of the �uid, but the energy of interaction with the other
molecules,Vtest, is calculated. �is operation is repeated many times, and the quantity
exp(−βVtest) is used in eqn (2.75) to compute the chemical potential. In the md method,
the total kinetic temperature, T , �uctuates, and it is essential to use eqn (2.76a). �e
insertion subroutine increases the running time somewhat; a �gure of 20 % is typical.

�e di�culty with this method is that a large number of substantial overlaps occur
when particles are inserted. �e exponential is then negligible, and we do not improve
the statistics in the estimation of µ. Special techniques may be needed in such cases and
we address these in Chapter 9. �is is not a severe problem for the Lennard-Jones �uid,
where Powles et al. (1982) have calculated µ close to the triple point with runs of less
than 8000 timesteps. For molecular �uids, Romano and Singer (1979) calculated µ for a
model of liquid chlorine up to a reduced density of ρσ 3 = 0.4 (the triple point density is
≈ 0.52); Fincham et al. (1986) obtained an accurate estimate of µ by direct insertion at
ρσ 3 = 0.45 for the same model. In the case of mixtures, the chemical potential of each
species can be determined by separately inserting molecules of that species.

�e calculation of µ for a chain molecule, such as a small polymer in a polymer melt or
solution, is more di�cult. Once the �rst monomer of the ghost chain has been randomly
inserted, without a signi�cant overlap, the addition of subsequent monomers is likely to
lead to such overlaps and, even for chains of modest length, the overall trial insertion
will result in a zero contribution to µ. �e con�gurational-bias method (see Section 9.3.4)
can be used to thread the inserted chain through the �uid so that it makes a reasonable
contribution to µ (Willemsen et al., 1998).

In calculating µ for an ionic �uid, charge neutrality can be preserved by inserting
a pair of oppositely charged test particles and calculating the Boltzmann factor of the
energy of the test ion pair with the ionic �uid. �e two charged particles can be inserted
at random positions in the �uid, but the accuracy of the calculation is improved if we use
a Rosenbluth approach to increase the likelihood that the inserted pairs are separated by
a short distance, that is, close to contact in the primitive model of the electrolyte (Ork-
oulas and Panagiotopoulos, 1993). More accurate calculations of the chemical potential
of ions in aqueous environments can be made using methods such as mbar (Mester and
Panagiotopoulos, 2015); for further discussion see Section 9.2.4.

For systems of hard molecules, the pressure is generally not calculated in the conven-
tional way: the potential energy is not di�erentiable, and so it is impossible to de�ne forces.
In md of such systems, as described in Section 3.7, the program proceeds from collision to
collision. At each event, the collisional virial may be calculated, from the impulse (rather
than force) acting between the particles. �is is accumulated in a time average and, at
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intervals, these averages are used to calculate the excess part of the pressure, as described
in Section 2.4. However, for nonspherical hard particle models (Section 3.7.2), event-driven
md is a more complicated proposition than mc.

In mc simulations of hard-particle systems, the pressure may be calculated numerically
by a box-scaling procedure, �rst introduced by Eppenga and Frenkel (1984). �e problem
has been revisited several times (Allen, 2006c; de Miguel and Jackson, 2006; Brumby et al.,
2011; Jiménez-Serratos et al., 2012). Start with the canonical ensemble expression

Pex

kBT
= −

1
kBT

∂Aex

∂V
=
∂ lnQex

∂V
=

1
Qex
∂Qex

∂V

= lim
∆V→0+

1
∆V

Qex (V ) −Qex (V − ∆V )

Qex (V )

= lim
∆V→0+

1
∆V

(
1 − Qex (V − ∆V )

Qex (V )

)
.

Here we are considering a system that has been reduced in volume by a small amount
∆V relative to the system of interest. We can relate the ratio of partition functions to
a single quantity, averaged over particle coordinates, if we take the la�er to be scaled
homogeneously, along with the box lengths

L′ = f L, r′ = f r, where f =
(V − ∆V

V

)1/3
.

�e ratio Qex (V − ∆V )/Qex (V ) may be interpreted as the relative statistical weights of
these systems. For hard particles, the statistical weights of con�gurations are simply
zero (if there is an overlap) or one (if there is no overlap): therefore this ratio is the
average probability of no overlap being generated by the volume scaling. Eppenga and
Frenkel (1984) argue that, for su�ciently small ∆V , this may be wri�en as a product of
independent probabilities of no overlap for all the pairs, each of which can be wri�en as
1 − p where p is the probability that the volume scaling results in an overlap of a given
pair; this value is the same for all pairs. Hence

Pex

kBT
= lim

∆V→0+

1 −∏
i<j (1 − p)
∆V

= lim
∆V→0+

∑
i<j p

∆V
= lim

∆V→0+

〈
Noverlap

〉
∆V

,

where we use the fact that p � 1 for small ∆V . �erefore we may calculate Pex by mc
simulations in which, at intervals, we count the overlaps Noverlap (summed over all distinct
pairs) that would result from an isotropic scaling of the box and particle coordinates
by the factor f just de�ned, average them and divide by ∆V . Alternatively, Noverlap
can be calculated by counting the overlaps that would result from scaling the particle
dimensions up, isotropically, by a factor 1/f , keeping the coordinates �xed. In practice,
an extrapolation to low ∆V may be needed.

As just described, the method is restricted to convex hard molecules: an expansion
(rather than a contraction) of the box cannot produce any overlaps in this case. For
non-convex particles (for example, hard dumb-bells) an expansion can produce overlaps
and the prescription must be modi�ed: Brumby et al. (2011) discuss how to take this into
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account, as well as some of the subtleties of the statistical mechanics. Jiménez-Serratos
et al. (2012) explain how to handle the case of �nite discontinuities in the potential, as
seen for square wells, for instance. It is possible to extend the procedure to calculate all
the components of the pressure tensor, either by using the geometry of convex particles
(Allen, 2006c) or by scaling separately in the x , y , and z directions (de Miguel and Jackson,
2006; Brumby et al., 2011). �ere are several ways of deriving the expression for Pex

(de Miguel and Jackson, 2006), and it is also possible to relate it to the pair distribution
function at contact (Boublik, 1974), which is a well-known statistical mechanical route to
the pressure. �e use of this approach to estimate the surface tension of interfaces (Gloor
et al., 2005) will be discussed in Chapter 14.

In this book, we have assumed that calculation of most other properties of interest
will be carried out a�er the simulation, by analysis of output con�gurations stored on disk
or other media. �is analysis will be the subject of Chapter 8. In some cases, however, it
may be preferable to calculate properties such as time correlation functions and structural
distributions during the simulation itself. Against this, it must be said that the simulation
program may be slowed down unnecessarily if too much calculation is included in it. For
example, the pair distribution function д(r ) involves a sum over pairs of molecules, and
this is sometimes included in the inner loop of an md program. However, д(r ) is generally
of interest for separations r much greater than the potential cuto� rc, and so we need
to examine many more pairs than would be required to calculate the energy and forces.
Also, successive con�gurations are likely to be highly correlated. It is sensible to carry out
this expensive summation less frequently than once per timestep. Similar observations
apply to many other properties. �e cleanest approach is to write a completely separate
routine for calculatingд(r ), and call it (say) every 10–20 steps or mc cycles; or alternatively
to perform the analysis a�erwards from stored con�gurations. In a similar way, time
correlation functions may be calculated during an md simulation, by methods very similar
to some of those described in Chapter 8. However, this will require extra storage in the
simulation program, and will make the program itself more complicated.

5.6 Starting up
In the remainder of this chapter, we consider the overall structure of the simulation
programs. It is quite common to carry out sequences of runs at di�erent state points, each
run following on from the previous one. By this means, the starting con�guration for most
runs is obtained from a nearby state point, and will not require as long to equilibrate as
one prepared from scratch. On the other hand, with the availability of parallel computing
resources that can be used as ‘task farms’, the overall work�ow may be more e�cient
if many runs can be conducted simultaneously. In this case, each one will require an
independent starting point.

In both md and mc techniques, therefore, it is necessary to design a starting con�gura-
tion for the �rst simulation of a sequence. For mc, the molecular positions and orientations
are speci�ed, and for md, in addition, the initial velocities and angular velocities must be
chosen. Assuming that the liquid state is the target, it is important to choose a con�gu-
ration that can relax quickly to the structure and velocity distribution appropriate to a
�uid. �is period of equilibration must be monitored carefully, since the disappearance
of the initial structure may be quite slow. As a series of runs progresses, the coordinates
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and velocities from the last con�guration of the previous run can be scaled (giving a new
density, energy, etc.) to form the initial con�guration for the next run. Again, with each
change in state point, a period of equilibration must be set aside before a�empting to
compute proper simulation averages.

5.6.1 �e initial con�guration

�e simplest method of constructing a liquid structure is to place molecules at random
inside the simulation box (see Appendix E). �e di�culty with this technique is that
the con�guration so constructed may contain substantial overlaps. �is would be totally
unphysical for a hard-core system, for which the potential energy would be in�nite.
For so� potentials, the energy for most random con�gurations, although high, can be
calculated (provided no two molecules are centred at exactly the same point), so this type
of con�guration can be used to start Monte Carlo simulations, provided that the system
is allowed to relax. In molecular dynamics, on the other hand, the large intermolecular
potentials and the correspondingly large forces can cause di�culties in the solution of
the di�erential equations of motion. A standard approach is to begin with a period of
energy minimization: e�ectively, the velocities are set to zero at the start of each step,
so the system evolves in the direction of the forces (‘downhill’). During this period, a
maximum limit can be set on the individual atom displacements, to avoid the creation of
further overlaps. Another strategy is to replace the real potential by a version in which
the repulsive core is reduced in size and/or strength, and slowly restore the full potential
during equilibration.

It is more usual to start from a la�ice. Almost any la�ice is suitable, but historically
the face-centred cubic structure, with its 4M3 (M = integer) la�ice points has been the
starting con�guration for many simulations. �is la�ice is shown in Fig. 5.6. �e la�ice
spacing is chosen so that the appropriate liquid state density is obtained. During the
course of the simulation the la�ice structure will disappear, to be replaced by a typical
liquid structure. �is process of ‘melting’ can be enhanced by giving each molecule a
small random displacement from its initial la�ice point along each of the space-�xed axes
(Scho�eld, 1973).

In the case of a molecular �uid, it is also necessary to assign the initial orientations of
the molecules. A model commonly used for linear molecules is the α-fcc la�ice, which
is the solid structure of CO2 and one of the phases of N2 (see Fig. 5.6). In this structure,
there are four subla�ices of molecules oriented along the four diagonals of the unit cell.
A code for generating the α-fcc la�ice is given in Code 5.6. For non-linear molecules,
any suitable known crystal structure could be used. Small random displacements can also
be applied to the la�ice orientations so as to speed up melting. Some workers prefer to
choose the orientations completely randomly given a centre of mass structure, although
at high densities, with elongated molecules, random assignment of the directions can
result in non-physical overlaps.

5.6.2 �e initial velocities

For a molecular dynamics simulation, the initial velocities of all the molecules must be
speci�ed. It is usual to choose random velocities, with magnitudes conforming to the
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Fig. 5.6 Unit cell of the α-fcc structure for linear molecules. �e centre-of-mass positions are as in
the argon la�ice. �e orientations are in four subla�ices: (1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

Code 5.6 Initialization of a crystal lattice
�ese �les are provided online. initialize.f90 contains a program to initialize the
α-fcc la�ice of linear molecules, or the simple fcc la�ice of atoms, using routines
in initialize_module.f90, and utility module routines (see Appendix A) to handle
random numbers and �le output. Optionally the velocities and angular velocities can
also be initialized, for a chosen temperature. �e program can also handle nonlinear
molecules and chains of atoms.

! initialize.f90
! Sets up initial configuration for MD or MC
PROGRAM initialize

! initialize_module.f90
! Routines to initialize configurations and velocities
MODULE initialize_module

required temperature, corrected so that there is no overall momentum

P =
N∑
i=1

mivi = 0. (5.28)

�e velocities may be chosen randomly from a Gaussian distribution (see Appendix E
and Code 5.6). For example, in an atomic system

ρ (vix ) = (mi/2πkBT )
1/2 exp

(
− 1

2mi v
2
ix/kBT

)
(5.29)

where ρ (vix ) is the probability density for velocity component vix , and similar equations
apply for the y and z components. �e same equations apply to the centre-of-mass
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velocities in a molecular system. As a simple alternative, each velocity component may
be chosen to be uniformly distributed in a range (−vmax, +vmax); the Maxwell–Boltzmann
distribution is rapidly established by molecular collisions within (typically) 100 timesteps.
�e (re)selection of velocities, and the scaling needed to make them consistent with the
chosen temperature, are both standard features of most md packages.

For a molecular �uid, the angular velocity in the body-�xed frame is also chosen to
be consistent with the required temperature

f

2 NkBT =
1
2

N∑
i=1
ωb
i · I ·ω

b
i . (5.30)

Here, I is the moment of inertia tensor and f the number of degrees of rotational freedom
(two for a linear molecule, three for a nonlinear one). Because the total angular momentum
is not conserved, it is not essential to set the initial value of this quantity to zero, but it is
sensible to ensure that the molecular angular momenta roughly cancel each other. For
linear molecules, each angular velocityωi must be chosen perpendicular to the molecular
axis (see Appendix E). An example of this technique is given in Code 5.6. One method
for initializing the angular velocity for a la�ice con�guration involves choosing pairs
of molecules with identical orientations and assigning them equal and opposite angular
velocities chosen at random. An alternative method is to set the angular velocity of every
molecule to zero at the start of the run, and to choose the translational kinetic temperature
to be greater than required. �e normal process of equilibration will then redistribute
the energy amongst the di�erent degrees of freedom. Precise adjustments to the kinetic
temperature are made by scaling velocities during equilibration.

5.6.3 Equilibration

If a simulation is started from a la�ice, or from a disordered con�guration at a di�erent
density and temperature, it is necessary to run for a period so that the system can come
to equilibrium at the new state point. At the end of this equilibration period, all memory
of the initial con�guration should have been lost. A simple way to monitor system
equilibration is to record the instantaneous values of the potential energy and pressure
during this period. In the case of a la�ice start, the potential energy rises from a large
negative value to a value typical of a dense liquid, as shown in Fig. 5.7(a). �e behaviour
of the instantaneous pressure is also shown in Fig. 5.7(b). �e equilibration period should
be extended at least until these quantities have ceased to show a systematic dri� and have
started to oscillate about steady mean values.

Equilibration is especially important when the initial con�guration is a la�ice, and
the state point of interest is in the liquid region of the phase diagram. �ere are a number
of parameters that can be monitored to track the ‘melting’ of the la�ice, and subsequent
progress to equilibrium. �e degree of translational order in the centres of mass is tested
by evaluating the translational order parameter

s (k) = |ρ (k) |2 with ρ (k) =
1
N

N∑
i=1

exp(ik · ri ) (5.31)

where ri is the position vector of the centre of mass of the ith molecule and k is a reciprocal
la�ice vector of the initial la�ice. �is is equal to the structure factor S (k) divided by the
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Fig. 5.7 �e equilibration phase of anmd simulation. �e horizontal scale is logarithmic; the �rst ten
steps are shown explicitly. We show the evolution of: (a) the potential energy; (b) the instantaneous
pressure; (d) the square modulus of the translational order parameter; and (c) the root-mean-square
displacement from the initial positions. �e system consists of 108 atoms interacting via the shi�ed
Lennard-Jones pair potential, r∗c = 2.5, no long-range corrections applied. �e simulation starts from
an fcc la�ice with a Maxwell–Boltzman velocity distribution. �e system is near the triple point
(ρ∗ = 0.8442, T ∗ = 0.722, P∗ = 0.610, E∗/N = −4.129). �e simulation is in the constant-energy
ensemble, using the velocity Verlet algorithm, with δt∗ = 0.005.

number of particles. For example,

k = (2π/`) (−1, 1, −1) =
[(

1
4N

)1/3
2π/L

]
(−1, 1, −1) for fcc,

where ` is the unit cell size, which may be set equal to L/( 1
4N )1/3 in a cubic simulation

box. It is, of course, possible to monitor several such components. For a solid, ρ (k) is of
order unity, apart from an origin-dependent phase factor which disappears on taking the
square modulus to get s (k). For a liquid, s (k) will be positive, with amplitude O (N −1/2).
�e translational order parameter for a simulation starting in the fcc la�ice is shown in
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Fig. 5.7(c). It is clear that, in this instance, ρ (k) is a much more sensitive indicator of the
persistence of a la�ice structure, and of the need to extend the equilibration period, than
the ‘thermodynamic’ quantities shown in Fig. 5.7(a) and (b).

�e orientational order parameter, as introduced by Vieillard-Baron (1972) is given
for linear molecules by the �rst Legendre polynomial

P1 =
1
N

N∑
i=1

P1 (cosγi ) =
1
N

N∑
i=1

cosγi (5.32)

where γi is the angle between the molecular axis of molecule i and the original axis
direction in the perfect crystal. Several other parameters of this type (for example, higher-
order Legendre polynomials) can be monitored. P1 = 1 for the initial con�guration and
�uctuates around zero with amplitude O (N −1/2) when the �uid is rotationally disordered.
For non-linear molecules, several similar order parameters, based on di�erent molecular
axes, may be examined; they should all vanish simultaneously on ‘melting’. An example
of an order parameter routine is given in the utility modules of Appendix A.

An additional strategy involves monitoring the mean-squared displacements of the
molecules from their initial la�ice positions. �is function increases during the course of a
liquid simulation, as illustrated in Fig. 5.7(d) (see eqn (2.117)), but oscillates around a mean
value in a solid. A useful rule of thumb is that when the root-mean-squared displacement
per particle exceeds 0.5σ and is clearly increasing, then the system has ‘melted’ and the
equilibration is complete. Care should be taken to exclude periodic boundary corrections
in the computation of this quantity. �is technique is useful for monitoring equilibration
not only from a la�ice but also from a disordered starting con�guration, particularly
when there is a danger that the system may become trapped in a glassy state rather than
forming a liquid: eqn (5.31) would not be appropriate for these cases.

An additional danger during the equilibration period is that the system may enter a
region of gas–liquid coexistence. If a study of a homogeneous �uid is a�empted in the
two-phase region, large, slow density �uctuations occur in the central simulation box. �is
is most clearly manifest in the radial distribution function (Jacucci and �irke, 1980b).
In the two-phase region, д(r ) has an unusually large �rst peak (д(r ) ≈ 5), it exhibits
long-ranged, slow, oscillations, and does not decay to its correct long-range value of
1. �e structure factor S (k ) diverges as k = 0, indicating long-wavelength �uctuations.
Monitoring these structural quantities may give a warning that the system has entered a
two-phase region, in which case extremely long equilibration times will be required.

One useful trick that may be used to increase the rate of equilibration from a la�ice,
is to raise the kinetic temperature to a high value (e.g. T ∗ = 5 for Lennard-Jones atoms)
for the initial 500 steps (e.g. by scaling all the velocities). �e temperature is reset to
the desired value during the second part of the equilibration period. It is sometimes
convenient to continually adjust the temperature and/or pressure of an md simulation
throughout the equilibration phase, using one of the methods described in Chapter 3.

It is di�cult to say how long a run is needed for equilibration, but periods of 1000–
10 000 timesteps or mc cycles are typical for small systems, N ∼ 1000 atoms; remember
(Section 4.4) that for an N -atom system, one mc cycle is N a�empted moves. More time
should be set aside for equilibration from an initial la�ice, when large structural changes
are anticipated, or whenever it is suspected that a phase transition is close; somewhat less
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time is required for high-temperature �uids. �e golden rule is to examine carefully the
aforementioned parameters, as the simulation proceeds. At the end of equilibration, they
should have clearly reached the expected limiting behaviour. In an md simulation, it is
also worthwhile to check the proper partitioning of kinetic temperature for a molecular
system (i.e. Trot = Ttrans) and that the kinetic temperature is equal to the con�gurational
temperature, eqn (2.56), although it should be remembered that these instantaneous
values are subject to signi�cant �uctuations. At the end of the equilibration period, the
accumulators for the ensemble averages are reset to zero, and the production phase of the
simulation begins.

5.7 Organization of the simulation
Computer simulations are programs that may require a substantial amount of central
processing unit (cpu) time, and produce signi�cant amounts of data. It is not always clear,
at the outset, how long a simulation should be, in order to produce the desired results with
adequate statistical precision. For this reason, simulations should be designed so that they
can be restarted or continued with the minimum di�culty. �e restart facility enables the
total simulation to be broken up into manageable chunks of computing time. In the event
of an unexpected computer failure, including �lling up the data storage, the program can
be started again with a minimum loss of resources. It may even be possible to make the
simulation self-starting, so that it can be run as a series of small jobs without human
intervention. �e details of job organization clearly depend on the particular computer
being used.

5.7.1 Input/output and �le handling

Ideally, manipulation of �les by the user should be kept to a minimum. O�en it is useful
to write scripts to help set up many simulations at once, and to run the analysis programs
a�erwards. Python is very commonly used; alternatives include Perl, Tcl, and shells such as
bash. �e whole operation will be made easier by adopting a sensible, usually hierarchical,
structure of directories and �les. It also makes sense to keep all the �les associated with a
particular run, both input and output, in (or under) the same directory. �is helps avoid
the embarrassment of forge�ing the parameters that were used to generate a large dataset.

Only a handful of parameters de�ne the important features of a simulation: the run
length, step size, desired temperature, etc. �ese numbers can be stored in a small input �le,
which can easily be accessed and altered by the user. Legibility and clarity are essential:
a key–value system makes it easy to recognize which parameter is which, and this is
the scheme used by many packages. �e �le can be prepared in a simple editor, or via
a script or other user interface. Usually the simulation program or package will write
these parameters out, somewhere near the start of the main output �le, which will also
typically contain some bare-bones information about the progress of the simulation, and
a summary of results on successful completion.

A second, essential, body of information is the speci�cation of the force �eld or
interaction potential. For a complex system, this can be a signi�cant amount of data,
although it may be reduced if default parameters are built into the program itself, and
simply selected as options in the data �le. �is information may be combined with the run
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parameters described in the previous paragraph, or may be stored separately, depending on
the package and/or individual preference. It should also be user-readable, for convenience.

�e starting con�guration (molecular positions, velocities, accelerations, etc), and
�nal con�guration produced at the end of the run, may be either in machine-readable
(unforma�ed, binary) or user-readable (forma�ed, e.g. ascii) form. �e forma�ed ver-
sions occupy more space, but can be compressed (zipped), and some programs (e.g. for
visualization) can read the compressed forms directly. Most important, perhaps, is to
adopt a standard �le format where possible, for portability. �ere is no universally agreed
standard, however, as the �eld is so broad. De facto standards are associated with the major
packages such as Groningen machine for chemical simulations (gromacs), chemistry at
Harvard molecular mechanics (charmm), large-scale atomic/molecular massively parallel
simulator (lammps) (see Lundborg et al., 2013, and references therein) and a�empts have
been made to suggest more generally applicable models and formats (see e.g. Hinsen,
2014). Some of these incorporate structure, or connectivity, information as well as simply
atomic coordinates. �e protein data base (pdb) format is designed for proteins; the xyz for-
mat is a common and simple format in which, following a short header section, each atom
is represented by a line of information containing its chemical symbol and coordinates.
Toolkits for interconverting di�erent �le formats exist, and some visualization programs
(for instance Jmol (2016) and vmd (Humphrey et al., 1996)) are capable of reading and
writing a variety of formats. As the simulation proceeds, it may be convenient to write
out at intervals the current con�guration, in the same format as that used for the start
and end con�gurations. By overwriting this �le frequently (perhaps every 100–500 steps
or cycles) we make it easy to restart the simulation in the event of program (or computer)
failure.

�ere may be other speci�c quantities that should be wri�en to �les as the simulation
proceeds, especially if they would be expensive to recompute from stored positions and
velocities. A good example would be components of the stress tensor, required to compute
shear viscosities and surface tensions.

Finally, we come to the very large �le that stores molecular positions, velocities,
and accelerations, taken at frequent intervals (e.g. every ten steps) during the run, for
future analysis. �is is usually called the trajectory �le; alternatively it may consist of
a succession of individual �les, named according to the timestep, stored in a single
directory. Eventually, this substantial amount of information must be archived. O�en,
to save space, these con�gurations are stored in machine-readable form (unforma�ed)
or are compressed a�er the run is complete. �e high degree of correlation between
successive snapshots, as well as between the positions of neighbouring particles, make
special-purpose compression algorithms quite a�ractive (Spångberg et al., 2011; Marais
et al., 2012; Huwald et al., 2016). It is important to decide, before the run, how much
information is needed in this �le. Are molecular positions su�cient? Or are velocities
required as well, or possibly even the forces on each atom?

It goes without saying that the user should become familiar with the format of the
trajectory �le, and the starting and �nishing con�gurations, of any simulation package. In
the simplest cases, the atomic positions and velocities may be wri�en out in a consistent
fashion by particle index, with particle 1 followed by particles 2, 3, etc. in order. �is is
natural if they are stored in contiguous arrays within the program, for instance. However,
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this is not always the case. In parallel simulation programs, as we shall see in Chapter 7,
particle information is passed around between processors very frequently, and the particle
identi�er is just one more piece of information. It may be ine�cient to gather all the
particle coordinates and sort them by identi�er before writing them out, so quite o�en
they are output (with their identi�ers) in an order which varies from step to step. Similarly,
if the program is wri�en in an object-oriented style, there is likely to be less emphasis on
the use of the identi�er as an array index. In either case, provided the particle identi�er is
wri�en out together with coordinates and velocities, there should be no problem: but the
user must be aware of this, for example, when computing single-particle time correlation
functions and other properties!

5.7.2 Program structure

�e overall structure of most simulation programs is fairly standard:
• Reading in parameters, starting con�guration, and initialization.
• �e main loop over timesteps or mc cycles.
• Writing out results, �nal con�guration.

We will assume that all preparation of the con�guration �le is performed in separate
utility programs. �is includes the initial generation of a con�guration at the start of a
series of simulations (Section 5.6), and the scaling of coordinates or velocities to generate
a di�erent state point from a previous �nal con�guration. In a sequence of runs, this can
be handled by a script which calls the appropriate programs, in between calls to the main
simulation program. In short, the utility programs produce a con�guration �le which is
‘ready to go’. By separating these activities from the main simulation program, the la�er
is kept simple in structure: it accepts an initial con�guration and, during the course of
the run, maintains it in a state suitable for continuing the run.

Date and time routines are usually called, so a time-stamp can be wri�en out at the
start of the run, for easy reference. In the same way, it is most advisable to write out
the basic run parameters, exactly as they are read in, at the start of the output �le, thus
avoiding any ambiguity about the nature of the simulation, when the results are studied
later. It is important to record which algorithm is being used to move the molecules, and
which ensemble is being sampled. Unless we are dealing with a very simple pair potential,
we would want to record the potential or force-�eld parameters, the length of potential
cuto�s, and perhaps the relative molecular masses in the output �le. �e units that apply
in the simulation (Appendix B) should also be made clear. �e essential point is that, by
looking at the information at the start of the output �le, it should be possible to recreate
the run exactly, even if the details have been forgo�en in the time since it was originally
carried out.

If we are using potential tables and neighbour lists, we will also have to initialize
them. Generally, it is advisable to delegate each separate task of this kind to a separate
function or subroutine, so as to maintain a simple and clear, modular, program structure.

�e initialization stage includes the se�ing to zero of run-average accumulators, and
opening the trajectory �le. It may be desirable, if a continuation run is being carried out, to
open this �le in ‘append’ mode, so as to give an uninterrupted succession of con�gurations
as time proceeds. Obviously, one should guard against the danger of overwriting the old
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trajectory �le, which should only be done if the run is being restarted from the beginning
for some reason. On the other hand, if the restart is initiated from a con�guration which
was wri�en before the last few records in the trajectory �le, then those records will be
generated afresh, and care must be taken not to duplicate them.

We are almost ready to deal with the body of the simulation: the main loop. Before
doing so, for a molecular dynamics simulation, we may have to call some routine to
compute the initial forces on the molecules. For Monte Carlo, there will be an initial
calculation of the total energy, and perhaps other properties, of the system. Schematically
the main loop takes the form

step = 0
DO

IF ( step >= nstep ) EXIT
IF ( CPU_TIME () > cpu_time_max ) EXIT

CALL move ( r, v, ....)
step = step + 1
IF ( MOD(step , calc_step) == 0 ) CALL calc
IF ( MOD(step , output_step) == 0 ) CALL write_output
IF ( MOD(step , traj_step) == 0 ) CALL write_traj
IF ( MOD(step , config_step) == 0 ) CALL write_config

END DO

At the start of each step we indicate possible conditions for exiting the loop: completing the
desired number of steps, or detecting that the allocated cpu time has nearly been used up,
as examples. �e move subroutine is really shorthand for any of the md or mc algorithms
mentioned in the earlier chapters, complete with any force or energy evaluation routines
that may be necessary. In the course of this, the current values of the potential and kinetic
energies, virial function, etc. will normally be calculated. Any other instantaneous values
of interest, such as order parameters and distribution function histograms, should be
computed in subroutines immediately following the move routine (indicated schematically
in the code by CALL calc). �ere may well be several of these routines, each handling
di�erent properties. �ey may require calculating at di�erent intervals, which again we
indicate schematically by calculating the step number, modulo the desired interval. It
is assumed that each routine such as calc also increments the appropriate run-average
accumulators. Following these calculations, at the appropriate intervals, information on
the progress of the run is sent to the output channel, data are output to the trajectory �le,
and, lastly (for reasons of safety), the current coordinates, momenta, etc are output to the
con�guration �le, which will be used for a restart if need be. At the same time, it may be
convenient to write out all the accumulators, so that the calculation of run averages can
be picked up again smoothly, if a restart is necessary.

�is general scheme will only allow restarts, of course, if �les (speci�cally the trajectory
�le) that were open at the time of a program crash remain uncorrupted and accessible
a�erwards. If this is not the case, then more complicated steps must be taken to maximize
the safety of the information generated by the program. �is may involve opening,
appending to, and then closing the trajectory �le at frequent intervals (perhaps every
record).
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Once the main loop is complete, the last stage of the program takes place: computing
run averages, �uctuations, and possibly statistical error estimates, from the accumulators,
and writing out the �nal con�guration.

5.7.3 �e scheme in action

�e scheme outlined in the previous section would typically be run as a series of simula-
tions alternating with con�guration-modifying programs. Typically, the con�guration
handler would be used to generate the initial con�guration, either from scratch (see Sec-
tion 5.6) or by modifying the �nal con�guration from an old run. �is would be followed
by an equilibration run. �e output con�guration �le from the equilibration run would
then be used by the con�guration utility routine to generate an initial con�guration for the
production phase. All this assumes that, a�er each run, the user will examine the output
before se�ing the subsequent run in motion. �is is usually to be recommended: it is
always desirable to check that, for example, equilibration has proceeded satisfactorily, and
to investigate the reasons for any unusual behaviour (failure of the underlying computer
hardware, �lling up of the storage, or atom overlaps in the simulation). However, it is also
quite possible, and may be desirable, to set up a sequence of jobs to run consecutively,
without intervention; also, a large set of jobs, identical except for the input �les, may be
initiated in parallel. It is still worth emphasizing, however, the importance of looking at
the raw results as soon as possible a�er the jobs have run.

It is notable that many of the key activities, such as �le handling, job submission, and
data analysis, are more conveniently handled through a script wri�en in an appropriate
language. Other aspects, especially the time-intensive advancement of the con�guration,
whether by md or mc, really bene�t from a compiled language. A powerful approach is
to combine the two methods. Some packages are su�ciently modular that they can be
treated as a library of routines, which are callable from, for example, a Python script. If
this approach is adopted, there are two obvious problems to tackle. �e �rst is to match
the arguments of, say, a C or Fortran function, to those of the calling script. �is is a
very general issue, which has been addressed through ‘wrapper’ codes. �e second is the
e�ciency of passing information back and forth, especially the atomic con�gurations,
which may be quite large. �e simplest method, to write the con�guration out to a �le,
and read it back in again, although fairly foolproof, is likely to be much too slow.

Once a simulation is successfully completed, the output should be carefully �led and
a backup copy made. Simulations tend to produce a wealth of information. �e aim is to
be able to recover, and understand, the information at a later date. Data archiving and
curation are serious issues, especially in a collaborative research environment. �ite fre-
quently, interesting scienti�c questions arise, long a�er the data were originally produced.
Moreover, the people who produced the data may no longer be around. When considering
backups, it is best to assume that disk or other media faults are a ma�er of ‘when’ rather
than ‘if’. For all these reasons, it is vital to have a simple, well-documented, data-recovery
process.

5.8 Checks on self-consistency
We already mentioned, in Section 3.6, a few checks which should be performed to build
some con�dence in the proper working of an md program. Once results start to appear,
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from either md or mc programs, it makes sense to look critically at them, and try to spot
any signs of inconsistency. �ere are two very common sources of error:
(a) the system may not be at equilibrium, or may have been simulated for insu�cient

time to generate well-sampled averages;
(b) the model may not be the one you think it is.

For the �rst of these, there is never a guarantee that a simulation is long enough. A
serious a�empt to calculate statistical errors, including estimating the correlation times or
statistical ine�ciencies, will be a good starting point. Much be�er, however, is to conduct
several separate runs, from starting con�gurations that have been prepared completely
independently, and compare the results. �ere are well-de�ned statistical tests to compute
the likelihood that di�erent estimates of any particular property, with their estimated
errors, have been sampled from the same underlying distribution. Wherever possible, a
property should be estimated in two di�erent ways, which can be checked for consistency.
For instance, heat capacities and compressibilities may be obtained from the �uctuation
formulae given in Chapter 2, and by ��ing an equation of state over a range of state
points. Temperature can be estimated from kinetic energies, and from con�gurational
variables. Pair distribution functions should tend to the correct limit at large separation:
for instance, д(r ) → 1 (actually, in constant-N ensembles, д(r ) → 1 − 1/N ) as r → ∞.
Finally, it bears repeating that measured properties (especially equations of state) should
be compared wherever possible with published literature values.

With an ever-growing reliance on packaged force �elds, it becomes more and more
important to check the supplied ‘default’ values of interaction parameters, and to take
care in specifying the particular version of a potential that is to be used in the simulation.
As discussed in Chapter 6, there is a wealth of competing options for handling long-range
forces, all of them depending on the selection of a few key parameters. Potential cuto�
distances may vary signi�cantly from one study to another, and it is not always obvious
whether a potential is shi�ed to zero at the cuto�, or whether a shi�ed-force version, or
some other tempering or smoothing near the cuto�, is being employed. If the package
code is not su�ciently clear, it may be possible to compute the potential numerically as a
function of a single variable (distance, orientation or internal coordinate), by calling the
appropriate routine directly from an external script, and then plo�ing or comparing with
the expected function in some other way.

In some situations, the study of system-size dependence is an integral part of the
problem; in other cases, it is just a useful check that the system studied is large enough
to avoid boundary e�ects. One should always take care to prepare the larger systems in
a way that is as independent as possible from the smaller ones. It is tempting to simply
replicate the smaller systems in the di�erent Cartesian coordinate directions, to produce
the larger ones, but this will build in the original system periodicity, which must be given
ample time to disappear. It must also be borne in mind that the natural physical timescales
of larger systems tend to be longer (sometimes much longer) than those of smaller ones,
so they may need to be simulated for a longer time, not a shorter time!
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Long-range forces

6.1 Introduction
So far in this book, we have discussed the core of the program when the forces are short-
ranged. In this chapter, we turn our a�ention to the handling of long-range forces in
simulations. A long-range force is o�en de�ned as one in which the spatial interaction
falls o� no faster than r−d where d is the dimensionality of the system. In this category
are the charge–charge interaction between ions (vqq (r ) ∼ r−1) and the dipole–dipole
interaction between molecules (vµµ (r ) ∼ r−3). �ese forces are a serious problem for the
computer simulator since their range is greater than half the box length for simulations
with many thousands of particles. �e brute-force solution to this problem would be to
increase the box size L to hundreds of nanometres so that the screening by neighbours
would diminish the e�ective range of the potentials. Clearly, this is not a practical solution
since the time required to run such a simulation is proportional to N 2, that is, L6 in 3D.

How can this problem, which is particularly acute for vqq (r ), be handled? One approach
is to include more than the nearest or minimum image of a charge in calculating its energy.
La�ice methods such as the Ewald sum, described in Section 6.2, include the interaction
of an ion or molecule with all its periodic images. �e Ewald method can be further
optimized by assigning the charges in the simulation cells to a �ne, regular mesh. �is
enables the long-range part of the force to be calculated e�ciently using a fast Fourier
transform (fft). Approaches of this kind, such as the particle–particle particle–mesh
(pppm) method, are described in Section 6.3.

In the calculation of long-range forces, straightforward spherical truncation of the
potential can be ruled out. �e resulting sphere around a given ion could be charged,
since the number of anions and cations need not balance at any instant. �e tendency of
ions to migrate back and forth across the spherical surface would create arti�cial e�ects
at r = rc. Methods for adding image charges and dipoles to the surface of the truncation
sphere which ensure its charge neutrality are discussed in Section 6.4, along with methods
to include periodic images of the truncation sphere and a technique for estimating the
‘best’ truncated potential. A charge distribution within a spherical cavity polarizes the
surrounding medium. �is polarization, which depends upon the relative permi�ivity of
the medium, has an e�ect on the charge distribution in the cavity (see e.g. Fröhlich, 1949).
�e e�ect can be included in the simulation using the reaction �eld method for charged
and dipolar �uids which is discussed in Section 6.5.

In Sections 6.6 and 6.8, we present two methods for calculating long-range forces
for large systems with many thousands of charges. �e �rst of these, the fast multipole
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method (fmm), uses the multipole expansion to calculate the �eld from charges in di�erent
regions of space. Using a hierarchical tree structure, individual �elds are combined to
produce the total �eld due to the sample and its surrounding images. �e total �eld is then
moved back down the tree using a local expansion to calculate the forces at individual
charges. �e second method, Maxwell equation molecular dynamics (memd), combines
the classical equations of motion of the charges with Maxwell’s equations for the electric
�eld. By using a nominal value of the speed of light, it is possible to couple these equations
despite their disparate timescales. Both these methods are local and have the advantage
that the computer time scales linearly with the number of charges.

�e terms ‘electrostatic potential’ and ‘�eld’ are used frequently throughout this
chapter. �is is a reminder that the electrostatic potential, ϕ, created at a distance r from
a charge q is ϕ (r ) = q/r and the corresponding electric �eld is E = −∇ϕ (r ). �e �eld is
simply the force per unit charge. For simplicity of notation, we are omi�ing all factors of
4πϵ0: this corresponds to adopting a non-SI unit of charge (see Appendix B), that is, the
charge q is reduced by (4πϵ0)

1/2 for convenience.

6.2 �e Ewald sum
When applied to an ionic �uid, the basic minimum image method corresponds to cu�ing
o� the potential at the surface of a cube surrounding the ion in question (see Fig. 1.16).
�is cube will be electrically neutral. However, the drawback is that similarly charged
ions will tend to occupy positions in opposite corners of the cube: the periodic image
structure will be imposed directly on what should be an isotropic liquid, and this results
in a distortion of the liquid structure. An alternative is to consider the interaction of an
ion with all the other ions in the central box and with all the ions in all of its periodic
images.

�e Ewald sum is a technique for e�ciently performing this sum. It was originally
developed in the study of ionic crystals (Ewald, 1921; Madelung, 1918). In Fig. 1.13, ion 1
interacts with ions 2, 2A, 2B and all the other images of 2. �e potential energy can be
wri�en as

Vqq =
1
2
∑′

m∈Z3

*
,

N∑
i=1

N∑
j=1

qiqj
���ri j +mL���
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where qi , qj , are the charges. As mentioned earlier, all factors of 4πϵ0 are omi�ed. �e sum
over m = (mx ,my ,mz ) is over all triplets of integers, Z3. For a cubic box, mL represents
the centre of each box in the periodic array. �e prime indicates that we omit i = j
for m = 0. For long-range potentials, this sum is conditionally convergent, that is, the
result depends on the order in which we add up the terms. A natural choice is to take
boxes in order of their proximity to the central box. �e unit cells are added in sequence:
the �rst term has |m| = 0, that is, m = (0, 0, 0); the second term, |m| = 1, comprises the
six boxes centred at (±L, 0, 0), (0,±L, 0), (0, 0,±L), etc. As we add further terms to the
sum, we are building up our in�nite system in roughly spherical layers (see Fig. 6.1).
When we adopt this approach, we must specify the nature of the medium surrounding
the sphere, in particular its relative permi�ivity (dielectric constant) ϵs. �e results for
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Fig. 6.1 Building up the sphere of simulation boxes. Each copy of the periodic box is represented
by a small square. �e shaded region represents the external dielectric continuum of relative
permi�ivity ϵs.

a sphere surrounded by a good conductor such as a metal (ϵs = ∞) and for a sphere
surrounded by vacuum (ϵs = 1) are di�erent (de Leeuw et al., 1980):

Vqq (ϵs = ∞) = Vqq (ϵs = 1) − 2π
3L3

������

∑
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������

2

. (6.2)

�is equation applies in the limit of a very large sphere of boxes. In the vacuum, the
sphere has a dipolar layer on its surface: the last term in eqn (6.2) cancels this. For the
sphere in a conductor there is no such layer. �e Ewald method is a way of e�ciently
calculatingVqq (ϵs = ∞). Equation (6.2) enables us to use the Ewald sum in a simulation
where the large sphere is in a vacuum, if this is more convenient. �e mathematical details
of the method are given by de Leeuw et al. (1980) and Heyes and Clarke (1981). Here we
concentrate on the physical ideas. At any point during the simulation, the distribution
of charges in the central cell constitutes the unit cell for a neutral la�ice which extends
throughout space. In the Ewald method, each point charge is surrounded by a charge
distribution of equal magnitude and opposite sign, which spreads out radially from the
charge. �is distribution is conveniently taken to be Gaussian

ρ
q
i (r) = qiκ

3 exp(−κ2r 2)/π3/2 (6.3)

where the arbitrary parameter κ determines the width of the distribution, and r is the
position relative to the centre of the distribution. �is extra distribution acts like an
ionic atmosphere, to screen the interaction between neighbouring charges. �e screened
interactions are now short-ranged, and the total screened potential is calculated by
summing over all the molecules in the central cube and all their images in the real-space
la�ice of image boxes. �is is illustrated in Fig. 6.2(a).

A charge distribution of the same sign as the original charge, and the same shape as
the distribution ρ

q
i (r) is also added (see Fig. 5.6(b)). �is cancelling distribution reduces

the overall potential to that due to the original set of charges. �e cancelling distribution
is summed in reciprocal space. In other words, the Fourier transforms of the cancelling
distributions (one for each original charge) are added, and the total transformed back
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Fig. 6.2 Charge distribution in the Ewald sum, illustrated in 1D. (a) Original point charges plus
screening distribution. (b) Cancelling distribution.

into real space. (Fourier transforms are discussed in Appendix D.) �ere is an important
correction: the recipe includes the interaction of the cancelling distribution centred at ri
with itself, and this self term must be subtracted from the total. �us, the �nal potential
energy will contain a real-space sum plus a reciprocal-space sum minus a self-term plus
the surface term already discussed. �e �nal result is
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2

N∑
i=1

N∑
j=1

qiqj*
,

∞∑′

|m |=0

erfc
(
κ |ri j + Lm|

)
|ri j + Lm|

+ (1/πL3)
∑
k,0

(4π2/k2) exp(−k2/4κ2) exp(−ik · ri j )+
-

− (κ/π1/2)
N∑
i=1

q2
i + (2π/3L3)

������

N∑
i=1

qiri
������

2

. (6.4)

Here erfc(x ) is the complementary error function (erfc(x ) = (2/π1/2)
∫∞
x exp(−t2)dt )

which falls to zero with increasing x . �us, if κ is chosen to be large enough, the only
term which contributes to the sum in real space is that withm = 0, and so the �rst term
reduces to the normal minimum image convention.

�e second term in eqn (6.4) is a sum over the reciprocal vectors, k = 2πn/L where n =
(nx ,ny ,nz ) is a triplet of integers. A large value of κ corresponds to a sharp distribution
of charge, so that we need to include many terms in the k-space summation to model it.
In a simulation, the aim is to choose a value of κ and a su�cient number of k-vectors, so
that eqn (6.4) (with the real-space sum truncated at m = 0) and eqn (6.2) give the same
energy for typical liquid con�gurations.

Before considering the implementation of the Ewald method, we note that the Gaussian
form of the charge distribution is not unique. Any function that smears the charge
distribution can be used and Heyes (1981) lists the appropriate real- and reciprocal-space
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contributions for a number of di�erent choices. �e rigorous derivation of the Ewald sum
requires that the system is neutral. In the presence of a net charge, a uniform background
charge density, −∑N

i=1 qi/L
3, should be included to neutralize the �uid. �is gives rise to

an additional term in eqn (6.4) (Hub et al., 2014)

Vcharged = −
π

2L3κ2

�����

N∑
i=1

qi
�����

2
. (6.5)

For a homogeneous �uid, the calculation of the pressure resulting from the Ewald sum is
straightforward sinceWqq = Vqq/3.

In implementing the Ewald sum, the �rst step is to decide on a value of κ for the
maximum number of wavevectors in the reciprocal-space sum. Kolafa and Perram (1992)
have shown that it is possible to determine the best value of κ by balancing the errors in
the real- and reciprocal-space parts of the sum. In practice, for a cubic box, we select a
value of rc, the cuto� in the real-space potential. �is is normally set to rc = L/2. �en
starting with nmax = (10, 10, 10) calculate the average Coulomb energy for a few molecular
dynamics steps as a function of κ around κ = 3/rc. A suitable value of κ corresponds to
the onset of a plateau inVqq (κ). �e parameter space can be explored by reducing nmax
towards (6, 6, 6) and repeating the test. In practice, κ is typically set to 6/L and 200–300
wavevectors are used in the k-space sum.

For the real-space part of the sum, the modi�ed charge–charge interaction is calculated
in the normal way in the main loop of the simulation program; erfc(x ) is an intrinsic
function in Fortran 2008, and provided in most mathematical function libraries. �e long-
range (k-space) part of the potential energy, the second term in eqn (6.4), can be wri�en
as

V
qq

long =
1

2L3

∑
k,0

4π
k2 exp(−k2/4κ2)���ρ̂

q (k)���
2
, (6.6)

where the Fourier transform of the charge density is

ρ̂q (k) =
N∑
i=1

qi exp(−ik · ri ). (6.7)

�e triple sum over |k|, i , and j , in eqn (6.4) has been replaced by a double sum over |k| and
i in eqn (6.6). �e sum over k-vectors is normally carried using complex arithmetic and a
version of this subroutine is given in Code 6.1. �e calculation of the force on a particular
charge i is described in Appendix C.5. �is part of the program can be quite expensive
on conventional computers, but it may be e�ciently vectorized, and so is well-suited for
pipeline processing. It can also be e�ciently evaluated on a P-processor parallel machine
by dividing the charges across the processors:

ρ̂q (k) =
P∑
p=1

∑
i ∈p

qi exp(−ik · ri ) =
P∑
p=1

ρ̂
q
p (k), (6.8)

where the partial charge density, ρ̂qp (k), is calculated on each processor p = 1, . . . , P for
the charges stored on that processor, and for all k vectors, and �nally summed across the
processors (Kalia et al., 1993).
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Code 6.1 Force routine using the Ewald sum
�is �le is provided online. It contains two subroutines, to calculate the real-space
and reciprocal-space parts of the charge–charge energy, respectively.

! ewald_module.f90
! r-space and k-space parts of Ewald sum for ions
MODULE ewald_module

How does the Ewald sum scale with the number of charges N in the simulation cell?
At �rst glance, the sum over pairs in the �rst term of eqn (6.4) would suggest that the
algorithm scales as O (N 2). However, we have already seen that for su�ciently large
systems, the linked-list method can be used to improve the e�ciency of the real-space
calculation. Following an analysis of Perram et al. (1988), the central box is divided into
S = s3

c small cubic cells whose side L/sc is at least the real-space cuto�. �e number of
operations in the real-space calculation is

Nreal ∝ S (N /S )2 = N 2/S . (6.9)

In this situation the number of operations in reciprocal space is

Nreciprocal ∝ NS, (6.10)

and the total time for computing the forces is

τ = aN 2/S + bNS (6.11)

where the constants a and b contain the constants of proportionality in eqns (6.9) and
(6.10) and the overheads associated with the two contributions. τ achieves its minimum
value for Smin ∝ N 1/2 and for this value τ ∝ N 3/2. �us for a careful choice of the number
of cells we see that the algorithm scales as O (N 3/2).

�e original method of Ewald can be readily extended to dipolar systems. In the
derivation of eqn (6.4), qi is simply replaced by µi · ∇ri , where µi is the molecular dipole.
�e resulting expression is (Kornfeld, 1924; Adams and McDonald, 1976; de Leeuw et al.,
1980)

V µµ (ϵs = 1) = 1
2

N∑
i=1

N∑
j=1

*
,

∞∑′

|m |=0
(µi · µ j )B (ri j + Lm) − (µi · ri j ) (µ j · ri j )C (ri j + Lm)

+
∑
k,0

(1/πL3) (µi · k) (µ j · k) (4π2/k2) exp(−k2/4κ2) exp(−ik · ri j )+
-

−

N∑
i=1

2κ3µ2
i /3π1/2 + 1

2

N∑
i=1

N∑
j=1

(4π/3L3)µi · µ j (6.12)
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where again factors of 4πϵ0 are omi�ed. In this equation, the sums over i and j are for
dipoles in the central box and

B (r ) = erfc(κr )/r 3 +
(
2κ/π1/2

)
exp(−κ2r 2)/r 2 (6.13)

C (r ) = 3 erfc(κr )/r 5 +
(
2κ/π1/2

) (
2κ2 + 3/r 2

)
exp(−κ2r 2)/r 2. (6.14)

�is expression can be used in the same way as the Ewald sum, with the real-space sum
truncated at |m| = 0 and a separate subroutine to calculate the k-vector sum.

�e Ewald sum can be readily extended to higher-order multipoles. Aguado and
Madden (2003) provide explicit expressions for the energy, forces, and stress tensor, when
using the Ewald sum, for all the interactions up to quadrupole–quadrupole. �e multipolar
energy can be calculated using the interaction tensor T (see eqns (1.16) and eqn (1.17)).
�e real-space part of the Ewald sum can be calculated by replacing powers of ri j by their
screened counterparts

1
ri j

→
1̂
ri j
=

erfc(κri j )
ri j

(6.15a)

1
r 2n+1
i j

→
E1
r 2n+1
i j

=
1
r 2
i j

( E1
r 2n−1
i j

−
(2κ2)n

√
πκ (2n − 1)

exp(−κ2r 2
i j )

)
(6.15b)

for n = 1, 2 . . ., in eqns (1.17) to de�ne a modi�ed tensor, T̂α β , which can then be used in
the calculation of the real-space energy and force. For example, the real-space contribution
to the charge–dipole force is simply given by

(f i j )α = −qiT̂α β µ jβ + qjT̂α β µiβ . (6.16)

Corresponding expressions have been developed for the reciprocal-space and self terms
in the Ewald sum. �e technique has been used to study the phonon dispersion curves of
solid MgO and Al2O3 (Aguado and Madden, 2003) where there are small but signi�cant
di�erences in the simulations that include the quadrupolar terms using the Ewald method
compared with a simple cuto� at ri j = rc = L/2. �e formalism can be readily extended
to the calculation of the energies for systems of polarizable ions and molecules.

A conceptually simple method for modelling dipoles and higher moments is to repre-
sent them as partial charges within the core of a molecule. In this case, the Ewald method
may be applied directly to each partial charge at a particular site. �e only complication
in this case is in the self term. In a normal ionic simulation, we subtract the spurious
term in the k-space summation that arises from the interaction of a charge at ri with
the distributed charge also centred at ri . In the simulation of partial charges within a
molecule, it is necessary to subtract the terms that arise from the interaction of the charge
at ria with the distributed charges centred at all the other sites within the same molecule
(ria , rib , etc.) (Heyes, 1983a). �is gives rise to a self-energy of

Vself = 1
2

∑
i

ns∑
a=1

qia*
,
2κqia/π1/2 +

ns∑
b,a

qib erf (κdab )/dab+
-

=
∑
i

*
,

ns∑
a=1

κq2
ia/π

1/2 + 1
2

ns∑
a=1

ns∑
b,a

qiaqib erf (κdab )/dab+
-

(6.17)
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where there are ns sites on molecule i and the intramolecular separation of sites a and b
is dab . �is term must be subtracted from the potential energy.

�e Ewald sum can also be used to calculate the energy resulting from the dispersion
interaction ∝ r−6

i j (Williams, 1971). Explicit expression for the real-space, reciprocal-space,
and self terms are available for the energy, forces, and the stress (Karasawa and Goddard,
1989) and this method has been applied to crystal structure calculations. It has also been
successfully applied to systems containing both dispersion and Coulombic interactions
(in’t Veld et al., 2007). Since the dispersion interactions fall o� rapidly with distance, one
would guess that it is signi�cantly faster to apply a spherical cuto� and add the standard
long-range correction at the end of the simulation. However, Isele-Holder et al. (2013)
have demonstrated that reducing the cuto� radius for local interactions and employing
the particle–particle particle–mesh (pppm) Ewald method for dispersion can be faster
than truncating dispersion interactions. �e Ewald approach to the dispersion interaction
has also been used to calculate the full potential in slab simulations of the vapour–liquid
interface (López-Lemus and Alejandre, 2002) (see Chapter 14).

Detailed theoretical studies (de Leeuw et al., 1980; Felderhof, 1980; Neumann and
Steinhauser, 1983a,b; Neumann et al., 1984) have revealed the precise nature of the simu-
lation when we employ a la�ice sum. In this short section we present a simpli�ed picture.
For a review of the underlying ideas in dielectric theory, the reader is referred to Madden
and Kivelson (1984) and for a more detailed account of their implementation in computer
simulations to McDonald (1986).

�e simulations which use the potential energy of eqn (6.4) are for a very large sphere
of periodic replications of the central box in vacuo. As ϵs, the relative permi�ivity of the
surroundings, is changed, the potential-energy function is altered. For a dipolar system,
de Leeuw et al. (1980) have shown

V µµ (ϵs) = V
µµ (ϵs = 1) − 3kBT

N µ2 y
(ϵs − 1)
(2 ϵs + 1)

N∑
i=1

N∑
j=1
µi · µ j (6.18)

where y = 4πρµ2/9kBT , and we take µ = |µi | for all i . If, instead of vacuum, the sphere
is considered to be surrounded by metal (ϵs → ∞), the last term in this equation exactly
cancels the surface term in eqn (6.12). �e potential functions of eqns (6.12) and (6.4) are
o�en used without the �nal surface terms (Woodcock, 1971; Adams and McDonald, 1976)
corresponding to a sphere surrounded by a metal. �at the sum of the �rst three terms in
these equations corresponds to the case ϵs = ∞ can be traced to the neglect of the term
k = 0 in the reciprocal-space summations.

�e relative permi�ivity ϵ of the system of interest is, in general, not the same as
that of the surrounding medium. �e appropriate formula for calculating ϵ in a particular
simulation does, however, depend on ϵs in the following way

1
ϵ − 1 =

1
3y д(ϵs)

−
1

2ϵs + 1 (6.19)

where д is related to the �uctuation in the total dipole moment of the central simulation
box

д = д(ϵs) =

〈���
∑N

i=1 µi
���
2〉
−

〈���
∑N

i=1 µi
���
〉2

N µ2 . (6.20)
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Note that the calculated value of д depends upon ϵs through the simulation Hamiltonian.
For ϵs = 1, eqn (6.19) reduces to the Clausius–Moso�i result

ϵ − 1
ϵ + 2 = y д(1) (6.21)

and for ϵs → ∞
ϵ = 1 + 3y д(∞). (6.22)

A sensible way of calculating ϵ is to run the simulation using the potential energy of
eqn (6.12) without the surface term, and to substitute the calculated value of д into
eqn (6.22). �e error magni�cation in using eqn (6.21) is substantial, and this route to
ϵ should be avoided. In summary, the thermodynamic properties (E and P ) and the
permi�ivity are independent of ϵs, whereas the appropriate Hamiltonian and д-factor are
not. �ere may also be a small e�ect on the structure. �e best choice for ϵs would be ϵ ,
in which case eqn (6.19) reduces to the Kirkwood formula (Fröhlich, 1949)

(2ϵ + 1) (ϵ − 1)
9ϵ = y д(ϵ ). (6.23)

However, of course, we do not know ϵ in advance.

6.3 �e particle–particle particle–mesh method
�e pppm algorithm (Eastwood et al., 1980) is a straightforward development of the Ewald
method based on the use of the fast Fourier transform (fft). �e total potential is divided
into a long-range and short-range part as in eqn (6.4). �e evaluation of the short-range
(r -space) part of the potential energy is the ‘particle–particle’ part of the method and for
a large system this can be e�ciently evaluated using the linked-list method described in
Section 5.3.2.

�e long-range (k-space) part of the potential energy, eqn (6.6), depends on the Fourier
transform of the charge density

ρ̂q (k) =
∫

dr ρq (r) exp(−ik · r) =
N∑
i=1

qi exp(−ik · ri ). (6.24)

In the pppm method the charge density is interpolated onto a mesh in the simulation box.
Once the charge density on the mesh is known, it is possible to calculate the electric �eld,
E(r), and the potential, ϕ (r), using Poisson’s equation

∇
2ϕ (r) = −∇ · E(r) = −4πρq (r) (6.25)

(the factor of 4π arises from our de�nition of the charges, see Appendix B). �e �eld at
the mesh can be interpolated to produce the force at a charge. �is is the ‘particle–mesh’
part of the algorithm. Poisson’s equation is most easily solved in reciprocal space

k2ϕ̂ (k) = 4πρ̂q (k) (6.26)

where ϕ̂ (k) and ρ̂q (k) are the Fourier transforms of the electric potential and the charge
density respectively. An e�cient fast Fourier transform (fft) routine (see Appendix D.3)
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is used to calculate ρ̂q (k). We consider each of these steps in more detail. First, the atomic
charge density in the �uid is approximated by assigning the charges to a �nely spaced
mesh in the simulation box. Normally the mesh is taken to be cubic with a spacing `. �e
number of cells S = s3

c , where sc = L/` is normally chosen to be a power of 2 (typically 16
or 32). �e mesh charge density, ρqs (rs ), is de�ned at each mesh point rs = `(sx , sy , sz ),
where sα = 0, . . . sc − 1, and is

ρ
q
s (rs ) =

1
`3

∫
Vbox

drW (rs − r)ρq (r) =
1
`3

N∑
i=1

qiW (rs − ri ). (6.27)

�e charge assignment function,W , is chosen to ensure conservation of the charge, that
is, the fractional charges distributed to various mesh points must sum up to give the
original charge qi . It is useful to choose a function that involves a distribution on to a
small number of ‘supporting’ mesh points and the function should also be smooth and
easy to calculate. Hockney and Eastwood (1988) suggest a class of P-order assignment
functions, which move a given charge onto its P nearest supporting mesh points along
each dimension. �e Fourier transform of the charge assignment function,W (P ) , is

Ŵ (P ) (kx ) = `

(
sin(kx `/2)
kx `/2

)P
. (6.28)

In real space, W (P ) (x ) is the convolution of a series of top-hat (or boxcar) functions.
W (P ) (x −xs ) is the fraction of the charge at x assigned to the mesh point at xs . �e lowest-
order cases, P = 1, 2, 3, are termed ‘nearest grid point’, ‘cloud in cell’, and ‘triangular-
shaped cloud’, respectively. �e functional forms for W (P ) (x ), P = 1 . . . 7 are given in
Appendix E of Deserno and Holm (1998). In the limit of large P , the function tends to a
centred Gaussian set to zero beyond ±P`/2.

To provide a concrete example, we consider distributing a charge across its three
nearest mesh points in one dimension (P = 3). In this case the relevant function is the
triangular-shaped cloud

W (3) (x ) =




3
4 − (x/`)2 |x | ≤ 1

2`
1
2

(
3
2 − |x |/`

)2 1
2` ≤ |x | ≤

3
2`

0 otherwise

where x is the distance between the charge and any mesh point (Pollock and Glosli, 1996,
Appendix A). Suppose that the nearest mesh point is s , and the distance from it to the
charge, in units of `, is x ′ = (x − xs )/`, as shown in Fig. 6.3. �en the three non-zero
weights, at the mesh points s, s ± 1, may all be wri�en in terms of x ′

W (3) (x ′) =




1
2 (

1
2 + x

′)2 at s + 1
3
4 − x

′2 at s
1
2 (

1
2 − x

′)2 at s − 1.
(6.29)
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s − 2 s − 1 s s + 1 s + 20

0.2

0.4

0.6

0.8

1

x ′

x/`

W
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)

Fig. 6.3 �e assignment of a charge to its three nearest mesh points in one dimension, using the
triangular-shaped cloud weighting function. �e vertical dashed lines are the cell boundaries, the
vertical solid lines are the mesh points at the centre of each cell. ` is the length of the cell and
x ′ = (x − xs )/` is the distance of the charge from its nearest mesh point in units of `. �e non-zero
weights, indicated by vertical bars, are given byW (3) (x − xs ),W (3) (x − xs+1) andW (3) (x − xs−1).

Code 6.2 Assignment of charge to a uniform mesh
�is �le is provided online. It contains a program to assign charges to a cubic mesh
using the ‘triangular-shaped cloud’ assignment of Hockney and Eastwood (1988).

! mesh.f90
! Assignment of charges to a 3-d mesh
PROGRAM mesh

In three dimensions, the 27 nearest mesh points are associated with an overall weight
given by

W (3) (rs ) =W (3) (x ′)W (3) (y ′)W (3) (z ′). (6.30)

�e assignment of charges to a cubic mesh is illustrated in Code 6.2.
Once the charge distribution has been assigned to the mesh, its discrete Fourier

transform is

ρ̂
q
s (k) = `3

sc−1∑
sx=0

sc−1∑
sy=0

sc−1∑
sz=0

ρ
q
s (rs ) exp(−ik · rs ) = `3

∑
rs

ρ
q
s (rs ) exp(−ik · rs ) (6.31)

where ρ̂qs (k) is de�ned for the �nite set of wavevectors, k = (2π/L) (nx ,ny ,nz ), with
|nα | ≤ (sc − 1)/2. Eqn (6.31) is in a form that can be used by an fft algorithm as described
in Appendix D.3. ρqs (rs ) can be stored as an array of complex numbers, with the complex
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parts set to zero. �e transform can be achieved with codes such as four3 for the complex-
to-complex fft in three dimensions, available in Press et al. (2007, Section 12.5), or similar
codes in other standard libraries such fftw (Frigo and Johnson, 2005) (see Appendix D.4).

Once ρ̂
q
s has been calculated, the long-range part of the con�gurational energy,

eqn (6.6), is
V

qq
long =

1
2V

∑
k,0

Ĝ (k) |ρ̂qs (k) |2. (6.32)

Here Ĝ is the in�uence function. In the ordinary Ewald method, the in�uence function
is the product of the Green’s function for the Coulomb potential and the smoothing
function,

Ĝ (k ) = (4π/k2) exp(−k2/4κ2). (6.33)
For the mesh approach, Ĝ (k) has to be optimized, because of the distortion of the isotropic
charge distribution as it is moved onto the cubic la�ice, and we will return to this point
shortly.
V

qq
long can also be calculated in real space on the mesh.

V
qq

long ≈
1
2`

3
∑
rs

ρ
q
s (rs )

(
ρ
q
s ?G

)
(rs ) (6.34)

where the convolution is ρqs ?G = F−1
[
F[ρqs ]F[G]

]
(see Appendix D).

�e force on the charge, that is, the derivative of the potential, can be calculated in
three di�erent ways, by:
(a) using a �nite-di�erence scheme in real space applied to the potential at neighbouring

la�ice points (Hockney and Eastwood, 1988);
(b) analytically di�erentiating eqn (6.34) in real space to give

f i = −`3
∑
rs

∂ρ
q
s (rs )
∂ri

(
ρ
q
s ?G

)
(rs ) (6.35)

which requires the gradient of the assignment function, ∇W (r ) (Deserno and Holm,
1998);

(c) di�erentiating in reciprocal space to obtain the electric �eld by multiplying the
potential by ik,

E(rs ) = −F−1
[
ik ρ̂qs (k) Ĝ (k)

]
. (6.36)

�e third method, normally referred to as the ik-di�erentiation scheme, is the most
accurate. Eqn (6.36) involves three inverse Fourier transforms; one for each component
of the vector �eld.

In the �nal step of the algorithm, the �eld at the mesh points is used to calculate the
force on the charges through the assignment function

f i = qi
∑
rs

E(rs )W (ri − rs ). (6.37)

�e same assignment function is used to distribute charges to the mesh and to assign
forces to the charges. �is is a necessary condition for the dynamics to obey Newton’s
third law (Hockney and Eastwood, 1988).
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In the pppm method, the optimal in�uence function, sometimes called the la�ice
Green’s function, is chosen to make the results of the mesh function calculation correspond
as closely as possible to those from the continuum charge density. In other words, Ĝopt
can be determined by the condition that it leads to the smallest possible errors in the
energy or the forces, on average, for an uncorrelated random charge distribution. Clearly,
the precise form of Ĝopt depends on whether the optimization is applied to the energy or
the force calculation and, in the case of the force, on which of the three di�erentiation
methods is used (Ballenegger et al., 2012; Stern and Calkins, 2008).

For example, for the ik-di�erentiation for the force,

Ĝopt (k) =

∑
k′

(
k · (k + sck′)

)
Û 2 (k + sck′) Ĝ (k + sck′)

|k|2
[ ∑
k′
Û 2 (k + sck′)

]2 (6.38)

where k′ = 2πn′/L and Û (k) is the normalized charge assignment function. For example,
for P = 3,

Û (k) =
Ŵ (3) (k)
`3

=
∏
α

(
sinkα `/2
kα `/2

)3
(6.39)

where the product is over the three Cartesian coordinates. �e sum over k′ in eqn (6.38)
extends the k-space beyond the �rst Brillouin zone. In the numerator extending the sum
in this way improves the truncation error for a particular Ĝopt (k) and in the denominator
it addresses the aliasing errors when copies of higher-order Brillouin zones are folded
into the �rst zone (Press et al., 2007). It transpires that the term in square brackets in the
denominator of eqn (6.38) can be evaluated analytically for all P . For P = 3∑

k′
Û 2 (k + sck′) =

∏
α

(
1 − sin2 (kα `/2) + 2

15 sin4 (kα `/2)
)
. (6.40)

Although eqn (6.38) looks formidable, it is independent of the ion positions and can be
evaluated once and for all at the beginning of the simulation (at least for simulations
at constant volume). �e sum over the alias vector k′ is rapidly convergent and can be
truncated at |n′ | < 2. �e optimal in�uence function Ĝopt (k) replaces Ĝ in eqn (6.36)
when calculating the �eld. �e appropriate Ĝopt (k) for the forces calculated by analytical
di�erentiation and the �nite-di�erence method are given in Ballenegger et al. (2012) and
Hockney and Eastwood (1988) respectively.

�e situation for the calculation of the energy is simpler. Ballenegger et al. (2012)
have shown that for a rapidly decaying Ĝ (k), the sum in the numerator can be truncated
at n′ = 0 without loss of accuracy, providing a completely closed form for the optimal
in�uence function

Ĝopt (k) =
Û 2 (k) Ĝ (k)

[ ∑
k′
Û 2 (k + sck′)

]2 . (6.41)

Equation (6.41) is used in eqn (6.34) for the calculation of the reciprocal-space part of the
energy.
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�ere are a number of di�erent mesh algorithms based on the pppm idea. �ese involve
changes in the type and order of the assignment functionW , the choice of the in�uence
function G , and the approach to the gradient. Two of the main lines are the particle mesh
Ewald (pme) method (Darden et al., 1993) and the smooth particle mesh Ewald (spme)
method (Essmann et al., 1995).

�e pme method is the simplest approach since it assumes that eqn (6.33) can also be
used without any alteration when the charges are assigned to a mesh. �e only di�erence
between this and the Ewald method is that the charges densities are transformed using
the fft. �e use of a Lagrange interpolation scheme for the charge assignment leads
to a cancellation of some of the discretization errors in this approach. �e appropriate
polynomials for the Lagrange interpolation have been tabulated by Petersen (1995).

Equation (6.24) suggests that an alternative approach, involving an approximation
to exp(ik · ri ) might be used to assign charges to the supporting mesh points. �is is the
basis of the spme method, which uses a cardinal B-spline (Massopust, 2010) at a particular
order, P , to perform the assignment. �e method relies on the following approximation
which is valid for even P (Essmann et al., 1995; Griebel et al., 2007)

exp(ikxxi ) ≈
∑
mx

sc−1∑
sx=0

b (kx ) exp(isxkx `)MP

(
xi − `sx −mxL

`

)
(6.42)

where

b (kx ) =
exp

(
i(P − 1)kx `

)
∑P−2
q=0 exp(ikx `q)MP (q + 1))

. (6.43)

�e cardinal B-splines are de�ned by the recurrence relationship

M1 (x
′) =




1 0 ≤ x ′ < 1
0 otherwise

MP (x
′) =

x ′

P − 1MP−1 (x
′) +

P − x ′

P − 1 MP−1 (x
′ − 1) P ≥ 2, x ′ ∈ [0, P]. (6.44)

In eqn (6.42), the sum over the integer sx is over the equally spaced mesh points in the x
direction separated by the distance `, and the sum over the integermx is over the periodic
images. �e sum over mx is �nite since MP (x

′) has �nite support over [0, P]. Similar
approximations in the three Cartesian coordinates are multiplied to obtain exp(ik · ri ).

�is approximation for an exponential with a complex argument can be used to assign
the charge density to a la�ice

ρ
q
s (rs ) =

1
`3

∑
m

N∑
i=1

qi
∏
α

MP

(
riα − sα ` −mαL

`

)
(6.45)
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where the product is over the three Cartesian coordinates. Equation (6.45) can be used
with an fft to calculate ρ̂qs (k) and the reciprocal-space energy is

V
qq

long =
1

2V
∑
k,0

Ĝ (k) ���b̂ (k)
���
2 ���ρ̂

q
s (k)

���
2

=
1

2V
∑
k,0

Ĝopt (k)
���ρ̂
q
s (k)

���
2

(6.46)

where
b̂ (k) = b (kx )b (ky )b (kz ). (6.47)

�e use of the B-splines as compared to the Lagrangian interpolation in pme improves
the accuracy of the calculation of both the energy and forces. �e derivatives required
for the forces can be readily obtained from eqn (6.35) in real space, since the cardinal
B-splines can be di�erentiated directly (M ′P (x ) = MP−1 (x ) −MP−1 (x − 1)). Finally, the b
coe�cients can be very accurately approximated by

���b̂ (k)
���
2
=

(∑
k′

Û (k + sck′)
)−2

(6.48)

and therefore, the la�ice Green function for the spme has a closed form (Ballenegger et al.,
2012)

Ĝopt (k) =
Ĝ (k)

[ ∑
k′
Û (k + sck′)

]2 . (6.49)

A detailed implementation of the spme with supporting code is given in Griebel et al.
(2007, Chapter 7). It is worth pointing out that meshing with splines can also be used
in the pppm method as an alternative to the charge assignment function, W . �e only
di�erence then would be the choice of the optimal in�uence function (eqn (6.38) rather
than eqn (6.49)). To simplify the notation in this section, we have considered cubic cells
with mesh points equally spaced in the three coordinate directions. �ese three methods
can be used with grids that are di�erent sizes in each of the three coordinate directions
and with cells that are triclinic (Ballenegger et al., 2012; Essmann et al., 1995).

Deserno and Holm (1998) have compared the Ewald, pppm, pme, and spme methods
as a function of the charge assignment order (P ), mesh size (S), and the di�erentiation
scheme employed. �e standard Ewald summation is unsurpassed for very high accuracy
and is used as the benchmark for the other la�ice methods. In comparing the mesh
methods, it is essential to �nd the optimal value of κ for each technique and to consider,
as a measure of the accuracy, the root-mean-squared deviation of the force from the mesh
method as compared to that of a well-converged Ewald method, at that particular value
of κ. With this criterion, the pppm method is slightly more accurate than the spme and
both approaches can be used to replace the Ewald method. �e pppm method can be
implemented with a charge assignment of P = 3 or 5 and a mesh size of M = 323. �e
most accurate results for the forces are obtained with the ik-di�erentiation method. �e
spme method has been used with a real-space cuto� rc = 9 Å, a mesh size M = 163 and
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spline order of P = 6 to give a root-mean-square deviation on the force of ca. 10−5 e2/Å2

for a simulation of the simple point charge (spc) model of water (Ballenegger et al., 2012).
We recall that the optimal in�uence function is available in a closed form for the spme
approach.

�e computer time for all of the mesh methods discussed in this section should scale
with the number of charges to O (N logN ) (the theoretical complexity of the method).
�is scaling factor is deduced from the behaviour of the discrete Fourier transform which
scales O (S log S ) where S ∝ N is the number of mesh points. In practice, linear scaling is
observed for the mesh methods up to N ≈ 107 (Arnold et al., 2013) since the fft accounts
for between 3 % and 10 % of the total time.

A replicated data, parallel version of the mesh methods (Pollock and Glosli, 1996)
involves the distribution of the charges across the processors and the calculation of the
real-space charge density on a particular processor,p. �e total charge density is calculated
as the sum over all the processors,

ρ
q
s (rs ) =

1
`3

∑
p

∑
i ∈p

qiW (rs − ri ). (6.50)

At this point, copies of the complete ρqs are distributed across all processors. �is density
is then partitioned for use with a distributed data fft, without further communication
between processors. �e total energy is calculated by �rst summing the distributed Fourier
components of the e�ective density and the potential on each processor and then summing
over processors. �e global communication involved in the �rst step of this approach can
be avoided by using a domain decomposition of the mesh across processors. For a P-order
method, only information from the P − 1 layers closest to the edge needs to be replicated
and passed to the neighbouring processor. A suitable parallel fft can be applied to the
distributed data (Griebel et al., 2007).

6.4 Spherical truncation
�e direct spherical truncation of the potential in an ionic �uid can lead to a charged
sphere which would create arti�cial e�ects at its boundary, r = rc. �is can be countered
by distributing a new charge over the surface of the sphere, equal in magnitude and
opposite in sign to the net charge of the sphere, so as to guarantee local electroneutrality.
�e charged neutralized energy of the sphere can be obtained by shi�ing the Coulomb
force to zero at the cuto� as described in Section 5.2.3. As early as 1983, Adams showed
that the results from this approach are system size-dependent, but that for a system of
N = 512 ions, they compare well with those obtained from the Ewald sum (Adams, 1983b).

�ere has been a resurgence in the use of the simple, cuto�-based techniques for
long-range forces (Koehl, 2006; Fukuda and Nakamura, 2012). For example, the method
of Wolf et al. (1999) replaces the Coulomb energy with a damped energy of the form

vW (ri j ) = qiqjr
−1
i j erfc(κri j ). (6.51)
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�e electrostatic energy is

Vqq =
1
2

N∑
i=1

∑
j,i

ri j<rc

[
vW (ri j ) − vW (rc)

]
−

[
erfc(κrc)

2rc
+

κ
√
π

] N∑
i=1

q2
i (6.52)

where the �rst term is the shi�ed, damped potential and the second term is a correction
for the self-energy. For every charge, i , in the cuto� sphere, an image charge of the
opposite sign exists on the surface of the cuto� sphere which interacts only with i . Wolf’s
method has been tested against the Ewald sum for simulations of crystalline and liquid
MgO and produces accurate energies for rc = 2.71a, κa = 1.0 where a = 4.2771 Å is the
zero-temperature la�ice spacing. �e force associated with the potential is discontinuous
at rc and a smoothing function is applied so that the method can be used in md simulations
(Fukuda and Nakamura, 2012). �is method has been extended to remove any net dipoles
and higher moments in the cuto� sphere (the zero dipole method) (Fukuda et al., 2011;
Fukuda, 2013). Spherical truncation is a highly e�cient way of handling long-range
interactions, but there is evidence that these methods introduce artefacts for highly
charged and polar �uids (Koehl, 2006; Izvekov et al., 2008). A signi�cant improvement
would be to combine the spherical cuto� with a long-range contribution which depends
on the con�guration of the charges inside the cuto� sphere.

One such approach is the isotropic periodic sum (ips) method (Wu and Brooks, 2005).
In this method the electrostatic energy is wri�en

Vqq =
1
2

N∑
i=1

∑
j,i

ri j<rc

[
qiqj

ri j
+ qiϕIPS (ri j )

]
. (6.53)

As illustrated in Fig. 6.4, a charge, 1, at the origin interacts directly with charges 2, 3, and 4
in the truncation sphere; there are other charges in the basic simulation cell, which is cubic,
but these do not interact with 1. �e central sphere is surrounded by an in�nite number of
shells (m) at distances 2mrc from the origin. Images of the central sphere (image-spheres)
are distributed with their centres on these image-shells. �e image-spheres are simple
translations of the central sphere without rotation. In a homogeneous 3D system at a
�xed density, there are n(m) = 24m2 + 2 image-spheres on shellm. �ese image-spheres
are notional, and on a particular shell they can overlap or coincide with one another. �e
image-spheres serve only to create the long-range �eld.

For a pair of charges, such as 1 and 2 in Fig. 6.4, the image distribution should be
symmetric around the line connecting the charges. �e ips method tackles this by de�ning
two kinds of image-spheres: axial and random. �e axial image-spheres are located at the
points where the extension of the line 1–2 intersects the image-shells (that is at 1′ and 1′′
in Fig. 6.4). �e method places ξ image-spheres at each of the double-crossing points on
each shell (where ξ is to be determined) and the remaining n(m) − 2ξ image-spheres are
considered to be randomly distributed on each shell. �e interaction of charge 1 with all
the images of charge 2, or more generally charge j, is wri�en

v1j (r1j ) = q1ϕIPS (r1j ), where ϕIPS (r1j ) = ϕaxial (r1j ) + ϕrandom (r1j ), (6.54)
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Fig. 6.4 A 2D representation of the ips method. Charges 2, 3, and 4 are in the truncation sphere of
charge 1, at the origin (all shaded). Images of the truncation sphere are located on the image-shells
m = 1 and 2, etc. Axial images are positioned at the intersection of the line i–j with the image-shells
(e.g. for 1–2 at 1′ and 1′′). �e axial images are not shown. Other image-spheres are distributed at
random over the surface of the image-shells.

and r1j is the separation of charge 1 and j in the central truncation sphere. �e contribution
of the axial images to the �eld at charge 1 is

ϕaxial (r1j ) = ξqj

∞∑
m=1

[
1

2mrc − r1j
+

1
2mrc + r1j

]
. (6.55)

�e contribution of the random image-spheres is

ϕrandom (r1j ) =
∞∑

m=1

(
n(m) − 2ξ

)
ϕshell (r1j ,m) (6.56)

where

ϕshell (r1j ,m) =
qj

2

∫ π

0
dθ sinθ

(√
r 2

1j + (2mrc)2 − 4mrcr1j cosθ
)−1
. (6.57)

We note that, for the electrostatic potential, eqns (6.54)–(6.57) do not converge and it
is necessary to deal with the di�erence [ϕIPS (r1j ) − ϕIPS (0)]. �is technical device does
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not a�ect the calculation of the energy and forces for neutral systems. �e distribution
parameter, ξ , can be determined by ensuring that the radial force at the boundary rc, from
the central charge and all images, is zero

∂

∂r1j

(
qjr
−1
1j + ϕIPS (r1j , ξ )

) �����r1j=rc

= 0. (6.58)

For the charge–charge interaction, ξ = 1, and Wu and Brooks (2005) show that

ϕIPS (r1j ) = −
qj

2rc

[
2γ +ψ

(
1 −

r1j

2rc

)
+ψ

(
1 +

r1j

2rc

)]
(6.59)

where γ = 0.577216 is Euler’s constant andψ (z) is the digamma function

ψ (z) = Γ′(z)/Γ(z), where Γ(z) =

∫ ∞

0
dt tz−1 exp(−t ).

�e technique can be readily extended to obtain analytical formulae for the energy and
forces for potentials of the form r−n in three dimensions. It can also be used to consider
3D systems that are periodic in one and two directions. Where analytical expressions are
not available, for 1D and 2D systems, the ips potentials can be conveniently expressed
as numerical functions (Wu and Brooks, 2005). Comparison of the ips method and the
Ewald sum (Takahashi et al., 2010) shows that ips is an accurate approach for estimating
transport coe�cients and the liquid structure of water in a homogeneous system at cuto�
distances greater than 2.2 nm. �e method has been extended to consider image-spheres
with a radius, rf, greater than the cuto� distance (Wu and Brooks, 2008). �e region
between rf and rc is treated using a k-space sum through the pme approach. �is ips/fft
method is highly accurate for bulk �uids, liquid–liquid and liquid–vapour interfaces, and
lipid bilayers and monolayers (Venable et al., 2009).

A quite di�erent approach to choosing a truncated potential is to seek the one that
most accurately mimics the true long-range potential. For example, we might consider
that the most accurate simulation of water is achieved using a large system and the
Ewald method with the parameters κ, rc, and kmax chosen to minimize the error in the
forces. If this simulation generates the ‘true’ or reference trajectories, then the force-
matching (fm) method (Izvekov et al., 2008) can be used to �nd the ‘best’ e�ective short-
range electrostatic potentials that can reproduce these reference trajectories. �e method
is discussed in the context of coarse graining in Section 12.7, but brie�y, an e�ective
(truncated) force, fFM

i (r(N ) ), is compared to the ‘true’ force, f i (r(N ) ), by calculating the
residual

χ 2 =
1

3N

〈 N∑
i=1

�����
fFM
i (r(N ) ) − f i (r(N ) )

�����

2〉
(6.60)

where the average is over con�gurations generated with the ‘true’ force in, say, the
canonical ensemble. For a spherical truncation, the e�ective force is of the form

fFM
i =

∑
j,i

ri j<rc

f FM
i j (ri j )r̂i j , (6.61)

involving just the neighbours within the cuto� sphere. �e trial force, f FM
i j , in eqn (6.61),

could be represented as a k-order polynomial or set of cubic spline functions with k points
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on a mesh {rk } up to rc. �en minimizing eqn (6.60) produces a set of linear equations
for the coe�cients of the ��ing function, resulting in the fm solution. �e large number
of coupled equations resulting from each step in the simulation can be reduced to a
manageable number by averaging over blocks of con�gurations or timesteps (Noid et
al., 2008b). �e ‘best’ potential can be determined by integrating the force and se�ing
v

FM
i j (rc) = 0. �is method will be most useful if the e�ective spherical potential calculated

from a reference water simulation at one density and temperature can be applied at other
state points in the phase diagram. It would also be powerful if the truncated electrostatic
interaction developed for the O−H interaction within water could also be applied to the
O−O interaction (with an adjustment of the charges), or the potential developed with one
well-known model of water, say spc/e, could be used with another model such as tip3p,
or in the simulation of more complicated systems such as solvated ions. All this sounds
like a tall order, but Izvekov et al. (2008) have demonstrated that the fm charge–charge
potential is transferable across all of these cases. Even more encouraging is that the fm
potential calculated between charges in a water simulation can also be used to good e�ect
in the simulation of molten NaCl.

6.5 Reaction �eld
Beyond a simple spherical truncation, it is possible to treat the volume of the �uid outside
the truncation sphere as a dielectric continuum. �is approach is particularly valuable in
the simulation of large solvated molecules such as proteins. In these systems it is possible
to include some of the surrounding water molecules explicitly, but the length and size
of the simulations suggests that most of the solvent will need to be included implicitly
through a surrounding continuum. �e most straightforward approach, the reaction �eld
method, assumes a continuum of �xed relative permi�ivity, say ϵs = 80 for water.

We will describe the method for a pure dipolar �uid. �e �eld on a dipole at the centre
of the truncation sphere consists of two parts (see Fig. 6.5): the �rst is a short-range
contribution from molecules situated within a cuto� sphere or ‘cavity’ R , and the second
arises from molecules outside which form the dielectric continuum (Onsager, 1936). �e
size of the reaction �eld acting on molecule i is proportional to the moment of the cavity
surrounding i ,

Ei =
2(ϵs − 1)
2ϵs + 1

1
r 3

c

∑
j ∈R

µ j (6.62)

where the summation extends over the molecules in the cavity, including i , and rc is the
radius of the cavity. �e contribution to the energy from the reaction �eld is − 1

2µi ·Ei . �e
torque on molecule i from the reaction �eld is µi × Ei . Barker and Wa�s (1973) �rst used
the reaction �eld in a simulation of water, and there are useful discussions by Friedman
(1975) and Barker (1980).

Whenever a molecule enters or leaves the cavity surrounding another, a discontinuous
jump occurs in the energy due to direct interactions within the cavity and in the reaction
�eld contribution. �ese changes do not exactly cancel, and the result is poor energy
conservation in md. In addition, spurious features appear in the radial distribution function
at ri j = rc. �ese problems may be avoided by tapering the interactions at the cavity surface
(Adams et al., 1979): the explicit interactions between molecules i and j are weighted by a
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1
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3

4

Fig. 6.5 A cavity and reaction �eld. Each molecule carries a permanent dipole moment (white
arrows). Molecules 2, 3, and 4 interact directly with molecule 1. �e continuum polarized by the
molecules in the cavity produces a reaction �eld at 1 (shaded arrow).

factor f (ri j ), which approaches zero continuously at ri j = rc. For example, linear tapering
may be used:

f (ri j ) =




1.0 ri j < rt

(rc − ri j )/(rc − rt) rt ≤ ri j ≤ rc

0.0 rc < ri j

(6.63)

where an appropriate value of rt is rt = 0.95rc. �e contribution of the molecular dipoles
to the cavity dipole, and hence the reaction �eld, are correspondingly weighted. Investi-
gations of tapering methods (Adams et al., 1979; Andrea et al., 1983; Berens et al., 1983)
suggest that it may be rewarding to adopt more sophisticated formulae than the linear
one given here.

When partial charges are used to represent a dipole, or a portion of a protein, or an
ion, it is best to de�ne a number of sets of charge groups. For example a charge group
might contain the three partial charges in the spc/e model of water. �e cuto� is then
de�ned in terms of the separation of the centres of the charge groups, RI J , rather than
the separation of the individual charges (Hünenberger and van Gunsteren, 1998). In this
case the total energy in the reaction �eld geometry is

Vqq =
1
2

N∑
i=1

N∑
j, I,J
RI J <rc

qiqj

[
1
ri j
+

(
ϵs − 1
2ϵs + 1

r 2
i j

r 3
c
+C

)]
+VBorn +Vself (6.64)
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where

VBorn = −
1
2

(
ϵs − 1
ϵs

)
1
rc

N∑
i=1

qi

N∑
j

RI J <rc

qj (6.65a)

Vself =
1
2

N∑
i=1

N∑
j ∈I

qiqj

(
ϵs − 1
2ϵs + 1

r 2
i j

r 3
c
+C

)
(6.65b)

and C = −
1
rc

[
1 + ϵs − 1

2ϵs + 1 −
ϵs − 1
ϵs

]
. (6.65c)

�e Born energy arises from reversibly charging the atoms in a particular charge group
as if they were at the centre of their own cuto� sphere. �e constant C arises from a
homogeneous background charge, which neutralizes any charge groups in the sphere.
When all the charge groups are neutral, C vanishes and VBorn is zero. Vself is the self
energy of a charge group in its own dipolar reaction �eld; this term is constant if the
distances within a charge group remain �xed. Hünenberger and van Gunsteren (1998)
discuss some inconsistencies which arise from charge groups that straddle the cuto�
boundary when ri j > rc. �ese can be avoided by increasing the radius of the reaction
�eld sphere (rf) so that rf > rc. �e appropriate extensions to eqns (6.64)–(6.65) for this
case are given by Hünenberger and van Gunsteren (1998).

An alternative approach to reaction �elds developed by Friedman (1975) considers the
interaction between a charge inside the cuto� sphere and the in�nite number of discrete
image charges, along the extension of the radial line in the continuum. Accurate and
e�cient methods for calculating the position and size of these image charges have been
developed by Lin et al. (2009). One of the di�culties of using this approach in a simulation
is that as a charge approaches the cuto�, the image charge reaction �eld diverges. Lin et al.
(2009) have suggested using a spherical reaction �eld of radius rf > rc. �e bu�er layer is
�lled with explicit solvent molecules, avoiding the creation of a vacuum layer between
the truncation sphere and the reaction �eld sphere. �e method has been tested on the
tip3p model of water in a truncated octahedral simulation box as a function of the width
of the boundary layer and the number of image charges included along the radial line.
�e results for the structure, di�usion coe�cient and dielectric constant obtained with
two images per charge and a boundary layer of 6 Å compare well with those obtained
from the pme la�ice sum.

Returning to the pure dipolar �uid, Neumann and Steinhauser (1980) and Neumann
(1983) have considered the nature of the simulations when a reaction �eld is applied. �e
appropriate formula for calculating the dielectric constant is eqn (6.19) where д(ϵs) is
calculated from the �uctuation in the total moment of the complete central simulation
box (Patey et al., 1982) as in eqn (6.20). �e static reaction �eld is straightforward to
calculate in a conventional md or mc simulation, and it involves only a modest increase in
execution time. A potential di�culty with the reaction �eld method is the need for an a

priori knowledge of the external dielectric constant (ϵs). Fortunately, the thermodynamic
properties of a dipolar �uid are reasonably insensitive to the choice of ϵs, and the dielectric
constant can be calculated using eqn (6.19).
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At the next level of sophistication, we can consider a continuum that contains a
number of ions at a �xed concentration. �e electric potential in the region outside the
truncation sphere, with a dielectric continuum ϵs at a constant ionic strength I , obeys the
Poisson–Boltzmann (pb) equation where the charge distribution is modelled using the
Debye–Hückel theory

ρq (r) = F
K∑
k=1

ckzk exp(−zkFϕ (r)/RT ). (6.66)

F is Faraday’s constant (96 485.332 89 C mol−1), R is the ideal gas constant, and ck and zk
are the concentration and charge number (valence) for each species k = 1, . . . ,K of ions
in the continuum. �e substitution of eqn (6.66) into eqn (6.25) de�nes the pb equation
for ϕ (r). (We note eqn (6.25) requires an additional factor of ϵs on the le�-hand side to
account for the dielectric constant of the continuum.)

Tironi et al. (1995) have developed a generalized reaction �eld approach that includes
the ions in the continuum by applying the linearized version of eqn (6.66) to the region
outside the truncation sphere. In this case the potentials inside and outside the truncation
sphere satisfy

∇
2ϕin (r) = −4π

N∑
i=1

qiδ (r − ri ) r ≤ rc

∇
2ϕout (r) = 4πκ2ϕout (r) r > rc, (6.67)

where κ is the inverse Debye screening length

κ2 =
F 2

ϵsRT

K∑
k=1

ckz
2
k . (6.68)

�ese two equations can be solved by matching the electric potentials and their derivatives
at rc. �e potential energy for this system is

Vqq =
1
2

N∑
i=1

∑
j,i

ri j<rc

qiqj

[
1
ri j
−

(1 + B1)r
2
i j

2r 3
c

]
(6.69)

where
B1 =

(1 − 4ϵs) (1 + κrc) − 2ϵs (κrc)
2

(1 + 2ϵs) (1 + κrc) + ϵs (κrc)2
. (6.70)

As κ → 0, eqn (6.69) reduces to the normal reaction �eld equation for the energy (the
second term in eqn (6.64) withC = 0). At large κ, B1 → −2 and eqn (6.69) reaches the limit
for a conducting boundary around the truncation sphere. Molecular dynamics simulations
of 1 molar NaCl (ϵs = 80, κ = 3.25 nm−1, rc = 1.5 nm) using the generalized reaction �eld
method (Tironi et al., 1995) are in reasonable agreement with full Ewald simulations of
the same system. �e use of the pb equation avoids the clustering of ions at the cuto�,
which occurs with a simple spherical cuto�. �is is a sti� test of the approach as the
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linearized pb equation is only accurate in the limit of low ionic concentrations. �e full pb
equation can be solved using a �nite-di�erence approach (Koehl, 2006; Feig et al., 2004).
It has been widely used in the simulation of solvated proteins (Prabhu et al., 2004) where
it is an order of magnitude faster than simulations using only explicit water molecules.

6.6 Fast multipole methods
For very large systems of charges, it possible to calculate the potential at a particular
point using a fast multipole method (fmm) (Kurzak and Pe�i�, 2006). �e method scales
O (N ) for large N and involves the extensive use of multipole and local expansions of the
charge distribution in a particular region. It is useful to begin with a reminder of these
expansion techniques.

Consider N charges of strength qi , i = 1 . . .N . �e charges are located at ri , within
a sphere |ri | < a, centred at the origin. �e potential due to these charges at a point
with polar coordinates r = (r ,θ ,φ), which is outside the sphere (|r| > a), is given by a
multipole expansion

ϕ (r) =
∞∑
`=0

m=∑̀
m=−`

M`,m G`,m (r) (6.71)

where G`,m is the irregular solid harmonic (Wang and LeSar, 1996)

G`,m (r) =
(−1)`−m (` −m)!

r `+1 exp(imφ)P`,m (cosθ ). (6.72)

�e expansion coe�cients are

M`,m =

N∑
i=1

qiF
∗
`,m (−ri ), (6.73)

where F ∗
`,m is the complex conjugate of the regular solid harmonic

F`,m (r) =
(−1)`−m r `

(` +m)! exp(imφ)P`,m (cosθ ). (6.74)

(Note that the moments M`,m are the spherical tensor equivalents of the Cartesian multi-
pole moments introduced in Chapter 1 (Stone, 2013).) In practice, the upper limit of the
sum over ` is replaced by a �nite integer, p, giving rise to an error

ϵ ≤
A

r − a

(
a

r

)p+1
, where A =

N∑
i=1
|qi |. (6.75)

One elegant feature of the multipole expansion is that it is straightforward to change
the origin of the expansion using a linear multipole-to-multipole (m2m) transformation
applied to the coe�cients. In Fig. 6.6(a), we consider N charges qi , i = 1 . . .N in a sphere
of radius a centred at Q . Using this point as the origin of the expansion, the potential
ϕ (P ) at another point P is wri�en in terms of a set of coe�cients M`,m . �e centre of the
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(a)

rM2M
r′

P
r

a

O

Q

(b)

rQO > 2a

a

a

O

Q

Fig. 6.6 (a) A shi� in the origin of the multipole expansion. �e multipole expansion of charges
around the pointQ in a sphere of radius a. �e potential at P can be wri�en in terms of an expansion
around the origin O if r ′ ≥ a + |rM2M | (dashed arc). (b) �e region of convergence of the local
expansion. �e local expansion is valid inside the sphere of radius a centred at the origin from a set
of charges inside a sphere of radius a centred at Q , with rQO > 2a.

multipole expansion can be changed from Q to O , as long as P is outside the sphere of
radius |rM2M | + a. �e coe�cients in the new expansion, M`′,m′ are

M`′,m′ =

p∑
`=0

∑̀
m=−`

M`,mF
∗
`′−`,m′−m (rM2M) (6.76)

where rM2M is the vector from Q to O .
Turning now to the local expansion, we consider the same set of N charges in a sphere

of radius a centred at Q as shown in Fig. 6.6(b). Q is at a distance greater than 2a from the
origin. �e local expansion of the potential due to these charges converges in a sphere of
radius a centred at the origin. �e potential at r, inside this sphere, is

ϕ (r) =
p∑
`=0

∑̀
m=−`

L`,m G`,m (r) (6.77)

where the coe�cients in the local expansion are

L`,m =
N∑
i=1

qiG`,m (−ri ). (6.78)

�e origin of a local expansion can be moved by a vector displacement rL2L using the
local-to-local (l2l) transformation

L`′,m′ =

p∑
`=0

∑̀
m=−`

L`,mF
∗
`−`′,m−m′ (rL2L) (6.79)
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C = 0 C = 1 C = 2

b

C = 3

Fig. 6.7 �e division of the computational box in the fmm for a two-dimensional square box.C = 0
corresponds to the complete square. C = 1, 2, 3 show the children at each level of the division. At
C = 1 the arrows represent the shi� in the origin of a multipole expansion at the centre of each box
to its corner. �e shi�ed �elds are added to create the expansion at the centre of the parent box (at
C = 0). At C = 3, the nearest neighbours and next-nearest neighbours of box b are shaded.

and a multipole expansion can be moved by a vector rM2L and converted to a local
expansion using the multipole-to-local (m2l) transformation

L`′,m′ =

p∑
`=0

∑̀
m=−`

M`,mG`′+`,m′+m (rM2L). (6.80)

�e e�cient evaluation of these three transformations (m2m, m2l, l2l) is a critical compo-
nent of the fmm. �e potentials are expanded in solid harmonics, rather than the more
usual spherical harmonics, since this approach gives rise to computationally simpler forms
of the transformations. In addition the symmetry of the solid harmonics means that one
may consider only positive values ofm in storing and manipulating the coe�cients.

�e algorithm begins by dividing the central simulation box into octants. �e partition
of space continues and the mesh at level C + 1 is obtained by dividing the mesh at C into
octants. A tree structure is imposed on this mesh, so that when a particular box at level
C is divided, the resulting eight boxes at level C + 1 are its children and the box itself
is described as a parent. �e number of distinct boxes at each mesh level is 8C in three
dimensions. For simplicity, this division is illustrated in two dimensions for a square box
in Fig. 6.7 for C = 0 . . . 3. (Of course, in our two-dimensional representation, the box is
divided into quarters and there are 4C boxes at level C .)

For a box b at level C , a nearest-neighbour box shares a boundary point with b. A
second-nearest neighbour box shares a boundary point with one of the nearest-neighbour
boxes of b. �e use of a local expansion is only valid if the external charges contributing
to the expansion and those inside the target box are well separated. In other words, the
local expansion must arise from charges beyond the second-nearest neighbour boxes if
the �eld in b is to be accurately represented.

�e algorithm uses the following de�nitions.
(a) ϕC,b is the multipole expansion of the potential created by the charges contained

inside box b at level C . (All expansions are truncated at the same order, p.)
(b) ψC,b is the local expansion about the centre of box b at level C . �is describes the

potential due to all charges outside the box, its nearest-neighbour boxes and second-
nearest neighbour boxes.
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(c) ψ̃C,b is the local expansion about the centre of box b at level C from all the charges
outside b’s parent’s box and the parent’s neighbours and the parent’s second-nearest
neighbours.

(d) the interaction list for box b at level C is the set of boxes which are children of the
nearest-neighbour and second-nearest neighbour of b’s parents and which are not
nearest-neighbours and second-nearest neighbours of b.

Suppose that at a particular level C − 1 of the algorithm, the local expansion,ψC−1,b , has
been obtained for all the boxes. �e origin for the local expansion for a box at this level
can be shi�ed so that the expansion acts at the centre of each of that box’s children. For a
particular child, j at levelC , this shi� will provide a representation of the potential due to
all the charges outside j’s parent’s neighbours and next-nearest neighbours, that is ψ̃C, j .
�e interaction list details the boxes whose contribution to the potential must be added to
ψ̃C, j to produceψC, j . �e fmm is built around an upward pass through the mesh from the
largest value of C ≈ log8 (N ) to C = 0, followed by conversion of the resulting multipole
expansion to a local expansion, and a downward pass of the local expansion to the �nest
mesh level.

In the upward pass, the multipole expansion of the potential about the centre of each
box is formed at the �nest mesh level. �e origin of the multipole expansion for each
child is shi�ed to the centre of the parent box (as shown at C = 1 in Fig. 6.7) and the total
potential is obtained at this point by addition. �is process is repeated at all mesh levels
up to C = 0.

In the downward pass, ψ̃C,1 . . . ψ̃C,8C at mesh levelC are obtained from the local �elds
of their parents,ψC−1,1 . . .ψC−1,8(C−1) , using an l2l transformation. ψ̃C,b is then corrected
by considering the boxes on its interaction list and transforming the multipole �eld
at the centre of these boxes to a local expansion at the centre of box b, using an m2l
transformation. �ese corrections are added to ψ̃C,b to create the full local potential,ψC,b .
�is process is repeated at all mesh levels. Once the local expansions at the �nest mesh
level are available, they can be used to generate the potential and force on all the charges
from beyond the second-nearest neighbour boxes at this level. �e potential and forces
from the nearest-neighbour and second-nearest neighbour boxes at this mesh level are
calculated directly and added.

For an isolated cube, ψ̃1,1 . . . ψ̃1,8 are set to zero and the interaction lists are empty for
C < 3. For a periodic system the multipole expansion for the entire cell, ϕ0,1, is available at
the end of the upward pass. �is is also the expansion for each of the image boxes around
their centres. Now, image boxes which are not nearest-neighbour or second-nearest
neighbour images are well separated from the central box and it is straightforward to
form a local expansion from these images, ψ0,1, to act at the centre of the central box
(Ambrosiano et al., 1988). �e precise form of this operation in three dimensions is given
in Berman and Greengard (1994, eqns (34), (35)). Christiansen et al. (1993) have shown
that the order of the addition of the image contributions to this sum is important. �e
calculation of ψ0,1 can be thought of as the �rst step of the downward pass. In later
versions of the algorithm (Carrier et al., 1988) di�erent levels of mesh are used in di�erent
parts of the box depending on the local number density (the adaptive algorithm). �e
principles of the method are precisely the same as for the simpler uniform partition of
space described here.
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�e important advantage of this algorithm is that the running time is of O (N ).
Greengard and Rokhlin (1988) have shown that the required computational time goes as
N (e (log2 ϵ )

2 + f ) where e and f are constants which depend on the computer system and
implementation and ϵ is the precision of the calculation of the potential. �e precision
�xes the order of the multipole and local expansions, that is, p ≈ − log2 ϵ . �e storage
requirements of the algorithm also scale with N . Similar estimates apply to the adaptive
algorithm which is faster and requires less storage. In a simulation of a neutral system of
30 000 point charges embedded in Lennard-Jones disks, the fmm runs at twice the speed
of the Ewald method (Sølvason et al., 1995) in a serial implementation of the code with
p = 6.

Although the fast multipole method is capable of producing highly accurate results
at an acceptable cost in two dimensions, there have been some di�culties in �nding
cost-e�cient approaches in three dimensions. In 3D the linear translation operators are
expensive to apply and this is particularly true of the operator m2l, which is used 189
times more o�en than m2m or l2l in a uniform system.

�e transformation m2l, eqn (6.80), is a convolution, which can be evaluated as a
matrix–vector multiplication in k-space. A signi�cant gain in speed can be achieved by
placing both the transformation matrix and the multipole moment on a grid and using an
fft technique to calculate the L`′,m′ coe�cients (Ellio� and Board, 1996). M2l can also
be adapted to use a plane-wave representation of the expansion of 1/r in place of the
multipole expansion, with an increase in e�ciency. Additionally, an m2l translation along
the z-direction is much simpler than translation along an arbitrary vector (see Cheng et al.,
1999, eqns (33–35)). It is cost-e�ective to rotate the coe�cients of the expansions into a
frame with the z-axis in the direction of rM2L, then to perform the simpli�ed translation
and �nally rotate the coe�cients back into the original frame. �ese methods for reducing
the computational complexity of the m2l transformation are discussed in more detail by
Kurzak and Pe�i� (2006).

Apart from these important e�orts to optimize the serial version of the fmm, consider-
able e�ort has gone into parallelizing the algorithm. �e �rst e�orts of Greengard and
Gropp (1990) have been extended to produce algorithms for both distributed-memory
and shared-memory architectures (see Kurzak and Pe�i�, 2005, and references therein).
�e fmm decomposes the simulation box into hierarchical cells organized in an octal tree.
Cells at all levels can be distributed across processors and advanced graph theoretical
techniques have been used to determine e�cient communications and load balancing
arrangements. In such a decomposition, it is inevitable that some parents and children
will live on di�erent processors and the majority of the communications occur in the m2l
part of the calculation. �e communications part of this particular transformation can be
e�ciently overlapped with the computation in the upward and downward passes (Kurzak
and Pe�i�, 2005).

6.7 �e multilevel summation method
�e multilevel summation method (msm) (Skeel et al., 2002) is an interesting extension
of the la�ice mesh methods discussed in Section 6.3 combined with a tree approach, such
as the fmm of the previous section. Whereas in the fmm individual charge interactions are
separated into near and far pairs, the msm separates the short-range part of the potential
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Example 6.1 Crowded living cells

An example of the power of fmm can be seen in a recent study of molecular crowding
in cellular environments using an all-atom molecular dynamics simulation (Ohno
et al., 2014). �e living cell is crowded with proteins comprising about 30 % of its mass.
It resembles a liquid of globular proteins in an aqueous environment. �e properties
of proteins in this environment cannot be studied by simulating an isolated protein
in a water droplet.
Using the K computer at the riken Advanced Institute for Computational Science in
Kobe, Japan, Ohno et al. (2014) performed calculations on 520 million atoms with a
cuto� of 28 Å and electrostatic interactions evaluated by the fmm. �e tip3p rigid
model of water was used with the amber99sb force �eld for the proteins: a heavy
metal binding protein ttha1718 and a crowding agent ovalbumin (as found in egg
whites). �e system also contained free potassium and chloride ions.
�e calculations used 79 872 nodes (P = 638 976 cores) in parallel, and achieved a
sustained performance of 4.4 peta�ops (1 peta�ops is 1015 �oating-point operations
per second). �e use of an fft in, say, the pppm method would prevent this simulation
from scaling to hundreds of thousands of cores, whereas the fmm scales to the full
size of the largest supercomputers currently available. �is di�erence arises from the
nature of the inter-node communications in the two methods. �e communications
complexity in the fft is O (

√
P ), whereas for fmm it is O (ln P ).

As the authors point out, the total spatial extent of these simulations is approximately
0.2 µm compared to a real cell which has a minimum size of 1.0 µm. As we approach
exa�ops (1018 �ops) performance, larger simulations of the whole cell will become
possible. However, since the electric �eld propagates at 0.3 µm fs−1, it will be necessary
to consider relativistic corrections to classical md at these length scales and this may
have profound e�ects on the complexity of the algorithms for calculating the long-
range forces.

from the long-range or smooth part at di�erent spatial scales. �e separation of scales
means that the msm will also scale linearly with the number of particles for su�ciently
large N . �e method begins by separating the Coulomb potential into two terms

1
r
=

(
1
r
− fa (r )

)
+ fa (r ), (6.81)

where fa is a so�ening function, chosen so that the �rst term is e�ectively zero for r > a.
�e long-range part of the potential energy can be wri�en as

V
qq

long =
1
2

N∑
i=1

N∑
j=1

qiqj fa
(
|ri − rj |

)
(6.82)

where the excluded terms, j = i , are to be subtracted directly from the �nal results for the
potential energy and forces.
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�e method employs a hierarchical set of cubic meshes with mesh spacing 2λ−1` at
each level λ = 1 . . . λmax. At a particular level the mesh point s is at rs,λ . At the �nest mesh
level, λ = 1, the so�ened potential is approximated as a function of the source position, r′,

fa,1
(
|r − r′ |

)
≈

∑
s

fa,1
(
|r − rs,1 |

)
ψs,1 (r′) (6.83)

where the basis functions,ψs,λ (r′), are de�ned at each node point and each mesh level.
ψs,1 is chosen to be zero on all but a small number of nodes close to s . �e coe�cients in
the expansion (6.83) are approximated as functions of the destination position, r,

fa,1
(
|r − rs,1 |

)
≈

∑
t

fa,1
(
|rt,1 − rs,1 |

)
ψt,1 (r). (6.84)

Eqns (6.83) and (6.84) are combined, and the sums rearranged, to give

V
qq

long =
1
2
∑
s

∑
t

fa,1
(
|rt,1 − rs,1 |

) *
,

∑
i

qiψt,1 (ri )+
-︸             ︷︷             ︸

qt,1

*.
,

∑
j

qjψs,1 (rj )
+/
-︸             ︷︷             ︸

qs,1

. (6.85)

�e sum over charge pairs (i, j ) has been replaced by a sum over charges qs,1, qt,1 at the
la�ice points (s, t ). �e two parts of the electrostatic potential at a grid point t are

ϕshort
t,1 =

∑
s

[
|rt,1 − rs,1 |−1 − fa,1

(
|rt,1 − rs,1 |

)]
qs,1 (6.86a)

ϕ
long
t,1 =

∑
s

fa,1
(
|rt,1 − rs,1 |

)
qs,1. (6.86b)

�e short-range potential, eqn (6.86a), can be evaluated using an O (N ) approach such as
the linked-list method. �e long-range range part of the potential, eqn (6.86b), is passed
up the grid to the next level.

At λ = 2 (la�ice spacing 2`), the so�ening function itself is split into a short- and
long-range part

fa,1 (r ) =
[
fa,1 (r ) − fa,2 (r )

]
+ fa,2 (r ). (6.87)

�e charges on the λ = 2 grid are

qt,2 =
∑
s

ψt,2 (rs,1)qs,1 (6.88)

and the short- and the long-range parts of the electric potential are calculated using the
analogues of eqns (6.86a) and (6.86b) at λ = 2. �e short-range part of the potential is
retained for use in the descent phase of the algorithm.

�e ascent of the levels continues in a similar manner, until λ = λmax where the
largest grid spacing is 2λmax−1`. At this level the total potential is not split into a short-
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and long-range part. �e total potential, ϕ = ϕshort, is calculated by summing over all
la�ice points without the use of a cuto�,

ϕt,λmax =
∑
s

fa,λmax

(
|rt,λmax − rs,λmax |

)
qs,λmax . (6.89)

�e descent of the multilevel grid begins. At level λ, the total potential at λ + 1 is used
to calculate the long-range potential at level λ

ϕ
long
t,λ =

∑
s

ψs,λ+1 (rt,λ )ϕs,λ+1. (6.90)

�e total potential at level λ is calculated by adding the short-range piece (as calculated
in the ascent phase). �e descent continues until λ = 1 when the long-range potential at
the charges is calculated by interpolation from the �nest mesh points

ϕ
long
i =

∑
t

ψt,1 (ri )ϕt,1. (6.91)

�e total potential energy is

Vqq =
1
2

N∑
i=1

N∑
j,i

qiqj

[
1
ri j
− fa,1 (ri j )

]
+

1
2

N∑
i=1

qiϕ
long
i −

fa,1 (0)
2

N∑
i=1

q2
i (6.92)

where the �nal term removes the i = j interaction from the long-range part ofVqq . �e
force on charge i can be calculated analytically by di�erentiating (6.92) term by term.
�us the long-range contribution to the force is

f i = −qi
∑
t

ϕt,1∇riψt,1 (ri ). (6.93)

Hardy et al. (2015) suggest the following form for the so�ening functions

fa,λ (r ) =

[
1

2λ−1a

]
F

(
r

2λ−1a

)
(6.94)

where

F (r ′) =



1 − 1
2 (r
′2 − 1) + 3

8 (r
′2 − 1)2 r ′ ≤ 1

1/r ′ r ′ > 1
(6.95)

and the function F , and its �rst derivative, are continuous at r ′ = 1.
�e appropriate basis function is the product of one-dimensional functions for each

of the Cartesian coordinates α

ψm,λ (r) =
∏
α

Ψ

(
rα − (rm,λ )α

2λ−1`

)
(6.96)

where for cubic interpolation

Ψ(x ) =




(
1 − |x |

) (
1 + |x | − 3

2x
2
)

0 ≤ |x | ≤ 1
− 1

2

(
|x | − 1

) (
2 − |x |

)2
1 ≤ |x | ≤ 2

0 otherwise.
(6.97)
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�e msm can be implemented with periodic boundary conditions. In the short-range part
of the calculation, the minimum image convention with a spherical cuto� is employed. In
the long-range part of the calculation, the periodicity is included by wrapping around
the edges of the grid as illustrated in Code 6.2. �e precise number of boundary layers
to be considered will depend on the range of the basis functions at each level. For a
periodic system, the number of grid points must be a power of 2, which �xes the grid
spacing. In a charge-neutral, periodic system, the top level is a single grid point with a
charge of zero and the potential in eqn (6.89) is set to zero. A typical calculation might
involve one particle level and �ve grid levels (Moore and Crozier, 2014). �e method
can be readily applied to systems that are only partially periodic and to non-periodic
droplets (Hardy et al., 2015). �e method has been used to simulate water and to calculate
a number of properties including the dielectric constant and surface tension. Although
it is not as accurate as the pppm method, it is su�ciently accurate to produce the same
thermodynamic and structural properties of tip3p water as the pppm method (Moore and
Crozier, 2014; Hardy et al., 2015).

6.8 Maxwell equation molecular dynamics
Maxwell equation molecular dynamics (memd) is an alternative approach for including
long-range forces whereby the electric �eld due to the charges is propagated by solving
Maxwell’s equations (Maggs and Rosse�o, 2002; Ro�ler and Maggs, 2004). �is �eld can
then be used to calculate the force on each of the charges in a molecular dynamics
calculation of their trajectories. In this case the instantaneous Coulomb potential is
replaced by a retarded interaction propagating at the speed of light. �e coupling of this
propagated �eld and the charges is local and the algorithm should scale as O (N ). For a
given con�guration the charge density, ρq , and the current, j, are

ρq =
∑
i

qi δ (r − ri ), j =
∑
i

qivi δ (r − ri ) (6.98)

and the Maxwell equations, in standard si units, are

∇ · E = ρq/ϵ0 (6.99a)
∇ × E = −Ḣ/(ϵ0c

2) (6.99b)
∇ · H = 0 (6.99c)
∇ × H = ϵ0 Ė + j (6.99d)

where c is the speed of light and H is the free magnetic �eld (in this case B = µ0H, see
Appendix B).

It is not possible to solve the combination of eqns (6.99) for the �elds with the equations
of motion of charges using the real value of c , because of the enormous di�erence in
the timescales of these motions. We need to avoid the static limit, c → ∞, but to use a
c that is su�ciently small to solve the coupled equations of the �eld and the charges.
Ro�ler and Maggs (2004) have suggested a much lower, notional, value of c , such that
v̄/c ≈ 0.3 where v̄ is the mean velocity of the charges. �is would allow the solution of
the combined equations and still maintain a su�ciently large separation in the timescales
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so that the electric �eld follows the motion of the charges adiabatically. (We note that a
similar approach is used in the solution of the electronic and nuclear degrees of freedom
in the ab initio molecular dynamics method discussed in Chapter 13.)

�e equations of motion can be established by considering Gauss’s law, eqn (6.99a),
to be a constraint that �xes a surface in the electric �eld space. �en all the �elds on the
constraint surface obey

E = E0 + ∇ × Θ (6.100)

where E0 is a particular �eld on that surface, and Θ turns out to be related to H. Following
Pasichnyk and Dünweg (2004), the overall Lagrangian for the system can be wri�en as

L =
∑
i

���pi
���
2

2mi
−V +

ϵ0
2c2

∫
dr ���Θ̇

���
2
−
ϵ0
2

∫
dr ���E

���
2
+

∫
dr A ·

(
ϵ0Ė + j−ϵ0∇× Θ̇

)
(6.101)

where the �eld A is a Lagrange multiplier that constrains the dynamics to the constraint
surface satisfying the fourth Maxwell equation, eqn (6.99d), when we set H = ϵ0Θ̇.

�e Lagrangian can be used in the normal way to de�ne the coupled equations of
motion of the system

ṙi = pi/m (6.102a)
ṗi = −∇riV + qiE (6.102b)
Ȧ = −E (6.102c)
Ė = c2

∇ × (∇ × A) − j/ϵ0 (6.102d)

where pi are the momenta of the charges. �e vector �eld A is related to the free magnetic
�eld

H = ϵ0c
2
∇ × A (6.103)

so that eqn (6.102d) is simply the fourth Maxwell equation. We note that the magnetic
force on the charges, the Lorentz force, which one might have expected to appear in
eqn (6.102b), can and should be set to zero. �e dynamics is no longer Hamiltonian but
the energy

H =
∑
i

���pi
���
2

2m +V +
ϵ0
2

∫
dr ���E

���
2
+

1
2ϵ0c2

∫
dr ���H

���
2

(6.104)

is still conserved.
�ese equations are most readily solved on a cubic la�ice, see Section 6.4. �e grid

assignments for Maxwell’s equations are well known (Yee, 1966) and have been set out
in detail for memd by Pasichnyk and Dünweg (2004). �e charges, qi are assigned to the
la�ice points using a charge assignment algorithm (such as the triangular-shaped cloud,
or the cardinal B-splines, seen earlier). �e electric �eld, E, with A and j, act along the
links, the edges of the cube as shown in Fig. 6.8. �e divergences of the vector �elds act
at the la�ice points (taking the di�erences from the six links associated with a point).
�e curls of these �elds, e.g. H and Θ, are located on the cube faces or plaque�es (taking
di�erences from the four surrounding links). �e curls of the plaque�e �elds act along
the links (taking the di�erences from the four plaque�es around a link). Finally, the
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Fig. 6.8 �e la�ice for the memd algorithm. �e charges in the simulation are assigned to the eight
corners of the cube; the �elds (E, j,A) lie along the edges of the cube; the vector curls (Θ,H) are
established on the plaque�es and are perpendicular to the surfaces of the cube (Arnold et al., 2013).

divergence of a plaque�e �eld is placed at the centre of a cube (taking di�erences from
the six surrounding plaque�es).

�e equations are solved by using a variation of the Verlet method (Ro�ler and Maggs,
2004). Both the electric �eld and the charge positions are moved forward in two half
timesteps:
(a) advance the charge momenta by half a timestep;
(b) advance the A �eld by half a timestep;
(c) looping over the three coordinate directions, x followed by y followed by z

- advance the charge positions in the α-direction by half a timestep,
- advance the electric �eld in the α-direction by half a timestep;

(d) looping over the three coordinate directions z followed by y followed by x

- advance the charge positions in the α-direction by half a timestep,
- advance the electric �eld in the α-direction by half a timestep;

(e) advance the A �eld by half a timestep;
(f) advance the charge momenta by half a timestep.

�is approach preserves time reversibility and conserves the corresponding phase space
volume. In addition the system remains on the constraint surface associated with the
accurate solution of Gauss’ equation.
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6.9 Long-range potentials in slab geometry
So far, we have considered how to model electrostatic interactions in a bulk three-
dimensional system. However, con�ned or inhomogeneous systems are also of great
interest, and naturally the geometry has an e�ect.

Consider a pore composed of two �at interfaces represented by a static external �eld.
�e interfaces are located on the top and bo�om of the simulation box containing the
�uid. �e box is then two-dimensionally periodic in the x and y directions. In this section,
we will consider the simulations of long-range potentials in this geometry. Two cases
can be considered. First, we examine a slab geometry where the charges in the �uid are
distributed across the whole gap between the solid surfaces, and the extent of the �uid in
the z-dimension would be comparable with the x and y dimensions of the cell. Second,
we imagine a thin liquid layer, strongly adsorbed to one or both of the surfaces; the extent
of the liquid in the z-direction is much less than the x and y dimensions of the cell.

In the �rst case, we might employ the full two-dimensional Ewald sum to calculate the
energy and the forces on the charges in the �uid. �is result was derived by Grzybowski
et al. (2000), although there are a number of important related papers (see Lindbo and
Tornberg, 2012). We consider a set of N charges con�ned in one dimension, −L/2 < zi <
L/2, but replicated in the xy plane, with Lx = Ly = L. �e potential energy is

Vqq =
1
2
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In this geometry, m = (mx ,my , 0), si j = (xi j ,yi j ) is the in-plane separation of the two
ions i and j, and k = 2π(nx ,ny )/L is the 2D reciprocal la�ice vector with k = |k|. �e
dash on the real-space sum indicates that the i = j term is not included for |m| = 0, and
the surface term has been set to zero, corresponding to ϵs = ∞. �is result is similar
in structure to eqn (6.4) for the fully three-dimensional system. However, the k-space
term is more complicated and cannot be reduced from a triple to a double sum as in the
three-dimensional case. �is makes eqn (6.105) di�cult to use in practice. Even with the
use of pre-computed tables for the potential and forces, the two-dimensional Ewald sum
is ten times slower to implement than the corresponding three-dimensional version (Yeh
and Berkowitz, 1999).

A pragmatic solution to this problem is to use the fully three-dimensional Ewald
sum by extending the unit cell in the z-direction. �is geometry is shown in Fig. 6.9.
�e construction creates a vacuum between the sheets of charged atoms, which are
con�ned by the walls. If the empty space in the z direction is greater than or equal to
the x or y dimensions of the original simulation cell, then the forces from the image
charges on the central cell should be zero due to overall charge neutrality. Spohr (1997)
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Fig. 6.9 �e extended cell for use in the three-dimensional Ewald sum in a slab geometry. �e
walls are indicated by solid lines. �e original box abcd, periodic in two dimensions, is shown on
the le�. �e extended cell ABCD, which is periodic in three dimensions, is shown on the right.

has shown that results from eqn (6.4) converge to those from eqn (6.105) slowly as the
vacuum gap between the �uid regions is increased. In making this comparison, the tinfoil
boundary condition, ϵs = ∞, for the three-dimensional Ewald sum was used, so that the
�nal term in eqn (6.4) was omi�ed. Properties such as pair correlation functions, atom
density pro�les, charge densities, dipole densities, and dipole distributions, were not
found to be sensitive to the size of the vacuum gap once Lgap ≥ max(Lx ,Ly ). However,
some integrated properties such as the electric potential were sensitive to the gap even
when it was large compared with Lx ,Ly . �is presents a real di�culty, because the three-
dimensional Ewald method becomes less e�cient as the gap increases and more k-vectors
are required in the z direction.

Yeh and Berkowitz (1999) have extended this work by inclusion of the vacuum bound-
ary condition for the la�ice of extended cells. Following Smith (1981), they note that when
the in�nite array shown in Fig. 6.9 is surrounded by a vacuum, there is a correction term
dependent on the total z-component of the dipole moment of the simulation cell

V
qq

correction = 2πV
(∑

i

qizi

)2
(6.106)

and a corresponding correction for the force in the z direction. Once the correction of
eqn (6.106) has been applied to eqn (6.105), the extended three-dimensional Ewald sum
and the two-dimensional Ewald sum are in good agreement even for sensitive properties
such as the electric �eld across the pore.

A completely di�erent method for calculating the forces between ions in a slab
geometry is due to Lekner (1989; 1991). �e force on atom i from all of its neighbours j,
and all of its images in the xy plane, is given by

f i j = qiqj
∑
m

ri − rj −mL

|ri − rj −mL|3
. (6.107)
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In this case, the x-component of the force on atom i can be wri�en as a factor of qiqj/L2

times the following dimensionless function

Fx =
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x +mx
[
(x +mx )2 + (y +my )2 + z2

]3/2 (6.108)

where xi − x j = xL, and y and z are de�ned in the same way. �ere are corresponding
expressions for the y and z components of the force. Using the Euler transformation,
x−ν = (1/Γ(ν ))

∫∞
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and, a�er applying the Poisson–Jacobi identity,
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the following convergent series are obtained
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where Kν is a Bessel function of the second kind. Note that Fy need not be calculated
independently since Fy (x ,y , z) = Fx (y ,x , z). �e potential energy can be obtained by
integrating the force. �us vqqi j = qiqjV/L where

V (x ,y, z) = 4
∞∑
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cos 2πmxx

∞∑
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[
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− log
[
cosh 2πz − cos 2πy

]
+C (6.112)

where C , the constant of integration, is 3.207 11. Typically in computing these sums, the
mx summation might be truncated at (mx )max = 10. Formx ≤ 3,my is taken from −mx to
+mx and we take onlymy = 0 for othermx values. �e appropriate limits of the sum need
to be checked for some typical con�gurations of a given system. However, there are some
con�gurations of ions in which the sum in eqn (6.112) is slowly convergent, and these
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Fig. 6.10 A side view of the geometry of a thin liquid layer of ions adsorbed onto a solid surface.

will almost certainly occur among millions of moves or timesteps in a given simulation.
�is is due to the behaviour of the modi�ed Bessel function K0 as its argument tends to
zero. When this sum converges slowly, one of the cyclic alternatives to eqn (6.112) can
be applied. For this Lekner-cyclic technique, methods of identifying slowly convergent
con�gurations have been reviewed by Mazars (2005). In that paper, good agreement was
obtained between the two-dimensional Ewald sum and the Lekner-cyclic method for mc
simulations of a Wigner crystal bilayer.

Of the three methods discussed for the slab geometry, the extended three-dimensional
Ewald sum with the dipole correction is probably the best choice for simulations with
long-range forces because of its simplicity and e�ciency. �ere is considerable interest in
improving the e�ciency of the two-dimensional Ewald sum (Lindbo and Tornberg, 2012),
and this remains an active area of research.

In the limit of a thin layer adsorbed onto a surface, such as in the physisorption of a
monolayer of CO on graphite, or a Langmuir–Blodge� �lm, an alternative approach due
to Hautman and Klein (1992) should be considered. �is geometry is shown in Fig. 6.10
and we can take zi j/si j to be a small parameter. �is method involves the identi�cation of
the in-plane contribution to the potential between charges using the identity

1
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witha0 = 1,a1 = −
1
2 ,a2 =

3
8 as coe�cients in the binomial expansion of (1 + (zi j/si j )

2)−1/2.
�is is an identity if both series are taken to the same order P . It is the second summation
in eqn (6.113) which is treated using the Ewald approach. If the charges are con�ned to
a narrow region in z then the choice P = 1 allows the real-space term to be truncated
at |m| = 0. In this case, the potential is the sum of short- and long-range contributions
V = Vshort +Vlong. �e short-range part is evaluated in real space
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∑
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where κ is the normal convergence factor and

h0 (t ) = erf (t ), h1 (t ) = erf (t ) − 2t
π1/2 (1 + 2t2) exp(−t2). (6.115)
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Table 6.1 A comparison of the Hautman and Klein, and
Lekner, methods for two opposite charges q = ±1 sepa-
rated by ∆r = (0.1, 0.1, 0.1) in a slab geometry with box
length L = 1. In the Lekner method, for values of mx ≤ 3,
−mx ≤ my ≤ +mx , and for mx > 3 only my = 0 is
considered. In the Hautman–Klein method, |mmax | = 0,
|kmax |L/2π = 15, and the convergence parameter κL = 6.25.

Method (mx )max −Vion

Lekner 5 5.780 38
10 5.772 03
15 5.772 10

Hautman–Klein 5.771 91

�e long-range, reciprocal-space contribution is
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where A is the cross-sectional area, k is the two-dimensional reciprocal la�ice vector
corresponding to the real-space la�ice in the surface plane and

Ak =
∑
i

qi exp(−ik · si ), Bk =
∑
i

qizi exp(−ik · si ), Ck =
∑
i

qiz
2
i exp(−ik · si ).

By truncating the expansion in zi j/si j we have again reduced the triple sum of the two-
dimensional Ewald system to a double sum.

�e Lekner method can also be readily applied in this geometry. As a simple com-
parison of these two techniques, consider two unit charges +1 at (0, 0, 0) and −1 at
(0.1, 0.1, 0.1) in a periodic array of cells, with L = 1 in a slab geometry. �e results are
shown in Table 6.1. To obtain accurate values for the force between two ions in the cell,
the Hautman–Klein method needs to be extended to include the additional real-space
interactions from the eight next-nearest-neighbour cells for P = 1 and for simulations in
this geometry the Lekner method is a good choice.

6.10 Which scheme to use?
With so much choice available, it is important to address the question of which of these
schemes should be used when considering the simulation of long-range forces.

In the case of ionic liquids, the �rst thing to say is that something must be done if we
want to calculate the thermodynamic, structural, and dielectric properties at the normal
levels of accuracy that we expect from a simulation. Ignoring the problem with the use of
a spherical cuto� or the minimum image method will not work. In terms of accuracy and
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ease of implementation, the straightforward Ewald sum is the gold standard. Machine
precision, in calculating the energy and forces, can be reached by tuning the parameters,
rc, kmax and κ, without any additional programming e�ort. A number of authors (Valleau
and Whi�ington, 1977a; Valleau, 1980; Fukuda and Nakamura, 2012) have suggested that
the Ewald sum may impose an anisotropic periodic structure on an isotropic �uid, fail
to damp dipolar �uctuations in the central box, and distort solvated protein structures.
However, all the evidence seems to be that, with a su�ciently large number of k-vectors,
the Ewald method accurately models the structural (Adams, 1983b) and time-dependent
(Villarreal and Montich, 2005) properties of an isotropic �uid. Probably, the compelling
reason for abandoning the Ewald sum as N increases is the computational expense.

For larger system sizes, the Ewald sum can be replaced by one of the mesh methods
involving the fft. �e precise crossover point, in terms of the number of charges, for
these two algorithms depends strongly on the level of optimization of both the mesh
method and the Ewald sum, the required accuracy, and the computer architecture. Pollock
and Glosli (1996) suggest that it is cost-e�ective to switch from Ewald to pppm by N = 516
charges. For the spme, Essmann et al. (1995) suggest a crossover at between N = 600 and
N = 900 depending on the machine architecture. In contrast, Petersen (1995) suggest
a crossover of N = 10 000 between the Ewald and pme methods. �ese lower values
of the crossover for pppm and spme are probably due to the e�orts to optimize the fft
in these studies (Essmann et al., 1995). In all cases, it would be sensible to perform a
detailed comparison of the timings of a mesh method with the standard Ewald method
for systems containing more than ca. 500 charges. Both the pppm method with P = 3 or
5 and ik di�erentiation for the forces, and the spme method with P = 6 and analytical
di�erentiation for the forces, provide su�cient accuracy when used with the appropriate
optimal in�uence function.

For the simulation of charged or neutral biological systems in an aqueous environment,
the spherical truncation methods (Section 6.4) should be considered (Fukuda and Naka-
mura, 2012). �is is a less demanding problem, in that the partial charges that constitute
the water molecule are grouped together so that the overall potential falls o� as r−3 rather
than r−1. �e methods that we have outlined in Sections 6.4 and 6.5 will normally do
a good job in predicting many of the simple thermodynamic and structural properties
of water when compared with the Ewald approach (Fennell and Gezelter, 2006). Of the
methods discussed, the fm potential and the damped force-shi�ed (dfs) potential, which
is a simple extension of the Wolf potential given in eqn (6.51) (Fennell and Gezelter, 2006),
o�er a good compromise between simplicity and accuracy. �is is illustrated in Table 6.2
which shows a number of results from a simulation of a single Na+ ion in water (Izvekov
et al., 2008). �e Ewald method is compared with a force shi�ed (fs) potential (where the
Coulombic force is shi�ed to zero at the cuto�), the dfs potential, and the fm potential
derived from a simulation of pure water. �e agreement between the Ewald method
(the standard) and the fm approach is excellent for the thermodynamic and structural
properties as well as for the ion di�usion coe�cient. �e dfs approach is not quite as
consistent as the fm approach producing a rather strange di�usion coe�cient which is
four times the size of the other methods, and slightly poorer thermodynamic properties.

�ese spherical truncation approaches also work well for sensitive properties such
as the relative permi�ivity, ϵs, and the higher-order orientational correlations in the
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Table 6.2 Properties of one Na+ ion in 512 tip3p water molecules calculated in a constant-NPT

molecular dynamics simulation at 298 K and 1 bar. �e interaction between the charge and the
partial charges is calculated using the Ewald method, and three di�erent approaches to spherical
truncation with rc = 1.0 nm: fs, dfs, and fm. We tabulate the height of the �rst maximum дmax

Na+O
and �rst minimum дmin

Na+O in the ion–oxygen pair distribution function; the average potential energy
〈V/N 〉; the volume per particle 〈V /N 〉 and its standard deviation σ (V /N ); and the ion di�usion
coe�cient D. Estimated errors in last reported digits in parentheses. Adapted with permission from
S. Izvekov, J. M. J. Swanson, and G. A. Voth, J. Phys. Chem. B, 112, 4711–4724 (2008). Copyright
(2008) American Chemical Society.

Property Ewald fs dfs fm
дmax

Na+O 7.31 7.24 7.30 7.31
дmin

Na+O 0.145 0.152 0.146 0.145
〈V/N 〉 (kJ mol−1) −41.82(28) −40.15(28) −40.40(28) −41.65(28)
〈V /N 〉 (10−2nm3) 2.946 2.960 2.953 2.943
σ (V /N ) (10−4nm3) 3.51 3.60 3.54 3.52
D (10−9m2 s−1) 1.07(2) 1.04(2) 4.28(2) 1.08(2)

�uid (such as the order parameters that measure the tetrahedral structure of the water
hydrogen-bonded network). For example, for the spc/e model of water, ϵs calculated from
eqn (6.21) is 72.6, 71.1, and 71.5 for Ewald, fs and fm respectively (Izvekov et al., 2008).

�e fmm and memd are designed to be used with much larger systems of charges.
Interestingly, in a detailed comparison of these two methods with the mesh methods,
Arnold et al. (2013) showed that there was no crossover between pppm and fmm for
simulations with up to 5 × 107 charges. In other words, in terms of the wall clock time
per charge on a single core, the pppm approach is faster than fmm for homogeneous �uids
below this system size. �is supports an earlier extrapolated estimate of the crossover at
around 6 × 107 charges (Pollock and Glosli, 1996). One of the reasons for this unexpected
result is that the observed complexity of the mesh methods is O (N ) rather than the
theoretical complexity of O (N 3/2). �e fmm does exhibit excellent scaling behaviour with
the number of cores in a parallel implementation, and was the fastest method down to
103 charges per core on a well-interconnected high-performance machine such as the ibm
Blue Gene/P (bg/p) (Arnold et al., 2013). �e high accuracy of the fmm makes it suitable
for calculations requiring high precision, and it also has the lowest memory requirement
of the methods discussed. Eventually, as we approach 108 charges in the largest biological
simulations currently performed, the fmm will be the method of choice.

�e msm has a number of appealing features. �e separation of the short-range and
smooth part of the potential at each level of the grid calculation means that the method
should scale as O (N ) for large N . However, it avoids the complicated apparatus of the
multipole and local expansions at the heart of the fmm and is straightforward to program.
It does not use a k-space method to solve Poisson’s equation and so it avoids the fft
which can pose a serious communications bo�leneck for large systems on highly parallel
machines. �e msm has already been e�ciently parallelized (see Chapter 7) and scales
be�er than the pppm method. �e msm is still being developed and the principal problem of
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accuracy could be solved, if it were possible to apply higher-order interpolation methods
without a signi�cant loss of speed. �is is an area of active research (Hardy et al., 2015).

Recent studies of the memd method indicate perfect linear scaling of the method up to
N ≈ 107 charges (Arnold et al., 2013). �e accuracy of the memd method, as measured by
the root-mean-square deviation of the potential compared with that of a fully converged
Ewald sum, is at least two orders of magnitude lower than for the fmm and pppm methods.
�is accuracy depends on the discretization of the charges and the problem is particularly
marked for systems where the charge density is low. In the future this problem may be
resolved with the use of �ner grids (Arnold et al., 2013). One of the major advantages of
memd is that it allows for an arbitrary change in the dielectric constant in di�erent parts
of the system. �is feature has recently been used to simulate the electrical double layer
around charged particles in aqueous solution of variable permi�ivity (Fahrenberger and
Holm, 2014; Fahrenberger et al., 2014).

In terms of simulating slab geometries, perhaps the most e�ective approach is to
create a fully periodic system with the use of two vacuum layers and then to apply the
3D Ewald method or one of the mesh extensions. �is avoids the use of the expensive 2D
Ewald approach. We have also reviewed two rather specialized slab approaches which
are e�ective for simulating thin, physically or chemically adsorbed layers. Interestingly,
the spherical cuto� methods such as the ips and the Wolf methods have been extended to
slabs, but require a large cuto� in these geometries. It is straightforward to extend the
msm to non-periodic systems such as lipid bilayers and this may become the method of
choice for large simulations once the accuracy of the method is improved.



7
Parallel simulation

7.1 Introduction
Almost all high performance computing (hpc) facilities are based on parallel computers.
Parallelism comes in many forms, and computer architectures are continually evolving. It is
convenient to highlight two classes: shared-memory machines, in which many processors
(o�en called cores) access the same memory and address space, and distributed-memory

machines, in which the processors (o�en called nodes) each have their own memory,
with no access to that of the others. Many hpc machines combine both approaches,
consisting of a large number of independent nodes, each of which contains its own
memory, shared by a number of cores. In recent years, processors based on gpus have been
shown to o�er very cost-e�ective computing: in a crude way, these can be thought of as
extremely �ne-grained shared-memory devices. Many factors in�uence the development
of architectures: the reducing scale of semiconductor chip fabrication is chie�y responsible
for a general increase in processor speed (Moore’s Law, brie�y mentioned in Section 1.1
and Appendix A) but also important are communication speeds within and between nodes,
the whole area of memory management, and the related issues of energy consumption
and heat production.

With care, md and mc algorithms may be adapted to make very e�ective use of
parallel architectures. In this chapter we will describe some of the general features of
parallel simulation algorithms. Details, however, may be very machine-dependent, and
the landscape changes quickly with time, so we cannot be too speci�c. �e optimal
situation is that the program will speed up linearly with the number of processors P ,
for �xed system size N . (Super-linear speedup is seen occasionally, due to improved
memory handling, since additional processors usually come with additional memory.) In
practice, the overheads associated with parallelization (inter-process communications,
memory access bo�lenecks) lead to a sub-linear speedup in almost all cases: a higher
degree of parallelism implies lower e�ciency, where e�ciency is de�ned as speed divided
by N . �erefore, for a given number of particles, there will be a maximum number of
processors on which it makes sense to run the program; this maximum may be determined
by benchmarking. Usually, larger systems parallelize more e�ciently than small ones, and
for some cases the e�ciency is roughly proportional to N /P . In implementing a program,
the number of processes may not necessarily be equal to the number of processors, but
for simplicity we shall assume that this is the case in the examples that follow.

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
© M. P. Allen and D. J. Tildesley 2017. Published in 2017 by Oxford University Press.
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For shared-memory machines, the concept of dividing the work between programming
threads is useful: each thread runs on a particular core and, in many cases, there are many
more threads than cores, so each core handles several threads, in turn. �e chief concern
is to avoid di�erent threads overwriting the same areas of memory, which would give
incorrect results. Secondary concerns are to avoid, or minimize the e�ects of, dependencies
between threads, which might result in delays in accessing the desired memory locations,
and the whole issue of load balancing between threads, to make best use of the resources.
In practice, it is usually most e�ective to parallelize loops within programs, dividing the
work according to the loop index. In mc and md programs, loops over particles are the
most obvious target, and we turn to this in Section 7.2. �is type of parallelization can
sometimes be achieved by the compiler, given appropriate directives or indications within
the language which help to identify loops which can be considered independently. �e
open multi-processing (openmp) framework of compiler directives, library routines, and
environment variables is intended to help this process. In many cases, it is not too di�cult
to parallelize a serial code using this approach.

Distributed-memory machines, typically work in the single program multiple data
(spmd) paradigm: the same program is running, independently, on each node, working
on its own local data. �is does not prevent a ‘master–slave’ approach being adopted at
certain times in the program, since one process can branch into the appropriate part of the
code (e.g. to distribute data) while the others take the alternative branch (e.g. to receive
the data). �ere is no direct link between the activities on each node, but the programs
can send messages to each other which can include instructions to wait for the other
nodes to ‘catch up’ and hence become synchronized. Such messages are also used to pass
data between nodes. Mpi is the most common way of doing this. �is requires some fairly
low-level consideration of the way messages are sent and received. �e chief concern is
to avoid deadlock: the situation where two processes are both waiting to send/receive a
message to/from each other. Subsidiary concerns are the latency and bandwidth of the
connecting network. Latency is a time overhead associated with sending a message,
irrespective of the amount of data, while bandwidth is the rate of data transfer. �erefore,
the time taken to send a message can be roughly estimated as

time = latency + amount of data
bandwidth .

For this reason, it is usual to gather data together into bu�ers before sending it, so as to
avoid the latency costs of many small messages. One might imagine that the quantities
in this equation would depend on the topology of the network between the nodes, and
on details of the physical connections. For most hpc installations, at present, this is not
a serious issue: the communications may, to a �rst approximation, be assumed to be
independent of location, and the only question is whether the processing units are on
the same node or on di�erent ones. In some cases, widely separated nodes are used as
the component parts of a highly distributed, and sometimes heterogeneous, computer: in
these cases, communication bandwidth and latency may be critical.

Introducing mpi to a program is a non-trivial task, and o�en such programs must be
designed and wri�en from scratch: the di�erences from a serial code are too great to
be introduced in an incremental manner. One useful exception is the replica-exchange
or parallel tempering approach, in which each replica is executed on a di�erent node,
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with comparatively loose coupling between nodes: we discuss this in Section 7.3. �e
domain-decomposition approach to md and mc is well-suited to distributed-memory
machines using message-passing, and we discuss this in Section 7.4. In fact, the hybrid
structure of multi-core nodes may be exploited quite well in md, using loop parallelization
within each node.

Programming a gpu-based computer is somewhat more involved. First, the nodes
themselves are highly parallel, and must be programmed in a dedicated language such
as compute uni�ed device architecture (cuda) or open computing language (opencl).
Second, data transfer rates into and out of the gpu may be a serious bo�leneck. We
shall not consider the details of how to do this, but note that packages such as highly
object oriented molecular dynamics (hoomd) (Glaser et al., 2015), lammps, and Roskilde
University molecular dynamics (rumd) are available to conduct md on such architectures.

Our intention in this chapter is to provide only very simple, low-level, examples of
how parallel programming may be used in simulation programs. It is hoped that these can
be followed without needing to study openmp and mpi in detail; however, for any serious
work in this area, considerable preparatory study is essential. Several books provide an
excellent introduction to parallel programming using openmp and mpi (Chandra et al.,
2000; Pacheco, 1996; �inn, 2003) and for gpus using cuda (Kirk and Hu, 2012).

7.2 Parallel loops
On a shared-memory machine, it is useful to approach parallelization through the concept
of program threads which are (largely) independent; there is assumed to be a many-to-one
or one-to-one correspondence between the threads and the cores on which the program
is executing. A thread may correspond to one iteration of a loop. For nested loops, it is
usually most e�cient to parallelize the outer loop. Although the all-pairs double loop,
used to calculate forces in md, is likely to be replaced by something more e�cient for a
large system (see Chapter 5), it provides a good example of the salient points. Some more
detailed discussions of parallelizing an md code using openmp may be found elsewhere
(Couturier and Chipot, 2000; Tarmyshov and Müller-Plathe, 2005).

We start with the simple Lennard-Jones double loop of Code 1.2. A parallelized version
using openmp directives is given in Code 7.1. In Fortran, the openmp directives appear as
comment statements; the syntax is very similar in C, using a #pragma. �e �rst line of
the directive instructs the compiler to establish a parallel region of code and share the
work involved in the outer loop amongst the available threads. Several of the variables
can be shared between the threads since they are never altered: n, the potential parameter
sigma_sq, and the coordinate array r are in this category. �e default openmp behaviour
is to assume that variables are shared, unless otherwise stated. However, clearly, the loop
index itself, i, must be private to the particular thread handling each iteration. It is not
necessary, but does no harm, to declare this explicitly, and this is done on the second
(continuation) line of the directive, along with several other variables, such as rij, rij_sq,
which must not be shared with other threads, to avoid being overwri�en. Finally, the
variable v is a special case: it is updated by each iteration of the loop. �is is a so-called
reduction operation. In e�ect, each thread requires its own private version of the variable
to be incremented during the iterations for which that thread is responsible, and then the
totals for each thread should be combined at the end. �is is such a common situation
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Code 7.1 Parallelized double-loop, shared memory
�e following code is quite standard, apart from the openmp directive indicated by
!$omp. We use the Lennard-Jones potential in this example.

sigma_sq = sigma ** 2
v = 0.0
!$omp parallel do &
!$omp& private(i,j,rij ,rij_sq ,sr2 ,sr6 ,sr12) &
!$omp& reduction (+:v)
DO i = 1, n-1

DO j = i+1, n
rij(:) = r(:,i) - r(:,j)
rij_sq = SUM ( rij ** 2 )
sr2 = sigma_sq / rij_sq
sr6 = sr2 ** 3
sr12 = sr6 ** 2
v = v + sr12 - sr6

END DO
END DO
v = 4.0 * epslj * v

To improve load balancing, a scheduling clause should be added to the directive, of the
form schedule(static,1) or schedule(dynamic,chunk) where chunk is the desired
chunk size, as explained in the text.

that there is a dedicated openmp clause, which speci�es the variable name and the type
of arithmetic operation to be performed.

To achieve a reasonable speedup, it is necessary to have some control over the way in
which the work is shared between threads. �ite commonly in openmp, for N particles,
that is, N − 1 iterations, and P threads, a static (i.e. �xed) schedule is adopted by default,
assigning the �rst set of iterations i = 1 . . .C to the �rst thread, the second set i =
C + 1 . . . 2C to the second thread, and so on, where the ‘chunk size’ is C ≈ (N − 1)/P . We
can see that this will be very unbalanced because of the range of the inner loop: much
less work is involved in the later iterations than in the earlier ones. To share the work
more evenly, a scheduling clause specifying a chunk size of 1 may be used, as shown in
Code 7.1: then the �rst P iterations will be distributed to the P separate threads, followed
by the next P iterations, and so on. Alternatively, a dynamic schedule may be speci�ed,
where chunks (of a desired size) are assigned to threads when they become available,
although this may carry some performance overhead.

What happens when we wish to calculate forces f , for use in md? Now, some care
must be taken because we typically use Newton’s third law to update both f i and f j in
the inner loop. �e �rst of these is not a problem because di�erent threads will always be
handling di�erent values of the index i. However, updating f j is a problem because any
thread may wish to do it at any time, raising the danger of overwriting the same memory
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Code 7.2 Parallelized force routine, shared memory
�is �le is provided online. md_lj_omp_module.f90 contains a Lennard-Jones force
routine parallelized using openmp directives. �is acts as a drop-in replacement for
md_lj_module.f90 (Code 3.4). It can be combined with, for example, md_nve_lj.f90
from Code 3.4, and the utility modules described in Appendix A, to make a molecular
dynamics program, as illustrated in the supplied SConstruct �le.

! md_lj_omp_module.f90
! Force routine for MD simulation , LJ atoms , OpenMP
MODULE md_module

locations. �e simple but crude solution is to abandon Newton’s third law, allow the inner
loop to range over j = 1 . . .N (skipping j = i), and increment only f i within the inner
loop. In this case, the force array f can be shared amongst all threads without danger.
However, this involves twice as much work! �e alternative is to keep the loops as they
are normally wri�en, but add the force array to the list of variables in the reduction
clause. An example is given in Code 7.2.

Applying openmp to a more general md code follows the same general principles.
�e approach adopted by Tarmyshov and Müller-Plathe (2005) is to parallelize only the
most time-consuming parts of the code (constructing a neighbour list, computing non-
bonded forces, possibly some of the bonded forces, and applying constraints) and leave
the rest (data input and output, computation of most average properties) to a single thread
operating in serial mode. It is possible to modify a serial program incrementally, starting
with the time-critical loops, and testing at each stage to ensure that no errors have been
introduced.

7.3 Parallel replica exchange
Replica exchange, or parallel tempering, was described in Section 4.9. However, we
postponed until now a discussion of its most useful feature: that it can be implemented
e�ciently on a parallel computer. Take, for example, a distributed-memory machine, and
consider the simple case of a ladder of temperatures, with each separate system simulated
using standard mc in the canonical ensemble, in its own process (and, hopefully, on its own
processor). We assume that the processes are identi�ed by consecutive integer variables
taking the values m = 0, 1, . . . ,p − 1: we call m the rank of the process. �e temperatures
are also in order T0 < T1 < . . .Tp−1, and we assume that every process m stores not
only its own temperature Tm , but also those of its neighbours Tm±1. At preset intervals
(a speci�ed number of steps or sweeps), replica exchanges are considered, as shown in
Fig. 7.1. An mpi implementation is given in Code 7.3. �e processes can be paired up
in two di�erent ways: 0↔ 1, 2↔ 3, . . . etc., or 1↔ 2, 3↔ 4, . . ., and typically each of
these pairings is considered in turn: in one case, any given processm is looking ‘up’ in
temperature atm + 1, and in the other case, ‘down’ atm − 1. Of course, it is essential that
the other process in the pair is looking in the complementary direction: so, the program
is arranged to ensure that odd-m processes will look ‘up’ while even-m processes look
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m = 1 m = 2

send V1 receive V2 send V2 receive V1

decide to swap or not

send swap decision receive swap decision

swap? swap?

send r1 receive r2
replace r1 with r2

replace V1 with V2

send r2 receive r1
replace r2 with r1

replace V2 with V1

yes yes

no no

Fig. 7.1 Replica exchange, by message-passing. Systemsm = 1 andm = 2 are possible exchange
partners. �e horizontal double arrows represent inter-process communications. At the same time,
other distinct pairs of systems are exchanging in the same way. �e pairing scheme changes each
time, as explained in the text.

‘down’, and vice versa. Each pair must compare potential energies and decide whether to
exchange con�gurations, using eqn (4.67). An important point is that this decision must
be taken by one member of the pair, not both: it involves a �oating-point calculation, and
comparison with a random number, so it is vital to avoid an ambiguous verdict! In the
example of Fig. 7.1, them = 1 process takes the decision, so processm = 2 must send its
own potential energyV2 tom = 1 (in the �gure we assume that it is convenient to send
V1 the other way at the same time). Processm = 1 executes the statements corresponding
to eqn (4.67), storing the result (to swap or not) in a logical variable. �is variable is sent to
processm = 2 which has simply waited to receive the decision: this procedure guarantees
that the value of the swap variable is identical on both processes. �e same applies to
all the other pairs in the ladder. �en, if the decision is to swap, the con�gurations are
exchanged. It is important to realize that each process is executing the same program,
but is taking a di�erent route through the control statements. By keeping the alternating
sequence of pairings in step across all processes, it is possible (and essential) to match
the statements which send and receive data; also, there will be times at which processes
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Code 7.3 Replica exchange, by message-passing
�is �le is provided online. It assumes that an mpi library has been installed, com-
patible with the Fortran compiler. �is would normally provide a module mpi con-
taining prede�ned parameters, and commands mpif90 or mpifortran to compile
the code, and mpirun to run it, using a speci�ed number of processes. �e �le
mc_nvt_lj_re.f90 runs a set of mc simulations of systems at di�erent temperatures,
and is very closely based on mc_nvt_lj.f90 of Code 4.3; like that program, it makes use
of mc_lj_module.f90 (Code 4.3) as well as the utility modules described in Appendix A.
Note: Fortran and mpi data types must match, and so the variable declarations in the
example code may need modifying, on any given computer.

! mc_nvt_lj_re.f90
! Monte Carlo , NVT ensemble , replica exchange
PROGRAM mc_nvt_lj_re

at the ends of the ladder of temperatures have no exchange partner and hence must do
nothing while the other pairs go through their exchanges. Code 7.3 shows how this is
done. One important technical point (see also Appendix E) is that the random number
sequences on di�erent processes must be independent of each other.

It is not too di�cult to adapt this scheme to handle the case of exchanges between non-
neighbouring temperatures. �e only requirement is that an unambiguous pairing scheme
be set up, and shared between all the processes, before the exchanges are a�empted. One
process (the master) can generate a random permutation of the numbers 0 . . .p − 1, de�ne
the pairs as successive elements in this list, and send them to the other processes (the
slaves). �e modi�cations to handle md rather than mc are also straightforward: velocities
must be exchanged as well as coordinates, and the acceptance criterion for the move is
di�erent, as discussed in Section 4.9.

�e additional mpi statements needed to implement replica exchange are not very ex-
tensive, and the amount of communication is relatively small: mainly the actual exchange
of coordinates. Even this can be reduced, by exchanging the values of the temperatures
rather than the con�gurations. �is requires some additional book-keeping and more use
of arrays to hold variables such as simulation run averages for each temperature, while it is
running on each process. �ese averages would then be gathered together, by temperature,
at the end. Many implementations of replica exchange actually use an external script to
carry out the exchanges, rather than incorporating them into the program. �is gives
greater �exibility but will be less e�cient in general. On the other hand, exchanging the
temperatures (or other parameters), rather than con�gurations, �ts more easily into a
script-based scheme, and is a fairly common approach in packages. Earl and Deem (2004)
have discussed how to allocate replicas to processes in order to optimize the use of cpu
time.

A potential disadvantage of replica exchange when implemented on extremely large,
possibly heterogeneous, parallel computing environments is the need to synchronize
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processes quite frequently. To tackle this, there have been some e�orts to develop asyn-
chronous versions of the method (�ota et al., 2011; Xia et al., 2015).

7.4 Parallel domain decomposition
�e natural approach to md on a distributed-memory machine is to divide the system
into physical domains, each of which is handled by one process (again, ideally, on its
own processor). A grid of cubic domains is the simplest case. To compute the forces due
to short-ranged interactions, it is only necessary to know the coordinates of particles
on the same process, plus those within interaction range on ‘neighbouring’ processes.
�ese can be sent, at the start of the md step, in the manner illustrated in Fig. 7.2. Coordi-
nates (usually together with particle identi�ers, needed to look up interaction potential
parameters) are successively exchanged in the x , y , and z directions: the mpi routine
MPI_Sendrecv provides a low-level way of doing this. Routines are also provided in mpi
for easy identi�cation of neighbouring nodes in a Cartesian grid. As shown in the �gure,
two sets of exchanges (in x and y) are su�cient to build up a shell, surrounding each
domain, containing nearby particles from all eight neighbours (in 2D); extending this to a
third exchange (in z) gives a shell surrounding the cubic domain, with nearby particles
from all 26 neighbour domains in 3D (Pinches et al., 1991; Plimpton, 1995).

Given this information, forces can be calculated on each process. Within the domain,
any of the standard approaches to improve e�ciency (such as the cell-structure, linked-list
method) may be used. �e coordinates and velocities of the ‘core’ particles are updated
by one timestep according to the md algorithm; the coordinates of the ‘shell’ particles
can be discarded. �ere then needs to be a second communication step in which particles
which have moved outside their domain boundaries are sent to the process appropriate
for their new domain. If, as is common at liquid densities, the particles have travelled a
distance less than the shell thickness during the step, the communication pa�ern will
be similar to that of Fig. 7.2. If this assumption cannot be made, then a slightly modi�ed
scheme is needed, to send particles to the correct domain. In either case, there are two
key di�erences from the �rst exchange: velocities as well as coordinates need to be sent
to the new process, and they need to be deleted from the old one.

It is clear that this algorithm will be most e�cient when the communication load
is relatively small: this will happen when the domains are large compared with the
surrounding shell regions. Ideally, we would expect the e�ciency to be the same if one
increases the number of processors P in proportion to the number of particles N .

A modi�cation of this scheme is usually more e�cient (see Fig. 7.3). Coordinates near
the domain boundaries are transmi�ed (one way) to just half of the neighbouring domains
(at each stage) rather than exchanging information with every neighbour. �e forces on
the ‘shell’ particles can be calculated and transmi�ed back and added to those coming
from particles on their home process. �e advantage is that each pair force (assuming pair
additivity) is computed only once, rather than twice. Note that the trick of performing
exchanges successively in Cartesian axis directions does not achieve the aim of sending
all the necessary information here: it is best to send directly to the desired neighbours
in this case, including the diagonal ones. �e method is easily implemented in 2D or 3D.
Other communication pa�erns may be more e�cient, depending on the circumstances
(Liem et al., 1991; Bowers et al., 2005; 2007; Larsson et al., 2011).
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Fig. 7.2 Message-passing in parallel domain decomposition md (2D). (a) Domains identi�ed by
checkerboard shading. For clarity we consider only particles within the central four domains.
(b) First exchange, in the x-direction. �e four central domains are now shown separately. Arrows
indicate the number of particles being transmi�ed to neighbours. (c) Result of �rst exchange;
shading indicates added regions. (d) Second exchange, in the y-direction. Note that this includes
some particles which arrived in the �rst exchange. (e) Result of second exchange.
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Fig. 7.3 Half-shell message-passing in parallel domain decomposition md. We show the same 2D
system as in Fig. 7.2. (a) Transmission of particle data to half the neighbouring domains. Arrows
indicate the number of particles being transmi�ed to neighbours in two Cartesian directions (from
the side rectangles), and two diagonal directions (from the corner squares). (b) Result showing
half-shell surrounding each domain.

For inhomogeneous systems, a regular cubic domain decomposition may not give the
best load balancing, whereby each process handles approximately the same number of
particles. Common packages such as gromacs and lammps allow a cuboidal or triclinic
array of domains as a compromise between simplicity and e�ciency (Hess et al., 2008). A
more �exible, adaptive scheme involving domains constructed from tetrahedra has been
proposed recently (Begau and Sutmann, 2015).

How can we handle long-range forces on a parallel computer? Several of the methods
discussed in Chapter 6, such as pppm, pme, and spme, rely on the fast Fourier transform
(fft), which does not scale well on parallel machines: it requires a global many-to-many
communication. �e fmm, on the other hand, does not rely on fft. �e memd method uses
local data to solve the relevant equations, which makes it more suitable for parallelization.
Arnold et al. (2013) have compared several of these methods, and identi�ed both fmm
and the fft methods as being competitive, from the scalability viewpoint: however,
much depends on particular physical systems, computer hardware, and on optimizing
parameters of the methods. In view of this, Moore and Crozier (2014) have considered the
msm method (Stone et al., 2007; Hardy et al., 2009) as a promising candidate for computing
long-range forces in a scalable way for large systems, although their �rst comparisons
indicate that it is outperformed by pppm.

Mc simulations may also be speeded up by domain decomposition on a distributed-
memory computer. �ere are two main points that need careful consideration. First, mc is
intrinsically serial in nature: the states in the Markov chain must follow one another and,
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(a) (b)

Fig. 7.4 Domain decomposition with boundary regions for parallel mc (2D example). (a) Boundaries
(dark shading) containing �xed particles (light coloured), and internal regions (light shading)
containing particles which can be updated in an mc sweep (dark coloured). (b) Separated domains.
Note that the same boundary particles appear in more than one domain, necessitating some
inter-processor communication.

in principle, each move depends on the result of the previous one. �is problem can be
partially overcome by constructing a ‘super-move’ out of a set of completely independent
moves involving non-interacting sets of atoms: the result is independent of the order in
which the constituent moves are carried out. �e template for this is the checkerboard
decomposition used for the nearest-neighbour Ising model (Pawley et al., 1985): the cubic
la�ice is divided into ‘black’ and ‘white’ subla�ices. Spins on the black subla�ice only
interact with nearest neighbours on the white subla�ice (and vice versa); therefore all
the black spins may be updated by independent mc moves, keeping the white spins �xed,
and this can be done in parallel. �en, the white spins can be updated, keeping the black
spins �xed. A checkerboard scheme applied to an atomistic system (using the pa�ern of
Fig. 7.2, for example) cannot work in exactly the same way. Even if the domains are equal
to or larger than the cuto� distance, the interactions are not just restricted to nearest
neighbour domains in the Cartesian axis directions. Uhlherr et al. (2002) describe a parallel
mc algorithm based on dividing the system into domains separated by boundary regions
which are at least rc in width. (�ey discuss a striped arrangement, but in principle a
cubic domain decomposition would also work.) One way of doing this is shown in Fig. 7.4.
�en, �xing the boundary particles, the ones within each boundary may all be moved
independently of other domains: particles in the ‘active’ regions are selected randomly, or
sequentially, and moved in the usual way. (We assume that the maximum displacement
is smaller than the boundary thickness.) Hence, each domain can be handled in parallel
with the others.

�e second main point that needs some care is to ensure detailed balance. What
happens when a proposed particle move would take it outside the mobile part of the
domain (the light regions in Fig. 7.4) and into the boundary region? In that case, the reverse
move cannot happen, because a particle in the boundary region would never be selected
for a move. Uhlherr et al. (2002) show that simply rejecting such moves is su�cient to
ensure microscopic reversibility. �erefore, for the duration of a series of mc moves, all
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the domains behave independently, and are e�ectively separated by impenetrable walls:
no particles are allowed to move outside the active part of their domain.

In this approach, the domains and boundary regions must be rede�ned from time
to time (e.g. at the start of every sweep) to avoid violation of ergodicity. �is means
redistributing the particles. �is can be done in a manner similar to that used in md,
described earlier, or by a master–slave mechanism (Uhlherr et al., 2002), collecting the
particles centrally and sending them out again to the various processors handling each
domain. Uhlherr et al. (2002) give further details of the e�ciency of this approach, and
the way in which it may be combined with a variety of moves for long polymer chains.

Several re�nements have been proposed. O’Kee�e and Orkoulas (2009) suggest a
striped domain scheme in which, again, each domain is divided into central and boundary
regions. �e boundaries are of width rc+2δrmax, where δrmax is the maximum displacement
parameter. Each processor also holds the nearest boundary region of its neighbouring
processors. By tackling each part of a domain in turn (all le� boundaries �rst, then the
central regions, then all right boundaries), and organizing the communications appro-
priately, a reasonably e�cient algorithm is obtained. In a di�erent vein, a parallelizable
cluster mc algorithm has been proposed by Almarza and Lomba (2007). Here the aim is
to change the positions of a large fraction of the particles simultaneously.

7.5 Parallel constraints
We close this chapter with some comments about the implementation of constraints
on a parallel machine. �is is particularly important for macromolecules (polymers and
proteins) which may reasonably be expected to cross several domains in a domain decom-
position. �e iterative nature of the shake and rattle algorithms makes them di�cult
to parallelize (Debolt and Kollman, 1993; Brown et al., 1994). �e main issue is that the
re�nement of a constraint depends on the positions of the associated atoms, which may
themselves be moved by re�ning other constraints. However one distributes the list of
constraints amongst a set of processes, there are bound to be interdependencies. Since
the procedure involves many iterations to converge, there will be many communication
steps between processors. In practice, it becomes di�cult to consider constraints across
boundaries in the domain-decomposition approach.

Weinbach and Elber (2005) have suggested replacing the iterative solution of the linear
equations that lie at the heart of shake, with a conjugate gradient minimization based
on the original matrix formulation (Ryckaert et al., 1977; Barth et al., 1995). �ey explain
in detail how to implement the method on a distributed-memory computer. (�e matrix
inversion method had already been considered for shared-memory machines by Mertz
et al. (1991).) Each processor handles a �xed subset of constraints. �e algorithm needs
to parallelize numerical tasks such as the calculation of an inner product, summation of
vectors, and a matrix–vector multiplication; the last task is the most complex, in general.
Weinbach and Elber (2005) describe in detail the approach to be used when all the atom
coordinates are available on every processor, but also discuss brie�y how it could be
implemented in the context of spatial domain decomposition. In a similar spirit, the lincs
method has been parallelized (Hess, 2008) and incorporated into the gromacs package.
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Example 7.1 Massively parallel molecular dynamics

Molecular dynamics can provide a detailed mechanistic understanding of the forma-
tion of methane hydrates and the growth of ice crystals in aqueous solution (English,
2013; English and Tse, 2015). Properties such as the vibrational spectrum and the rate
of break-up of the nano-clusters depend strongly on the extent of the surrounding
liquid phase. �ese, and many other similar problems, must be modelled using large
system sizes to avoid artefacts arising from the periodic boundary conditions (English
et al., 2005). For these two particular problems, massively parallel md has been used
to study �uids of up to 8.6 × 106 molecules on a range of ibm Blue Gene computers:
the bg/l, bg/p, and bg/q (Mullen-Schultz, 2005; Gilge, 2012).
Two community md codes, lammps and namd, are employed in these studies. �e
lammps package (Plimpton, 1995) is parallelized using a spatial decomposition and
either pure mpi or hybrid mpi/openmp communications. �e namd package (Phillips
et al., 2005) uses a mixed force/spatial decomposition and pure mpi communications.
Simulations were performed on both the uncharged, coarse-grained, mW model of
water (see Section 1.3.4) and the atomistic, partially charged tip4p model.
�e bg/l uses a 3D toroidal network for peer-to-peer communications. �e bg/p
uses the same network topologies as the bg/l but at twice the bandwidth, and the
bg/q implements chip-to-chip communications in a 5D toroidal con�guration. Across
the series the peak performance increases from 56 giga�ops per node on bg/l to
204.8 giga�ops per chip for bg/q. mpi versions of lammps and namd were run on the
bg/l and bg/p computers with each processor on a particular node assigned to one
mpi task. �e bg/q allows up to 64 threads per 16-processor node. In the studies of
all the coarse-grained and atomistic models using both packages, there is a trend to
be�er overall performance and be�er scaling in moving from the bg/l to the bg/q
machine. �e bg/q delivers an almost linear parallel scaling between 1024 and 8192
threads for 1.77 × 106 molecules using lammps applied to the coarse-grained model
of water. �is results in a speed of approximately 40 timesteps per second with 8192
threads. For the atomistic model, long-range forces were handled using the spme
method and the namd code demonstrated be�er relative scaling than lammps for the
3D fft. �e faster interconnect and lower communications latency makes lammps
more competitive for long-range potentials on the bg/q than on the bg/p, but it is
still not as e�cient as the namd code. �ese simulations have provided new insights
into early stages of crystal nucleation and the �rst studies of the interaction between
growing crystallites seeded at random positions in the �uid (English, 2014).
Community codes such as lammps and namd continue to evolve as new computer
architectures and communication protocols become available. For example, lammps
has been extended to run on hybrid computers with nodes containing both gpu and
cpu processors using opencl and cuda (Brown et al., 2012).
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How to analyse the results

8.1 Introduction
It is probably true that the moment the simulation run is �nished, you will remember
something important that you have forgo�en to calculate. Certainly, as a series of simu-
lations unfolds and new phenomena become apparent, you may wish to reanalyse the
con�gurations to calculate appropriate averages and correlation functions. To this end,
con�gurations generated in the run are o�en stored on disk, which is then used for
subsequent analysis (see Section 5.7).

In an mc simulation it would be inappropriate to store con�gurations a�er every
a�empted move, since successive con�gurations are identical or highly correlated. Typi-
cally, the con�guration at the end of every ��h or tenth cycle is stored (one cycle = N
a�empted moves). Each stored con�guration will contain vectors describing the positions
of the atoms, and in the case of a molecular �uid, each orientation. It is also convenient
to store the instantaneous values of the energy, virial, and any other property of interest.
Although these properties can be reconstructed from the positions of the particles this is
o�en an expensive calculation.

Equally, in an md simulation, successive timesteps are correlated and do not contain
signi�cantly new information. In this case it is su�cient to store every ��h or tenth
timestep on the disk for subsequent analysis. An md simulation produces a signi�cant
amount of useful information, and it is normal to store vectors of positions (orientations),
velocities (angular velocities), and forces (torques) for each molecule, as well as the
instantaneous values of all the calculated properties. �e information stored in an md
simulation is time ordered, and can be used to calculate the time correlation functions
discussed in Chapter 2. �e molecular positions that are stored from the md simulation
may be for particles in the central box which have been subjected to periodic boundary
conditions. It is also useful to store trajectories which have not been adjusted in this way
but which represent the actual movement of a molecule in space. �ese trajectories are
particularly useful in calculating self di�usion coe�cients. It is possible to convert from
the central-box representation to the ‘unfolded’ one, on the assumption that molecules
do not naturally move distances of the order of half a box length in the interval between
stored timesteps. A routine for doing this is given as part of Code 8.3.

In this chapter, we discuss how to analyse a succession of con�gurations, or trajectory
�le, so as to produce structural distribution functions and time correlation functions. We
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then proceed to the important question of assessing statistical errors in the simulation
results. Finally, we outline some techniques used to correct, extend, or smooth the raw
data.

8.2 Liquid structure
We have assumed that the analysis of liquid structure will take place a�er a simulation is
complete. As mentioned in Chapter 5, it is possible to do this during the simulation run
itself, using methods very similar to those described here.

�e pair distribution function д(r ) is formally de�ned by eqn (2.101), but is more
simply thought of as the number of atoms a distance r from a given atom divided by the
number at the same distance in an ideal gas at the same density.

We calculate д(r ) as follows. Con�gurations are analysed in turn and the minimum-
image separations ri j of all the pairs of atoms are calculated. �ese separations are stored
in a histogram, h(k ), where each bin k has a width δr and extends from r to r + δr . A
typical piece of Fortran code for sorting N atoms is given in Code 8.1.

When all the con�gurations have been processed, the histogram must be normalized
to calculate д(r ). Suppose that the histogram bins h(k ) recording pair separations have
been accumulated over nstep steps. �en the average number of atoms whose distance
from a given atom in the �uid lies in this interval, is

n(k ) = h(k )/(N × nstep). (8.1)

�e average number of atoms in the same interval in an ideal gas at the same number
density ρ is

nid (k ) =
4πρ

3
[
(r + δr )3 − r 3

]
. (8.2)

By de�nition the radial distribution function, in the limit of small δr , is

д(r + 1
2δr ) = n(k )/n

id (k ) (8.3)

and the code for normalizing the histogram is given in Code 8.1. �e appropriate distance
for a particular element of our д(r ) histogram is at the centre of the interval (r , r + δr ).
We mention in passing that �nite-size e�ects, and other sources of imprecision, have
been considered by Kolafa et al. (2002). In the canonical ensemble, д(r ) → 1 − O (1/N )
as r → ∞ (Gray and Gubbins, 1984, Chapter 3) and the small correction is occasionally
important.

�e double-loop code for sorting separations is quite expensive but cannot be vec-
torized because the histogram array is not accessed sequentially. Fincham (1983) has
discussed a method for calculating д(r ) by sorting over the histogram bins rather than
the molecules which is suitable for use on pipeline and parallel processors. Our code
involves taking a square root for each pair in every con�guration. It is also possible to
sort the squared distances directly into a histogram and to calculate д(r 2). A disadvantage
of this is that the resulting д(r ) is obtained at uneven intervals in r with a larger spacing
at small r , which is just the region in which the function is required with the highest
resolution. Extrapolation and interpolation is di�cult at small r because the function is
rapidly varying (see Section 8.5.2).
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Code 8.1 Calculating the pair distribution function
�e �rst snippet of code increments the histogram of pair separations. Here, k is an
INTEGER variable, and dr stores the value of δr ; nk is the size of the h array, chosen
such that nk*dr is the maximum required distance r , less than half the box length.
�is array is set to zero initially, and then the following loop is carried out for nstep
con�gurations, each stored in the array r(3,n).

DO i = 1, n-1
DO j = i+1, n

rij(:) = r(:,i) - r(:,j)
rij(:) = rij(:) - ANINT ( rij(:) )
rij_sq = SUM ( rij**2 )
k = FLOOR ( SQRT ( rij_sq ) / dr ) + 1
IF ( k <= nk ) h(k) = h(k) + 2

END DO
END DO

�e ij and ji separations are handled simultaneously, which is why h(k) is incremented
by 2, not 1. �e second snippet of code normalizes the results at the end.

const = 4.0 * pi * rho / 3.0
DO k = 1, nk

g(k) = REAL ( h(k) ) / REAL ( n * nstep ) ! average number
r_lo = REAL ( k - 1 ) * dr
r_hi = r_lo + dr
h_id = const * ( r_hi ** 3 - r_lo ** 3 ) ! ideal number
g(k) = g(k) / h_id

END DO

�is code is also provided online, in a program pair_distribution.f90.

! pair_distribution.f90
! Calculates pair distribution function g(r)
PROGRAM pair_distribution

An identical sorting technique can be applied to the site–site pair distribution functions
mentioned in Section 2.6, and to the spherical harmonic coe�cients de�ned in eqn (2.106).
In the la�er case, we average in a shell as follows (Stree� and Tildesley, 1976; Gray and
Gubbins, 1984)

д``′m (ri j ) = 4πд000 (ri j )
〈
Y ∗`m (Ωi )Y

∗
`′m̄ (Ωj )

〉
shell

(8.4)

where m̄ = −m. In this equation 〈. . .〉shell has the following interpretation. For each pair
ij, a particular bin of the д000 (ri j ) histogram, corresponding to a molecular centre–centre
separation ri j , is incremented by 2, just as in the atomic case. At the same time, the
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corresponding bin of each д``′m histogram should have

Y ∗`m (Ωi )Y
∗
`′m̄ (Ωj ) + Y

∗
`m (Ωj )Y

∗
`′m̄ (Ωi )

added to it. At the end of the calculation, each д``′m histogram bin is divided by the
corresponding element of the д000 histogram. �e result is the shell average in eqn (8.4).
�e function д000 (ri j ) is then calculated from the histogram in the usual way, and used in
eqn (8.4) to give the other д``′m functions.

In Example 8.1 we discuss how the careful analysis of spatial correlation functions
has helped clarify the long-standing problem of two-dimensional melting.

8.3 Time correlation functions
In this section, we consider the calculation of time correlation functions from a �le
that contains positions, velocities, and accelerations stored at regular intervals during
a molecular dynamics simulation. Bearing in mind that a wide variety of correlation
functions may be of interest, analysis of a �le is logistically simpler than the alternative
of calculating the time correlation functions during the simulation run itself. However, it
is possible to do some analysis of this kind during a simulation, and we will return to this
brie�y later.

8.3.1 �e direct approach

�e direct approach to the calculation of the time correlation functions is based on the
de�nition eqn (2.112). Suppose that we are interested in a mechanical property, A (t ),
which may be expressed as a function of particle positions and velocities. A (t ) might
be a component of the velocity of a particle, or of the microscopic pressure tensor, or a
spatial Fourier component of the particle density, for example. From the data in the �le,
A (t ) will be available at equal intervals of time δt ; typically, δt will be a small multiple
of the timestep used in the simulation. We use τ to label successive timesteps in the �le,
i.e. t = τδt . �e de�nition of the time average, in a discretized form, allows us to write
the non-normalized autocorrelation function of A (t ) as

CAA (τ ) =
〈
A (τ )A (0)

〉
=

1
τmax

τmax∑
τ0=1
A (τ0)A (τ0 + τ ). (8.5)

In words, we average over τmax time origins the product of A at time τ0δt and A at a
time τδt later. For each value of τ , the value of τ0 + τ must never exceed the number of
values ofA, τrun, stored in the �le. �us, the short-time correlations, with τ small, may be
determined with slightly greater statistical precision because the number of terms in the
average, τmax, may be larger. We return to this in Section 8.4. Again, as wri�en, eqn (8.5)
assumes that each successive data point is used as a time origin. �is is not necessary,
and indeed may be ine�cient, since successive origins will be highly correlated. A faster
calculation will result from summation over every ��h or tenth point as time origin (with
a corresponding change in the normalizing factor 1/τmax) and with li�le degradation of
the statistics.

�e calculations may be repeated for di�erent values of τ , and the result will be a
correlation function evaluated at equally spaced intervals of time δt apart, from zero to as
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Example 8.1 Two-dimensional melting

In the so-called kthny theory (Kosterlitz and �ouless, 1973; Halperin and Nelson,
1978; Nelson and Halperin, 1979; Young, 1979) melting of two-dimensional crystals
is predicted to occur via two continuous transitions, with the solid and liquid phases
separated by a hexatic phase characterized by short-range (exponentially decaying)
positional order and quasi-long-range (algebraically decaying) orientational order.
�e orientations are those of the vectors between neighbouring atoms. Early simula-
tions (see e.g. Frenkel and McTague, 1979; Tobochnik and Chester, 1980; 1982) were
restricted to a few thousand particles, and were somewhat inconclusive (Strandburg,
1988). However, the early work established several important quantities to analyse.
�e dislocation and disclination defects thought to drive the transitions were iden-
ti�ed by a Voronoi construction (McTague et al., 1980; Weber and Stillinger, 1981),
which de�nes each particle’s neighbours in a self-consistent way; the average co-
ordination number is six, and defects are associated with disks having �ve or seven
neighbours. �e orientational correlation functions were calculated in terms of a
local order parameter

ψi =
1
ni

ni∑
j=1

exp(i6θi j )

where the sum is over the ni neighbours of each disk i , and θi j is the angle of
the vector ri j in a �xed coordinate system. �is can be used to calculate a spatial
correlation function, or a spatially averaged order parameter whose �nite-size scaling
behaviour can be examined (Weber et al., 1995). �e elastic constants of the solid, on
the approach to the transition, are also of interest (Binder et al., 2002).
A recent study (Bernard and Krauth, 2011) using N ∼ 106 hard disks, and a simulation
technique involving collective moves, called ‘event-chain’ mc, suggests that the
hexatic phase exists, but that the liquid–hexatic transition is �rst-order. �is was
con�rmed (Engel et al., 2013) using conventional mc and md techniques. �e analysis
required accurate estimation of the pressure P , by careful extrapolation of д(r ) to
contact (in the standard mc), or directly (in the other techniques). �is showed the
expected, system-size-dependent, loop in the P (V ) curve. �e local order parameter
ψi was used to provide visual evidence of two-phase coexistence, and positional
correlation functions such as д(r ) con�rmed that the coexisting phase is not a solid.
A subsequent study of so�-disk systems (Kapfer and Krauth, 2015) suggests that this
scenario changes as the so�ness increases, and that the �rst-order hexatic–liquid
transition is replaced by a continuous one, in accord with the kthny predictions.
In passing, we note that the idea of characterizing a phase, by examining the local
structure around atoms, persists in the ‘topological cluster classi�cation’ for three-
dimensional systems (Malins et al., 2013). A modi�ed Voronoi construction identi�es
neighbours of each atom, and then every cluster of near neighbours belonging to a
prede�ned set of typical low-energy clusters, is found. �is analysis is potentially
useful in discussing glass formation and dynamical arrest (Royall and Williams, 2015).
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Code 8.2 Calculating a time correlation function
In this code snippet, we assume that all the data to be correlated are in the array a.

INTEGER :: t_run , t_cor , t0, t1
REAL , DIMENSION(t_run) :: a
REAL , DIMENSION (0: t_cor) :: c, norm

c(:) = 0.0
norm (:) = 0.0

DO t0 = 1, t_run
t1 = MIN ( t_run , t0 + t_cor )
c(0:t1-t0) = c(0:t1-t0) + a(t0) * a(t0:t1)
norm (0:t1-t0) = norm (0:t1-t0) + 1.0

END DO
c(:) = c(:) / norm (:)

To select origins t0 less frequently, the loop statement may be replaced by something
like DO t0 = 1, t_run, t_gap, with t_gap equal to 5 or 10, for example. We have
included the foolproof counter norm(t); it should be equal to REAL(t_run-t) in our
example. �e central loop of this routine should be slightly more e�cient than the
more obvious alternative

DO t = 0, t_cor
t_max = t_run - t
c(t) = SUM ( a(1: tmax) * a(1+t:t_max+t) ) / REAL ( t_max )

END DO

See also Codes 8.3 and 8.4 for online programs that calculate time correlation functions.

high a value as required. In principle, τδt could be extended to the entire time spanned by
the data, but the statistics for this longest time would be poor, there being just one term
in the summation of eqn (8.5) (the product of the �rst and last values of A). In practice,
CAA (t ) should decay to zero in a time which is short compared with the complete run
time, and it may be that only a few hundred values of τ are of interest.

A simple calculation of this kind is given in Code 8.2. �e modi�cation to deal with
cross-correlations 〈A (t )B (0)〉 is straightforward. �e procedure is almost unchanged if
one wishes to calculate mean-squared displacements (see later).

In the previous example we have assumed for simplicity that all the values of A (t )
can be stored in memory at once. On modern machines, memory is quite plentiful, and
so this may be true. Nonetheless, if one is interested in single-particle properties, for
large systems, this may not be practical. An alternative is to keep the data on disk, and
use direct access I/O statements. However, it is generally more e�cient to make a single
pass through the data, assuming that enough memory is available to store all the desired
elements of the autocorrelation function (rather than the data itself). In this method, τcor
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Code 8.3 Program to compute di�usion coe�cients
�is �le is provided online. diffusion.f90 contains a program to read in a trajec-
tory of atomic positions and velocities, and calculate the time-dependent velocity
autocorrelation function, mean-squared displacement, and velocity–displacement
cross-correlation, from any of which the di�usion coe�cient may be obtained. �e
program ‘unfolds’ positions (i.e. removes the e�ects of periodic boundary conditions)
on the assumption that atoms do not travel too far between successive times.

! diffusion.f90
! Calculates vacf and msd
PROGRAM diffusion

timesteps are read into memory, where (τcor − 1)δt is the maximum time for which the
correlation function is required. As each step is read from the �le, the correlations with all
previous steps are computed. In the example given in Fig. 8.1(a), step 4 is correlated with
the �rst three steps. When τcor steps have been read (Fig. 8.1(b)), the information in step
1 is no longer needed, and step τcor + 1 is read into this location. �is is correlated with
all the other steps (Fig. 8.1(c)). �e next step is read into location 2, and the correlation
proceeds (Fig. 8.1(d)).

�is approach can be made more e�cient if time origins are chosen at intervals
(e.g. every �ve or ten steps) in which case the a array need only store those origins.
As each new data value is read in it is correlated with all previous time origins and
then, only if needed, is stored (in a) for future use as a time origin. In this way, the
method is economical in storage as well as being fairly e�cient. Because of the way
that a is cyclically overwri�en with new data, it is essential to store the timestep index
in an accompanying array. A sample program is given in Code 8.3, which calculates
the velocity autocorrelation function, and the mean-square displacements, in order to
obtain the di�usion coe�cient. Essentially this same method can be used to calculate
correlation functions while the run is in progress, avoiding all use of disk storage. We
note in passing an almost equivalent approach (Rapaport, 2004; Dubbeldam et al., 2009)
which uses bu�ers to store the contributions to the correlation function arising from each
time origin, only adding them to the �nal function once all the timesteps that must be
correlated with that origin have been processed.

�is simple approach is still not satisfactory if very long-time correlation functions,
or mean-squared displacements, are of interest, as the computational e�ort scales with
t2. Frenkel and Smit (2002) recognized this and devised a hierarchical scheme based on
a range of sampling frequencies. Here we describe a very simple scheme, based on the
conventional approach, which is easy to formulate (Dubbeldam et al., 2009). Suppose (for
illustration) that, in addition to sampling every step, we also sample at intervals of 25
steps, 252 = 625 steps, etc. Each ‘level’ of sampling has, say, τcor = 25, stores its own time
origins a and correlation function c, and is processed in a similar way. �en the most
�ne-grained analysis will give C (τ ) at a resolution of one timestep, up to τ = 24. �e
second level will cover τ = 25–600, but only at intervals of 25 timesteps. �e third level
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9 8 7 6 5 4 3 2 1 0 c

1 2 3 4 a

(a)

9 8 7 6 5 4 3 2 1 0 c

1 2 3 4 5 6 7 8 9 10 a

(b)

9 8 7 6 5 4 3 2 1 0 c

11 2 3 4 5 6 7 8 9 10 a

(c)

9 8 7 6 5 4 3 2 1 0 c

11 12 3 4 5 6 7 8 9 10 a

(d)

Fig. 8.1 Calculating the time correlation function in a single sweep. �e data array a is correlated
with itself to give the correlation function c. In this example τcor = 10, correlations are computed up
to nine steps, and for simplicity we assume that every step is used as a time origin. �e numbers in
the a array refer to the timesteps of the data stored in it. In the early stages these coincide with the
array indices, but later the locations are overwri�en to save space. �e c array is drawn in reverse
order purely for visual clarity; the numbers in this array denote the time lag between correlated
values. �e arrowed lines connect the latest value of a to be read in (shaded) with each of the
previously stored time origins, and hence to the corresponding value to be incremented in c.
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will calculateC (τ ) for τ = 625–15 000 at intervals of 625 steps, and so on. Five or six levels
are easily su�cient for most purposes. If the sudden change of resolution at τ = 25 is
undesirable, τcor can be made longer; this will imply an overlap in the time ranges covered
at each level, but calculation of the smaller values of τ may be omi�ed for the higher
levels, if they have already been calculated at the lower levels. �e overall decrease in
time resolution at longer τ is not usually a problem since usually one assumes that C (τ )
varies much more slowly than at short times; for instance, in calculating mean-squared
displacements, we are o�en interested in a log–log plot.

�e main drawback of this approach is that the number of time origins used to calculate
the longer time values also decreases if the data are sampled in this way. It may be possible
to mitigate this by using block-averages rather than instantaneous values as one goes from
one level to the next in the hierarchical scheme: in a sense one is trading o� statistical
errors against systematic errors by this ‘coarse graining’ (Frenkel and Smit, 2002; Ramı́rez
et al., 2010).

8.3.2 �e fast Fourier transform method

It is possible to improve the speed of calculating the time correlation function by taking
advantage of the very rapid algorithms available for computing discrete Fourier transforms.
�is particular application of the fft was �rst proposed by Futrelle and McGinty (1971)

and some details are given by Kestemont and Van Craen (1976) and Smith (1982a,b). �e
method is an application of the convolution/correlation theorem given in Appendix D.
Apart from the normalizing factor τmax (which may be incorporated later) the discrete
correlation function, eqn (8.5), may be wri�en as

C ′AA (τ ) =
2τrun∑
τ0=1
A (τ0)A (τ0 + τ ) 0 ≤ τ < 2τrun. (8.6a)

�e prime reminds us of the dropped normalization. �e sum runs over twice the actual
number of data points: in this equation it is assumed that we have appended a set of τrun
zeroes to the end of our md set. �is allows us to treat the data as being cyclic in time,
that is, A (2τrun + 1) = A (1), without introducing any spurious correlations. Physically,
we are only interested in τ = 0, . . . ,τrun − 1. �is is the easiest way of avoiding spurious
correlations that would otherwise arise in the fft method (Futrelle and McGinty, 1971;
Kestemont and Van Craen, 1976). It is convenient for this purpose to renumber the time
origins starting from 0 instead of 1

C ′AA (τ ) =
2τrun−1∑
τ0=0

A (τ0)A (τ0 + τ ) 0 ≤ τ < 2τrun. (8.6b)

Equation (8.6b) is exactly equivalent to eqn (8.5) with the normalization omi�ed, and the
upper limit τmax given by τrun − τ . �e equations in Appendix D give

Ĉ ′AA (ν ) = Â
∗ (ν ) Â (ν ) = |Â (ν ) |2, ν = 0, 1, . . . , 2τrun − 1 (8.7)



280 How to analyse the results

Code 8.4 Calculating time correlation functions
�is �le is provided online. corfun.f90 computes the time correlation function of
model data using the direct method and the fft approach. �e data are generated as
a stochastic time series, with prescribed correlation time.

! corfun.f90
! Time correlation function , directly and by FFT
PROGRAM corfun

where ν is the discrete frequency index, and C ′
AA

(τ ) may be recovered from

C ′AA (τ ) =
1

2τrun

2τrun−1∑
ν=0

���Â (ν )���
2

exp(2πiντ/2τrun). (8.8)

�e steps involved in calculating the correlation function are:
(a) double the amount of data to be treated by adding τrun zeroes to the end of it, storing

the data in COMPLEX variables;
(b) transform the data A (τ ) → Â (ν ) using an fft routine;
(c) calculate the square modulus |Â (ν ) |2 = Ĉ ′

AA
(ν );

(d) inverse transform the result Ĉ ′
AA

(ν ) → C ′
AA

(τ ) using an inverse fft routine;
(e) apply the normalization (τrun − τ )

−1 needed to convert C ′
AA

(τ ) → CAA (τ ).
�is seems a roundabout route toCAA (τ ) but each stage of the process may be carried out
very speedily on a computer. For large values of τrun, the full fft takes a time proportional
to τrun log2 τrun, while the direct evaluation of the full correlation function takes a time
proportional to τ 2

run.
It is worth emphasizing that these equations are exact and may be veri�ed using the

expressions given in Appendix D. �erefore, correlation functions calculated directly
and via the fft should be identical, subject to the limitations imposed by numerical
imprecision. A program comparing the two methods is provided in Code 8.4. It should
be noted that the correlation function obtained is real given that the initial data are real;
the imaginary part of CAA (τ ) is wasted. �e way in which two correlation functions can
be calculated at once, using both the real and imaginary values, has been discussed by
Kestemont and Van Craen (1976).

When should we use the direct calculation and when fft? �e fft method requires the
entire set of dataA (τ ) and an equal number of zeroes be stored in COMPLEX variables, all at
once, which may cause a storage problem. Second, it produces the ‘complete’ correlation
function over times up to the entire simulation run time. As mentioned earlier, such long-
time information is normally not required and is statistically not signi�cant because of the
poor averaging; when comparing speeds it should be remembered that the conventional
methods gain by not computing unwanted information, taking a time proportional to
τrun (not τ 2

run) at large τrun. �ird, as pointed out by Smith (1982b), the direct method
may gain from vectorization on a pipeline machine when many correlation functions are
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required at once; the fft method must simply compute them one at a time. Having said
this, in situations where a large amount of data must be processed, if it can all be stored
in memory at once, the raw speed of the fft method should make it the preferred choice.

8.3.3 Windowing functions

O�en we wish to transform a time correlation function into the frequency domain to
calculate a spectrum that can be compared with experiment. �e truncation of C (t ) a�er
a �nite time, and the presence of random statistical errors, can make the evaluation
of the Fourier transform di�cult. Spurious features in Ĉrun (ω) which are obtained by
transforming a truncated Crun (t ), can obscure features present in the complete spectrum,
Ĉ (ω). In particular, the truncation causes spectral leakage, which o�en results in rapidly
varying side lobes around a peak, and loss of resolution.

Windowing functions are weighting functions applied to the raw Crun (t ) to reduce
the order of the discontinuity at the truncation point (tmax). Press et al. (2007, Chapter 13)
discuss a variety of useful windowing functions. �e Fourier transform of the windowing
function, Ŵ (ω), is convoluted with Ĉrun (ω) to produce the windowed spectrum, ĈW (ω):

ĈW (ω) =

∫ +∞
−∞

dω ′
2π Ĉrun (ω

′)Ŵ (ω − ω ′). (8.9)

�e coe�cients in the windowing function are chosen so that Ŵ is sharply peaked, which
leads to a good resolution in the windowed spectrum. Berens and Wilson (1981) use a
four-term Blackman–Harris window in computing the spectrum of liquid CO in a CO/Ar
mixture by simulation. �ey note that multiplying ĈW (ω) by the inverse sum of the
squares of the windowing function makes it possible to correct the spectral band areas
for the scaling e�ects of the windowing function.

8.4 Estimating errors
Computer simulation is an experimental science in so far as the results may be subject to
systematic and statistical errors. Sources of systematic error include size-dependence, the
e�ects of poor random number generators, insu�cient equilibration, etc. �ese should, of
course, be estimated and eliminated where possible. It is also essential to obtain estimates
of the statistical signi�cance of the results. Simulation averages are taken over runs of
�nite length, and this is the main cause of statistical imprecision in the calculation of
averages.

Let us begin by thinking about an md simulation in which some property A is
calculated at discrete values of the time, that is, A (t1),A (t2) . . .. It is o�en possible to
analyse statistical errors in quantities such as 〈A〉, 〈δA2〉 by assuming that the distribution
of individual estimates of A (t ) around their mean value is Gaussian. In this situation, all
the moments of A are determined by the �rst two moments, the mean and the variance.
Speci�cally,

〈δA (t1) δA (t2) . . . δA (tn )〉 =




∑
pairs
〈δA (ti ) δA (tj )〉〈δA (tk ) δA (t` )〉 . . . n even,

0 n odd,
(8.10)
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where the sum extends over all distinct pairings of the times ti , tj , etc. at which the
function is evaluated and δA (ti ) = A (ti ) − 〈A〉. �e same kind of formula applies to a
discrete process such as the evolution of states in the mc method, and so much of the same
analysis can be used to describe both mc and md simulations. For Gaussian processes, our
estimates of errors in 〈A〉, 〈δA2〉, etc. will all be traced back to the variance.

�e central limit theorem of probability tells us that as the number of random estimates
of a quantity increases, the distribution around the mean will become Gaussian. �us, a
simulation run average may be thought of as being sampled from some limiting Gaussian
distribution function about the true mean because it is a sum over many steps. �e same
applies to an average taken over, say, one-tenth of a run: a so-called block-average. Any
property, such as the energy, the virial, etc. is a sum of contributions from di�erent parts
of the �uid. �is at least is true when the potential is not long-ranged. We expect such a
property to obey properties that are approximately Gaussian. Of course, in the case of
single-particle velocities and angular velocities taken at equal times, the distribution is
exactly Gaussian.

Our problem, then, is to estimate the variance in a long (but �nite) simulation run
average. We consider this for simple averages, including structural distribution functions,
for �uctuations, and for time-dependent correlation functions, in the following sections.

8.4.1 Errors in equilibrium averages

Suppose that we analyse the output �le of a simulation that contains a total of τrun
timesteps or con�gurations. �e run average of some property A is

〈A〉run =
1
τrun

τrun∑
τ=1
A (τ ). (8.11)

If we were to assume that each quantityA (τ ) were statistically independent of the others,
then the estimated variance in the mean would simply be given by

σ 2 (〈A〉run) = σ
2 (A)/τrun (8.12)

where σ 2 (A) is the bias-corrected sample variance

σ 2 (A) = 〈δA2〉run =
1

τrun − 1

τrun∑
τ=1

(
A (τ ) − 〈A〉run

)2
(8.13)

(see eqn (2.48)). Note that in most statistics texts, the symbol s2 is used for sample variance,
instead of σ 2 here. �e estimated error in the mean is given by σ (〈A〉run). Of course, the
data points are usually not independent: we normally store con�gurations su�ciently
frequently that they are highly correlated with each other. �e number of steps for which
this correlation persists must be built into eqn (8.12).

To extract this information, the sequence of steps in the �le is broken up into blocks
of length τblk. Let there be nblk blocks, so that nblkτblk = τrun. �e mean value of A is
calculated for each block

〈A〉b =
1
τblk

∑
τ ∈b

A (τ ) (8.14)
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where the sum is over the con�gurations in block b, that is, (b − 1)τblk + 1 ≤ τ ≤ bτblk.
�e mean values for all blocks of this kind may be used to estimate their own variance,
which we we call σ 2 (〈A〉blk)

σ 2 (〈A〉blk) =
1

nblk − 1

nblk∑
b=1

(〈A〉b − 〈A〉run)
2. (8.15)

As the blocks become larger, the block-averages will become statistically uncorrelated
and we expect the variance σ 2 (〈A〉blk) to be inversely proportional to τblk at large τblk.
Our aim is to discover the constant of proportionality, which will allow us to estimate
σ 2 (〈A〉blk) for the single large block that constitutes the entire run. Following Friedberg
and Cameron (1970), we de�ne the statistical ine�ciency, s , as

s = lim
τblk→∞

s (τblk), where s (τblk) =
τblk σ

2 (〈A〉blk)

σ 2 (A)
. (8.16)

It is the limiting ratio of the observed variance of an average to the limit expected on the
assumption of uncorrelated Gaussian statistics. Having estimated s , we can write

σ 2 (〈A〉run) = s
σ 2 (A)

τrun
. (8.17)

Let us follow through an example calculation to make things clear. We have conducted
a constant-NVE simulation of the Lennard-Jones �uid at a state point in the �uid region,
ρ∗ = 0.78,T ∗ ≈ 0.85, using N = 108 particles. We measure the average kinetic temperature
〈Tk〉, and its �uctuations σ 2 (Tk) = 〈T

2
k 〉 − 〈Tk〉

2 ≈ 0.02. Suppose our run is of length
τrun = 1000 steps. If each step were independent of all the others, the estimated error in 〈Tk〉
would be

√
σ 2 (Tk)/τrun =

√
0.02/1000 ≈ 0.0045. However, this is not the case. Figure 8.2

shows a plot of τblk σ
2 (〈Tk〉blk)/σ

2 (Tk) against 1/τblk (the reason for this particular choice
of plot is explained shortly). An intercept value of sk ≈ 12 is obtained: this means that
only about one con�guration in every 12 steps contributes completely new information to
the average. �e corrected estimate of the error in 〈Tk〉 is therefore

√
σ 2 (Tk) × sk/τrun =√

0.02 × 12/1000 ≈ 0.015.
Figure 8.2 shows a similar calculation for the con�gurational temperature Tc, giving

the (slightly worse) result sc ≈ 15. However, for this example, the �uctuations in Tc are
much smaller than those in Tk: σ 2 (Tc) ≈ 0.002. So, the estimated error in 〈Tc〉 from a
1000-step run would be

√
σ 2 (Tc) × sc/τrun =

√
0.002 × 15/1000 ≈ 0.005.

�e method of analysis just outlined applies to any stored set of simulation results. It
is instructive to consider the particular case of time averages as estimated by md. For an
average

〈A〉t =
1
t

∫ t

0
A (t ′)dt ′ (8.18)
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Fig. 8.2 Calculating the statistical ine�ciency. Results of simulations of N = 108 LJ particles,
rcut = 2.5σ , in the liquid region, ρ∗ = 0.78, T ∗ = 0.85. τ is measured in timesteps, δt∗ = 0.005.
(a) Normalized time correlation functions c (τ ) of kinetic temperature Tk and con�gurational temper-
ature Tc. (b) s calculated by integrating c (τ ) according to eqn (8.22). Further integration is needed to
reach the true plateau values. (c) s calculated from block-averages using eqn (8.16) (points) plo�ed
against inverse block size, 1/τblk. Solid lines are the same data shown in (b), obtained by integrating
the correlation functions, using eqn (8.22). Dashed lines indicate the linear asymptotic behaviour at
large τblk.

the standard result for the variance is related to the correlation function of A (Papoulis,
1965, Chapter 9)

σ 2 (〈A〉t ) =
2
t

∫ t

0
(1 − t ′/t ) 〈δA (t ′)δA〉dt ′,

or t σ 2 (〈A〉t )

σ 2 (A)
= 2

∫ t

0
(1 − t ′/t ) cAA (t ′)dt ′, (8.19)

where cAA (t ) = 〈δA (t )δA〉/σ 2 (A) is the normalized correlation function. It is useful to
consider times t relative to the correlation time

tA =

∫ ∞

0
dt ′cAA (t ′), (8.20)

which is the area under the cAA (t ′) curve. Averaging over very short times gives

σ 2 (〈A〉t ) = σ
2 (A), for t � tA . (8.21)

Note that this is independent of t : the variance of short-time averages (e.g. a few timesteps)
is essentially the same as that of the instantaneously sampled values. Averaging over
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Code 8.5 Calculating statistical ine�ciency and errors
�is �le is provided online. error_calc.f90 computes the statistical ine�ciency and
the error in the mean of model data via block-averages and by the method of Flyvbjerg
and Petersen (1989). �e data are generated as a stochastic time series, with prescribed
correlation time. �is information can be used in plots similar to those shown in
Fig. 8.2 to estimate s and the error in the mean.

! error_calc.f90
! Estimated error in correlated data
PROGRAM error_calc

times much longer than tA gives

t σ 2 (〈A〉t )

σ 2 (A)
= 2

∫ ∞

0
cAA (t

′)dt ′ − 2
t

∫ ∞

0
t ′ cAA (t

′)dt ′

= 2tA −
2
t

∫ ∞

0
t ′ cAA (t

′)dt ′, for t � tA . (8.22)

�e leading term dominates as t → ∞ and we may write

lim
t→∞

t σ 2 (〈A〉t )

σ 2 (A)
= 2tA . (8.23a)

or lim
t→∞

σ 2 (〈A〉t ) = 2tA
σ 2 (A)

t
. (8.23b)

Comparing this with eqns (8.16), (8.17), we see that the statistical ine�ciency is just twice
the correlation time tA divided by the time interval δt between stored con�gurations.
Equation (8.22) also shows that the next highest term is proportional to 1/t at long time.
�is suggests that it is most sensible to plot tσ 2 (〈A〉t )/σ

2 (A) against 1/t , or in general,
τblkσ

2 (〈A〉blk)/σ
2 (A) against 1/τblk, when a linear form at low values will be obtained

(Jacucci and Rahman, 1984). Such plots appear in Fig. 8.2(c) for Tk and Tc. A program
illustrating the estimation of errors is provided in Code 8.5.

Of course it would be possible to evaluate tA or τA by integrating the time correlation
function 〈δA (t )δA〉 in the usual fashion and using it to estimate s (Müller-Krumbhaar
and Binder, 1973; Swope et al., 1982). We can see this in Fig. 8.2(b), but note that the
integration must be continued until a plateau is reached. Alternatively, if we can guess
tA in some other way, we can estimate the statistical ine�ciency without carrying out a
full analysis as described earlier. Smith and Wells (1984) have analysed block-averages
in their mc simulations, and �nd an exponential decay (i.e. obeying a geometric law) of
the ‘correlation function’ of consecutive block-averages. In the language of time-series
analysis, the process is termed ‘�rst-order autoregressive’, that is, Markov (Chat�eld, 1984).
If such behaviour is assumed, then τA may be estimated from the initial correlations
〈δA (τ = 1)δA (τ = 0)〉. In general, it is best to carry out a full analysis to establish the
form of the decay of the correlation with τ ; once this has been done, for a given system,
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it may be safe to extend the results to neighbouring state points, and here the approach
of Smith and Wells might save on some e�ort.

Any technique that reduces s (and hence the correlation time) will help us to calculate
more accurate simulation averages. As an example, we consider the calculation of the
chemical potential in a molecular liquid, by Fincham et al. (1986). �ese authors estimated
µ with a statistical ine�ciency s ≈ 20 by inserting a test-particle la�ice where the
orientations of the molecules were �xed throughout the simulation. By randomizing
the orientations of the test molecules on the la�ice at each insertion, s was reduced to
s ≈ 10. Both methods are valid, but randomizing the orientations of the test molecules
allows insertions every tenth step to gain signi�cantly new information. Inserting every
tenth step in the case of a �xed la�ice orientation is not a signi�cant improvement over
inserting every twentieth: twice as long a run is still required to calculate µ to a given
accuracy. In a similar way it is s which has been used to compare the e�ciency of di�erent
mc algorithms (see Section 4.3). As we have seen earlier in the case of Tk and Tc, the
error bars may also be reduced by choosing to average a variable with smaller intrinsic
�uctuations.

Flyvbjerg and Petersen (1989) have given a more detailed analysis of error estimation,
and propose a simple approach based on successively increasing the block size by a factor
of 2. A set of data, A (1) . . .A (τrun) is transformed to A ′(1) . . .A ′( 1

2τrun) where

A ′(τ ) = 1
2

(
A (2τ − 1) +A (2τ )

)
, τ = 1 . . . 1

2τrun. (8.24)

Initially, τ is the step number, but a�er this ‘blocking transformation’ it plays the role of b
in our earlier discussion, labelling blocks of length τblk = 2, of which there are nblk =

1
2τrun.

�en, as the process is repeated again and again, the blocks double each time in length
(and halve in number). �e mean value 〈A〉run, and its variance, from the underlying
statistical distribution, are both invariant under this transformation. Our estimate of the
variance, from a single data set, however, is not invariant. �e �nal result of Flyvbjerg
and Petersen (1989), in our notation, is

σ 2 (〈A〉run) ≥
1

nblk (nblk − 1)

nblk∑
b=1

(〈A〉b − 〈A〉run)
2 =

σ 2 (〈A〉blk)

nblk
, (8.25)

which we can see is equivalent to eqns (8.15), (8.16) and (8.17). Using renormalization
group ideas, Flyvbjerg and Petersen (1989) show that the right-hand side is a lower bound
on σ 2 (〈A〉run), and tends to a ‘�xed point’ of the transformation; in other words, it is
expected to rise towards a plateau value as τblk increases and nblk falls. �ey also show
that the relative error in the estimate of σ 2 (〈A〉run), or equivalently in s , is ±

√
2/(nblk − 1).

�e blocking transformation provides a convenient way of doing this calculation: at each
stage, the data points are combined in pairs and averaged, nblk is halved (if an odd number
of blocks occurs, then one of them is discarded) and the right-hand side of eqn (8.25) is
recalculated, until nblk = 2. A plot of the estimated σ 2 (〈A〉run) as a function of the number
of blocking transformations rises to a plateau a�er, say, six to eight transformations and
is constant within an increasing error bar as nblk approaches 2. If this behaviour is not
observed, it is a clear indication that signi�cantly longer runs are needed. �is approach
is essentially equivalent to determining the statistical ine�ciency from block-averages
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as in Fig. 8.2(c), but plo�ing as a function of log2 τblk rather than vs 1/τblk; the limiting
result should be the same. �e method is illustrated in Code 8.5.

8.4.2 Errors in �uctuations

Errors in our estimate of �uctuation averages of the type 〈δA2〉 may be estimated simply
on the assumption that the process A (t ) obeys Gaussian statistics. �e resulting formula
is very much like eqn (8.23b)

σ 2 (〈δA2〉run) = 2t ′A〈δA
2〉2/trun (8.26)

where a slightly di�erent correlation time appears

t ′A = 2
∫ ∞

0
dt 〈δA (t )δA〉2/〈δA2〉2. (8.27)

For an exponentially decaying correlation function, t ′
A
= tA , the usual correlation time;

it may be reasonable to assume that this is generally true, in which case the analysis of
Section 8.4.1 which yields tA leads also to an estimate of the errors in the �uctuations
through eqn (8.26).

8.4.3 Errors in structural quantities

Errors in a quantity such as д(r ) may be estimated by considering the histogram bins that
are used in its calculation. Strictly speaking, the sum which is accumulated in a histogram
bin (Section 8.2) will not obey Gaussian statistics, but provided the number of counts
is large, the central limit theorem of probability applies once more, and the Gaussian
approximation becomes quite good. In this case, the techniques described in Section 8.4.1
may be used to estimate the standard error in any histogram bin average. When this
quantity is normalized to give a particular value of д(r ), the standard error is divided by
exactly the same normalizing factor. Carrying out a full block-average analysis for each
point in д(r ) would be very time-consuming, and not essential. It would be su�cient in
most cases to select a few points, near the �rst and second peaks and in the intervening
minimum for example, and estimate the statistics there. A further estimate should be
made at large distances: remember that statistics should be much improved as r increases,
due to the increasing volume of spherical shells.

8.4.4 Errors in time correlation functions

�e time correlation functions calculated in md simulations are subject to the same kind of
random errors as described for static quantities and �uctuations in the previous sections.
We denote the run average by

Crun
AA (t ) = 〈A (t )A (0)〉run =

1
trun

∫ trun

0
dt ′A (t ′)A (t ′ + t ) (8.28)
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where we have assumed for simplicity that 〈A〉 vanishes. �e error that we wish to
estimate is that in

δC (t ) = Crun
AA (t ) −CAA (t )

= 〈A (t )A (0)〉run − 〈A (t )A (0)〉

=
1

trun

∫ trun

0
dt ′

(
A (t ′)A (t + t ′) − 〈A (t ′)A (t ′ + t )〉

)
(8.29)

where 〈. . .〉 denotes the true, in�nite time or ensemble average. �e mean value 〈δC (t )〉
should vanish of course, but the variance of the mean is given by (Zwanzig, 1969; Frenkel,
1980)

σ 2
(
〈A (t )A〉run

)
=

1
t2
run

∫ trun

0

∫ trun

0
dt ′ dt ′′

×

(〈
A (t ′)A (t ′ + t )A (t ′′)A (t ′′ + t )

〉
− 〈A (t )A (0)〉2

)
. (8.30)

�e four-variable correlation function in this equation may be simpli�ed if we make the
assumption that A (t ) obeys Gaussian statistics, using eqn (8.10). A�er some straight-
forward manipulations described in detail by Frenkel (1980) the variance reduces to

σ 2
(
〈A (t )A〉run

)
≈ 2t ′ACAA (0)

2/trun (8.31)

where t ′
A

is the correlation time de�ned by eqn (8.27). �e standard error in the normalized
correlation function is thus independent of time and is given by

σ
(
〈A (t )A〉run

)
/〈A2〉 ≈ (2t ′A/trun)

1/2 (8.32)

which has the usual appearance. As an example, for t ′
A

of the order of ten timesteps, it
would be necessary to conduct a run of 105 steps in order to obtain a relative precision of
∼ 1 % in CAA (t ). If we use the simulation average Crun

AA
= 〈A2〉run instead of the exact

ensemble average in eqn (8.32), then the error at short times is reduced due to cancellation
in the random �uctuations (Zwanzig and Ailawadi, 1969)

σ
(
〈A (t )A〉run

)
/〈A2〉run ≈ (2t ′A/trun)

1/2
(
1 − cAA (t )

)
(8.33)

where cAA (t ) = 〈A (t )A (0)〉/〈A2〉. �us the error is zero at t = 0, but it tends to
(2t ′
A
/trun)

1/2 at long times.
�is looks rather depressing, but the gloom is lightened when we turn to the calculation

of single-particle correlation functions, such as the velocity autocorrelation function. �e
�nal result is then an average over N separate functions for each axis direction

Cv v (t ) =
1
N

N∑
i=1
〈viα (t )viα (0)〉 (8.34)

(and in this case a further average over equivalent axes could be carried out). �e analysis
of this situation follows the earlier pa�ern, and the estimated error is eventually found to
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be ≈ (2tA/Ntrun)
1/2 at long times. �e extra factor of N 1/2 in the denominator suggests

that a 1 % accuracy in the velocity autocorrelation function might be achieved with 104

timesteps for a 100-particle system. �is argument is simplistic, since the velocities of
neighbouring particles at di�erent times are not statistically independent, but single-
particle correlation functions are still generally found to be less noisy than their collective
counterparts. �e precision with which a particular time correlation function may be
estimated depends upon the range of the spatial correlations in the �uid; the size of
statistically independent regions may depend upon the range of the potential and on the
state point. Some of these ideas are discussed by Frenkel (1980).

In principle, a block analysis of time correlation functions could be carried out in
much the same way as that applied to static averages. However, the block lengths would
have to be substantial to make a reasonably accurate estimate of the errors.

We have not included in this analysis the point raised in Section 8.3, namely that
the number of time origins available for the averaging of long-time correlations may be
signi�cantly less than the number of origins for short-time correlations. �is limitation is
imposed by the �nite run length, and it means that trun in the previous discussion should
be replaced by trun − t for correlations 〈A (t )A〉. �us, an additional time-dependence,
leading to slightly poorer statistics for longer times, enters into the formulae.

One possible source of systematic error in time correlation functions should be men-
tioned. �e usual periodic boundary conditions mean that any disturbance, such as a
sound wave, may propagate through the box, leaving through one side and re-entering
through the other, so as to arrive back at its starting point. �is would happen in a time
of order L/vs where L is the box length and vs the speed of sound. With typical values
of L = 2 nm and vs = 1000 m s−1, this ‘recurrence time’ is about 2 ps, which is certainly
well within the range of correlation times of interest. It is sensible, and has become the
recommended practice, to inspect correlation functions for anomalous behaviour, possibly
increased noise levels, at times greater than this. It is doubtful that a periodic system
would correctly reproduce the correlations arising in a macroscopic liquid sample at such
long times. �e phenomenon was originally reported by Alder and Wainwright (1970) and
also by Schoen et al. (1984). �e la�er workers found it hard to reproduce their results for
the Lennard-Jones liquid. We would expect to see much more signi�cant e�ects in solids,
where sound waves are well developed, whereas phonons are more strongly damped
in liquids. Nonetheless, it is obviously a good idea to keep the possibility of correlation
recurrence e�ects in mind, particularly if ‘long-time tail’ behaviour is under study.

8.5 Correcting the results
When the results of a simulation have been calculated, and the errors estimated, they may
still not be in the form most suitable for interpretation. �e run averages may not corre-
spond to exactly the desired state point, the structural or time-dependent properties may
require extrapolation or smoothing, and it may be necessary to do some time integration
or Fourier transformation to obtain the desired quantities. In this section, we will discuss
all these points.
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8.5.1 Correcting thermodynamic averages

In constant-NVE molecular dynamics, the kinetic temperature �uctuates around its
mean value. Without using a thermostat, it is di�cult to preset a desired value of T in a
simulation and this is inconvenient for the comparison of results with other simulations,
real experiments and theory. �e determination of isotherms is useful, for example, in the
calculation of a coexistence curve. Powles et al. (1982) have suggested a useful method
for the correction of thermodynamic results to the desired temperature. For a particular
property A, obtained in a simulation at a mean temperature Trun = 〈T 〉run, the results
can be corrected to the desired temperature T using

A (T ) = A (Trun) + (T −Trun)

(
∂A

∂T

)
ρ
+ . . . . (8.35)

If the temperature di�erence is small, the Taylor series can be truncated at the �rst term.
For the energy, E, the appropriate thermodynamic derivative is of course CV . In the case
of the chemical potential and the pressure, convenient expressions for the derivatives are(

∂P

∂T

)
ρ
=

(
P − ρ2

(
∂(E/N )

∂ρ

)
T

) /
T (8.36)(

∂µ

∂T

)
ρ
= −

(
ρ

(
∂(E/N )

∂ρ

)
T
+ (E/N ) − µ

) /
T (8.37)

where E/N is the total energy per molecule, which is known exactly in the simulation. A
series of simulation runs is carried out by varying the density, while the mean temperature
of each run is kept as close to the desired valueT as possible. �is is achieved by using one
of the thermostats described in Chapter 3 during the equilibration phase. E/N is almost a
linear function of ρ, and the derivative ∂(E/N )/∂ρ is easily calculated from this series of
runs. Strictly speaking, we require the derivative at �xed T (the desired temperature). In
practice, the errors in the derivative arising from small temperature di�erences are small
and can be ignored. �us, by using eqn (8.35), values of E, P , and µ along an isotherm may
be calculated, from a set of constant-NVE simulations. �e technique is easily extended
to other thermodynamic quantities.

8.5.2 Extrapolating д(r ) to contact

For a �uid with smooth repulsive interactions (such as the Lennard-Jones �uid), д(r ) has
a maximum which corresponds to the minimum in the potential. At lower values of r ,
д(r ) falls rapidly to zero. For a hard-core �uid (such as a �uid of hard spheres or hard
dumbbells), д(r ), or more generally дab (rab ), is discontinuous at r = σab , and is zero
inside the core. �e value of дab at contact, дab (σ+ab ), is directly related to the pressure
and the other thermodynamic properties of the hard-core �uid.

For a site–site hard-core �uid the Boltzmann factor associated with the potential
between two molecules i and j can be wri�en in terms of the unit step function, Θ(x ),

exp
(
−βv(ri j ,Ωi ,Ωj )

)
=

∏
a,b

exp
(
−βvab (rab )

)
=

∏
a,b

Θ(rab − σab ). (8.38)
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�e product is over independent site–site distances rab between the pair of molecules.
Di�erentiating eqn (8.38) gives the virial for the �uid,

w(ri j ,Ωi ,Ωj ) = −β
−1ri j

∑
a

∑
b

exp
(
βvab (rab )

)
δ (rab − σab )

(
∂rab
∂ri j

)
Ωi ,Ωj

. (8.39)

�is virial can be used in eqns (2.60), (2.67) to obtain the pressure (Nezbeda, 1977; Aviram
et al., 1977)

P

ρkBT
= 1 + 2πρ

3
∑
a

∑
b

τab (σ
+
ab ) σ

2
ab дab (σ

+
ab ) (8.40)

where
τab (rab ) =

〈
(rab · ri j )/rab

〉
shell

(8.41)

and the average is for a shell centred at rab . For a hard-sphere �uid τab (rab ) = rab and
there is only one term in the sum in eqn (8.40),

P

ρkBT
= 1 + 2

3πρσ
3д(σ+). (8.42)

�e product τab (rab )дab (rab ) for rab = σ+ab cannot be calculated directly in a standard
constant-NVT mc simulation, and has to be extrapolated from values close to contact. �is
extrapolation requires some care since дab (rab ) can rise or fall rapidly close to contact. In
particular there is normally a half-shell of thickness δr/2 centred at σ +δr/4. An accurate
estimate of the function in this thin shell is required to obtain an accurate extrapolation.
As a check, the extrapolated contact value should be independent of the shell thickness
and it is useful to try some values in the range δr = 0.025σ to δr = 0.01σ .

A trick, which is sometimes useful in calculating the contact value, is to extrapolate
(rab/σab )

ν f (rab ), where ν is an integer, and f (r ) is the function of interest, to rab = σab .
�is extrapolation produces f (σ+ab ) regardless of the value of ν . If the function is steeply
varying, an appropriate choice of ν can facilitate this extrapolation. Freasier (1980) has
reported a suggestion due to D. J. Evans, that such an extrapolation procedure be employed
during the simulation run itself. �e pressure itself, for hard molecular systems, is more
straightforwardly estimated by a box-scaling procedure in constant-volume simulations
(see Section 5.5), or from collisional impulses in event-driven md; alternatively, of course,
it is easily speci�ed in constant-NPT mc simulations. In Example 8.1, the consistency
between pressures calculated for a hard-particle system by both mc and md, was an
important issue.

8.5.3 Smoothing and extending д(r )

�e radial distribution function and any of the angular correlation functions, such as
the spherical harmonic coe�cients, are subject to statistical noise. For the purposes of
comparing with theoretical approximations or in order to calculate accurate Fourier
transforms (see Appendix D), it is sometimes useful to smooth these data. Smoothing
can be achieved by ��ing a least-squares polynomial in r . However, it is di�cult to
�nd appropriate functional forms to �t a variety of correlation functions, over a wide
range of temperature and density. A useful compromise is to use a smoothing formula
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to replace each tabulated value by a least-squares polynomial which �ts a sub-range of
points. For example in a �ve-point smoothing method, the smoothed value at point n
will depend linearly on the raw data values at points n − 2, . . .n + 2, with prescribed
coe�cients; the prescription is suitably adjusted for points lying near either end of the
range. Several sophisticated smoothing schemes, such as the Savitzky–Golay �lter that
conserve higher-order moments of the function as it is smoothed, can be applied with
good e�ect to simulation output (Press et al., 2007, Chapter 14).

In principle, the long-range behaviour of д(r ) may be deduced from its behaviour at
short distances. �is idea is embodied in the Ornstein–Zernike equation (Hansen and
McDonald, 2013)

h(r ) = c (r ) + ρ

∫
dr′h

(
|r − r′ |

)
c
(
|r′ |

)
. (8.43)

Eqn (8.43) just de�nes the direct correlation function c (r ) in terms of the total correlation
function h(r ) = д(r ) − 1. While h(r ) is long-range in normal liquids, c (r ) has approxi-
mately the same range as the potential. �e Weiner–Hopf factorization (Baxter, 1970)
of the Ornstein–Zernike equation with some model for c (r ) such as the Percus–Yevick
approximation (Hansen and McDonald, 2013) can be used to produce c (r ) over its com-
plete range from a knowledge of h(r ) on the range 0 ≤ r ≤ rc. A knowledge of c (r )
over its complete range can then be used to calculate h(r ) over its complete range, thus
extending the simulations results beyond half the length of the box, and allowing for an
accurate calculation of the structure factor

S (k ) = 1 + ρĥ(k ) =
(
1 − ρĉ (k )

)−1
(8.44)

(see eqn (2.110)). �e details of this iterative approach are provided by Jolly et al. (1976).
Dixon and Hutchinson (1977) describe an alternative use of Baxter’s factorization to
extend д(r ), which avoids any explicit use of a model such as the Percus–Yevick approxi-
mation. �e reader is referred to the original paper for the computational details, but the
general scheme is very similar to that used by Jolly et al.

�e dramatic increases in the available memory and the speed of computers, since
these schemes were proposed, means that in most cases it is simply possible to increase
the number of atoms N at a �xed density so that the size of the box increases and the
correlation functions can be calculated directly out to much larger values of r ≤ L/2. �is
is usually the preferred approach, since if long-range correlation functions are of interest,
it is prudent to check directly for �nite system size e�ects.

8.5.4 Calculating transport coe�cients

�e numerical integration of time correlation functions to obtain transport coe�cients
and correlation times is formally a straightforward exercise, given data at regularly spaced
times. Simpson’s rule, for example, would be quite satisfactory. However, there are a
number of pitfalls to be avoided. First, there are several correlation functions that are
believed to decay to zero only slowly, having a limiting algebraic dependence t−ν with
exponent ν = 3/2 for example (Alder and Wainwright, 1969; 1970; Alder, 1986). Such a
tail may extend signi�cantly beyond the range of times for whichC (t ) has been computed,
and, as has been mentioned, statistical errors will become more severe as t increases. �e
integral under such a tail may nonetheless make a signi�cant contribution to the total



Correcting the results 293

integral, and so the tail cannot be completely ignored. In estimating the tail it becomes
necessary to a�empt some kind of �t to the long-time behaviour of the correlation function,
and then to use this to extrapolate to t → ∞ and estimate a long-time tail correction. �e
importance of this correction is illustrated by the estimation, by md, of the bulk and shear
viscosities of the Lennard-Jones �uid near the triple point (Levesque et al., 1973; Hoover
et al., 1980b). In all cases, the long-time behaviour of a correlation function should be
examined closely before an a�empt is made to calculate the time integral.

As discussed in Chapter 2, the Einstein relation provides an alternative route to the
transport coe�cients, which is formally equivalent to the integration of a time correlation
function. �is relies on the identities, for stationary processes,

γ (t ) =

∫ t

0
dt ′

〈
Ȧ (t0 + t

′)Ȧ (t0)
〉
, (8.45a)

=
〈
Ȧ (t0)

(
A (t0 + t ) − A (t0)

)〉
, (8.45b)

=
1
2

d
dt

〈(
A (t0 + t ) − A (t0)

)2〉
, (8.45c)

≈
1
2t

〈(
A (t0 + t ) − A (t0)

)2〉
. (8.45d)

�e approximate equality becomes exact at long times. Here the angle brackets include
an average over time origins t0. We are interested in limt→∞ γ (t ). �us, the di�usion
coe�cient may be estimated by:
(a) time-integrating the velocity autocorrelation function

〈
vi (0) · vi (t )

〉
;

(b) cross-correlating the initial velocity with the displacement
〈
vi (0) · ∆ri (t )

〉
;

(c) numerically time-di�erentiating the mean-squared displacement
〈
|∆ri (t ) |2

〉
;

(d) dividing the mean-squared displacement
〈
|∆ri (t ) |2

〉
by the time.

Alder et al. (1970) have pointed out that the transport coe�cients may be more readily
calculated from the mean-squared displacement by computing the gradient, eqn (8.45c),
rather than by dividing by the time, eqn (8.45d). For variables with an exponentially
decaying correlation function 〈Ȧ (t )Ȧ〉 = 〈Ȧ2〉 exp(−t/tA ) we have

1
2

d
dt

〈(
A (t ) − A (0)

)2〉
=

∫ t

0
dt ′

〈
Ȧ (t ′)Ȧ

〉
= 〈Ȧ2〉tA

(
1 − exp(−t/tA )

)
(8.46)

but
1
2t

〈(
A (t ) − A (0)

)2〉
= 〈Ȧ2〉tA

(
1 − tA/t + (tA/t ) exp(−t/tA )

)
. (8.47)

In the �rst case, the correct result 〈Ȧ2〉tA is approached exponentially quickly as t
increases, but the second equation has a slower inverse-t dependence. In considering
these equations, it is also worth noting that the limiting gradient may be calculated equally
well from eqns (8.45b) and (8.45c), provided the data points are stored su�ciently close
together to avoid numerical errors in the time di�erentiation, and the correlation function
at any time t may be recovered from 〈(A (t ) − A (0))2〉 by numerical di�erentiation, with
the same caveat.
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�is leads us to ask when the route via the Einstein relation might be preferred to the
calculation of a correlation function. �e la�er method is by far the most common, possibly
because of the interest in the correlation functions themselves. However, there is much to
be said for the Einstein relation route. In integrating the equations of motion we use (at
least) the known �rst and second derivatives of molecular positions and orientations: this
order of numerical accuracy is ‘built in’ to computed mean-square displacements and the
like. When we numerically integrate a time correlation function using, say, Simpson’s rule,
especially if we have only stored the data every �ve or ten timesteps, we are introducing
additional sources of inaccuracy. In addition, there is the tendency to stop calculating and
integrating time correlation functions when the signal seems to have disappeared into
the noise. �is is dangerous because of the possibility of missing contributions from the
small, but systematic, long-time correlations.

�is is illustrated in Fig. 8.3. �e di�usion coe�cients of a nematic liquid crystal may
be estimated by integrating the velocity autocorrelation function: there are two distinct
components, respectively parallel and perpendicular, to the director. �ese are shown in
Fig. 8.3(a). �ey are clearly di�erent, as expected for this phase, but both seem to have
decayed to zero at t ≈ 1 (in reduced units) which corresponds to ≈ 500 timesteps in this
case. It might be tempting to integrate the functions up to this time, or a li�le longer, to
obtain estimates of D ‖ and D⊥. However, Fig. 8.3(b) shows the time-integrated function,
plo�ed on a logarithmic timescale out to t = 100, corresponding to 50 000 timesteps.
�is can be calculated directly, as 〈vα (0) ∆rα (t )〉 for each molecule, and each Cartesian
component α , or by numerically time-di�erentiating the mean-squared displacement
〈∆rα (t )

2〉 (and dividing by two). �e parallel component, especially, exhibits a residual
long-time contribution, which might easily be missed if a�ention is focused on the velocity
correlation function alone: the resulting D ‖ would be systematically underestimated by
about 5 % in this case.

Alder et al. (1970) have described in detail one situation in which the Einstein expres-
sion is more convenient even when the correlation function itself is of direct interest,
namely the molecular dynamics of hard systems. For some dynamic quantities there will
be a ‘potential’ contribution involving intermolecular forces, which for hard systems act
instantaneously only at collisions. �us such contributions will be entirely absent from
data stored in a �le at regular intervals for correlation function analysis. �e problem is
exactly analogous to that of estimating the pressure in a hard system (see Section 5.5), and
occurs when we wish to calculate shear or bulk viscosities from stress (pressure) tensor
correlations, and thermal conductivities from local energy �uctuations. �e collisional
contributions to these dynamical quantities must be taken into account during the simu-
lation run itself. Moreover, because the forces act impulsively, the appropriate dynamical
quantities Ȧ (t ) will contain delta functions, which would make the usual correlation
function analysis rather awkward.

�e Einstein relation variables A (t ) are easier to handle: they merely change discon-
tinuously at collisions. Following Alder et al. (1970) we take as our example the calculation
of the shear viscosity η via o�-diagonal elements of the pressure tensor. �e dynamical
variable is (assuming equal masses)

Qxy =
1
V

∑
i

mxi ẏi . (8.48)
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Fig. 8.3 Calculating the di�usion coe�cient. Results are shown for a simulation of a nematic liquid
crystal using the Gay–Berne potential (eqns (1.30)–(1.32) and Appendix C), with parameters µ = 1,
ν = 3, κ = 3, κ ′ = 5 (Berardi et al., 1993), cuto� r∗c = 5.0, at reduced temperature T ∗ = 3.4, density
ρ∗ = 0.3, and system size N = 512 000. �e timestep was δt∗ = 0.002, particle mass was taken as
unity, and the moment of inertia corresponded to a uniform mass distribution. Run lengths of order
106 steps were used to estimate the longer-time correlations. (a) Velocity autocorrelation function
for components α parallel (‖) and perpendicular (⊥) to the nematic director. (b) Time-integrated
velocity autocorrelation function for the same components, with a logarithmic time scale. Estimates
of the plateau values are indicated by dashed lines.

For systems undergoing free �ight between collisions (say at times t1 and t2), the change
in Qxy is just

Qxy (t2) − Qxy (t1) =
1
V

[∑
i

mẋi ẏi

]
(t2 − t1). (8.49)

A�er a collision the term in square brackets changes, but this change is easy to compute,
involving just the velocities of the colliding molecules. At a collision there is also a change
in Qxy :

Qxy (t
+) − Qxy (t

−) =
1
V
mxi jδẏi (8.50)

where i and j are the colliding pair, xi j = xi − x j , and δẏi is the collisional change in the
velocity of i (= −δẏj ). �us the total change in Qxy over any period of time is obtained
by summing terms of the type shown in eqn (8.49), for all inter-collisional intervals in
that period (including the times before the �rst and a�er the last collision) and adding in
all the terms of the type shown in eqn (8.50) for the collisions occurring in that interval.
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�ese values of Qxy (t ) − Qxy (0) may then be used in the Einstein expressions. Finally,
the correlation function is recovered by numerical di�erentiation.

It should be noted that purely ‘kinetic’ correlation functions, such as the velocity
autocorrelation function and correlation functions involving molecular positions and
orientations, not potential ‘terms’, can be calculated in the normal way even for hard
systems, and this is the preferred method where possible.



9
Advanced Monte Carlo
methods

9.1 Introduction
�e mc methods described in Chapter 4 may not be the most e�cient ways of estimating
certain statistical averages. �e Metropolis prescription, eqn (4.21), for example, generates
simulation trajectories that are naturally weighted to favour thermally populated states
of the system, that is, with Boltzmann-like weights. �ere are a number of important
properties, such as free energies, that are di�cult to calculate using this approach (see Sec-
tions 2.4, 5.5). Consider the con�gurational partition function Qex

NVT de�ned in eqn (2.25),
in terms of which the excess free energy is Aex = −kBT lnQex

NVT . �is may be wri�en as a
con�gurational average

Qex
NVT = 1/〈exp(βV )〉. (9.1)

In principle, the denominator in eqn (9.1) can be calculated in a conventional simulation.
Unfortunately, Metropolis Monte Carlo is designed to sample regions in which the poten-
tial energy is negative, or small and positive (not enormous compared with kBT ). �ese
regions make li�le contribution to the average in eqn (9.1), and this route to A is impracti-
cal. An indirect route toA, thermodynamic integration, based on conventional sampling of
the Boltzmann distribution, is brie�y summarized in Section 9.2.1. Direct calculation of the
free energy really requires more substantial sampling over higher-energy con�gurations.
In such non-Boltzmann sampling, ρn/ρm is no longer simply exp(−βδVnm ) but the two
states n andm are additionally weighted by a suitable function. �is weighting function
is designed to encourage the system to explore regions of phase space not frequently sam-
pled by the Metropolis method. �e weighted averages may be estimated more accurately
than in conventional Monte Carlo, and are then corrected, giving the desired ensemble
averages, at the end of the simulation. We describe this technique in Section 9.2. Also in
this section we describe methods to re�ne the weighting function iteratively so as to give
a �at distribution with respect to the energy or some order parameter of interest. �is
provides, in principle, a route to the density of states in a �uid, and the entropy or the
free energy.

A second extension involves changing the underlying stochastic matrix α to make
Monte Carlo ‘smarter’ at choosing its trial moves. In the conventional method, α is
symmetric and trial moves are selected randomly according to eqn (4.27). However, it

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
© M. P. Allen and D. J. Tildesley 2017. Published in 2017 by Oxford University Press.
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is possible to choose an α that is unsymmetric and that still satis�es the condition
of microscopic reversibility. �is may be used in the Monte Carlo method to sample
preferentially in the vicinity of a solute molecule or a cavity in the �uid, to move particles
preferentially in the direction of the forces acting on them, and to move polymer chains
by taking account of their local con�gurational energy landscape. �ese techniques are
described in Section 9.3.

�ese methods introduce some of the character of md into mc simulations. Md is totally
deterministic, and intrinsically many-body in nature. By contrast, Metropolis mc is entirely
stochastic and usually entails single-particle moves. Unfavourable energy con�gurations
are avoided simply by rejecting them and standing still. In the smarter mc methods, biases
are introduced to guide the system in its search for favourable con�gurations, which may
be advantageous, particularly if collective motions are important in avoiding ‘barriers’ in
phase space.

In Section 9.4 we describe two mc methods which have been developed to make a
direct a�ack on the prediction of phase diagrams. �e Gibbs ensemble mc method uses two
coexisting simulation boxes to predict liquid–vapour or liquid–liquid coexistence lines
without a direct calculation of statistical properties such as the free energy or chemical
potential. �e Gibbs–Duhem technique can be used to trace a coexistence line starting
from a known point on the line, by estimating its slope directly in the simulation. It
can be readily applied to solid–liquid equilibria. Finally in Section 9.5, we show how a
reactive canonical Monte Carlo method can be developed to study chemical reactions at
equilibrium by introducing the reactions as balanced forward and backward moves in the
simulation.

9.2 Estimation of the free energy
9.2.1 Introduction

In this section we discuss the ways in which conventional simulations can be extended
to facilitate the calculation of free energies. Grand canonical mc is a direct method for
calculating the free energy, as discussed in Section 4.6, but this can become ine�cient in
dense �uids. �e methods of thermodynamic integration and direct particle insertion have
been introduced in Section 2.4, and some technical details of the particle insertion method
are given in Section 5.5. �ermodynamic integration is, in fact, more generally applicable
than eqns (2.72) and (2.73) might suggest. Let us begin with a less taxing problem than
that of estimating A, speci�cally the calculation of a free-energy di�erence. Consider
two �uids characterized by potentialsV (r) andV0 (r), for which the free energy of the
reference �uid,A0, is known. If we introduce a parameter λ into the potentialV (r; λ) such
thatV0 (r) ≡ V (r; 0) andV (r) ≡ V (r; 1), and de�ne a corresponding (excess) partition
function Qex

NVT (λ), then it easy to show(
∂A(λ)

∂λ

)
NVT

= −kBT
∂Qex

NVT (λ)/∂λ

Qex
NVT (λ)

=

〈
∂V (r; λ)
∂λ

〉
NVT ;λ

where the notation indicates that the canonical ensemble average is calculated using
the potential-energy functionV (r; λ). �e free energy of the �uid of interest, A, can be
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determined by integration

A = A0 +

∫ 1

0
dλ

〈
∂V (r; λ)
∂λ

〉
NVT ;λ

. (9.2)

If the parameterization is a simple linear formula,V (r; λ) = λV (r)+ (1−λ)V0 (r), then the
quantity to be averaged is just ∆V (r) = V (r) −V0 (r). An accurate numerical estimate
of this integral (by Simpson’s rule or some other quadrature scheme) requires many
simulations at di�erent values of λ, to evaluate 〈∂V (r; λ)/∂λ〉NVT ;λ . It is also important
to check that the integrand does not su�er any discontinuities; that is, just as in the use
of eqns (2.72), (2.73), that the path of integration does not cross any phase boundaries.
With these precautions, the thermodynamic integration route can be quite reliable, but
also time-consuming. It is, however, well suited to problems in which we are interested in
the free-energy change associated with ‘mutating’ one molecular species into another.

Now we take the opportunity to go further into the free-energy problem. Considerable
e�ort has been expended on developing novel mc methods which allow determination of
the ‘statistical’ properties (e.g. A and S) of �uids. We present a summary of the available
methods and comment on their usefulness in Section 9.2.7. First, though, we take a closer
look at the nature of the problem.

9.2.2 Energy distributions

Once again, rather than tackle the taxing problem of estimating an absolute free energy,
we consider the calculation of a free-energy di�erence. Given two �uids characterized by
potentialsV (r) andV0 (r), the free energy of the �uid of interest, A, relative to that of
the reference �uid, A0, can be determined from

∆A = A −A0 = −kBT ln(Q/Q0) = −kBT ln
〈
exp(−β∆V )

〉
0

(9.3)

where ∆V (r) = V (r) −V0 (r) and the ensemble average 〈· · ·〉0 is taken in the reference
systemV0. Unless the two �uids are very similar, and β∆V is small for all the important
con�gurations in this ensemble, the average in eqn (9.3) is di�cult to calculate accurately.
�e reason for this becomes clear if we rewrite the con�gurational density function ρ0 (r)
as a function, ρ0 (∆V ), of the energy di�erence. �en

exp(−β∆A) = Q/Q0 =

∫ ∞

−∞

d(∆V ) exp(−β∆V )ρ0 (∆V ). (9.4)

ρ0 (∆V ) is the density (per unit ∆V) of con�gurations r in the reference ensemble which
satisfy V (r) = V0 (r) + ∆V for the speci�ed ∆V . ρ0 contains the Boltzmann factor
exp(−βV0) and a factor associated with the change from 3N variables (r) to one (∆V). It
may be sampled directly by constructing a histogram during a simulation of the reference
system.

To illustrate this, we use a very simple system suggested by Wu and Ko�e (2004),
consisting of N independent harmonic oscillators. �e reference and perturbed potential
energies are, respectively,

V0 =
N∑
i=1

c0x
2, and V =

N∑
i=1

cx2, (9.5)
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Fig. 9.1 �e problem in estimating free-energy di�erences. �e reference and perturbed systems
are de�ned by eqn (9.5) with N = 5, and we take kBT = 1. Mc simulations directly generate the
coordinates xi , from a normal distribution: 106 con�gurations are used. (a) Potential parameters
c0 = 8 (reference), c = 1 (perturbed). �e function ρ0 (∆V ), where ∆V = V −V0: exact (line) and
mc simulation results (points). (b) �e integrand of eqn (9.4) corresponding to (a): exact (line) and
mc simulation results (points). �e function exp(−β∆V ) is shown as a dashed line. �e shaded
region corresponding to ∆V < ∆Vc is not sampled at all in the mc simulation. �e simulation
estimate in this case, from eqn (9.3), is ∆A ≈ −4.52, compared with the exact value ∆A = −5.1986.
(c) and (d) As for (a) and (b), but with the roles of reference and perturbed system interchanged.
Now the simulation estimate of ∆A is within 0.1 % of the exact value ∆A = +5.1986.

with chosen parameters c0 and c . �e free-energy di�erence is ∆A = 1
2NkBT ln(c/c0), and

the distribution ρ0 (∆V ) may be calculated exactly (Wu and Ko�e, 2004). �is is shown
in Fig. 9.1(a) for the particular choice N = 5, c0 = 8, c = 1, along with the results of an
mc simulation which, at �rst sight, seems to reproduce it very well. However, ρ0 (∆V )
decreases rapidly away from the mean value. In a simulation run of �nite length, very low
values of ∆V are not sampled accurately. Indeed, in a histogram recording the potential
energies which arise in such a simulation, there will be no entries at all for ∆V less than
some value ∆Vc (see Fig. 9.1(a)). �e true distribution (i.e. that obtained from an in�nite
run) would be small but non-zero below ∆Vc. For estimating most properties, this would
not ma�er. However, when multiplied by the rapidly growing value of exp(−β∆V ), these
low-energy points should make a substantial contribution to the integral in eqn (9.4).
�is contribution is the shaded area in Fig. 9.1(b), which in the �nite-length simulation is
incorrectly reckoned to be zero. �e resulting simulation estimate of ∆A from eqn (9.3) is
therefore seriously in error.
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If one interchanges the parameters, making c0 = 1, c = 8, the situation is di�erent, as
shown in Fig. 9.1(c) and (d). Now the low-energy tail of the distribution is well sampled, so
that, even when multiplied by the rapidly varying exp(−β∆V ) function, all the important
contributions to the integral of eqn (9.4) are also sampled satisfactorily. In this case, an
accurate estimate of ∆A (which now has the opposite sign, because the identities of the
reference and perturbed systems have been switched) is obtained.

Ko�e (2004; 2005; 2006) has considered this problem from the viewpoint of the rela-
tionship between the important regions of phase space for the two systems. �ere will
usually be one ‘direction’ of perturbation, that is, one choice of reference system, which
is be�er than the other. �is roughly corresponds to a simulation which samples a larger
region of phase space, enveloping the regions which are important for the perturbed
system. However, there is no guarantee that either direction will give a satisfactory result,
particularly if the important regions of phase space do not overlap much. Moreover,
unlike many simulation averages, the results are systematically biased rather than being
randomly distributed: they may be quite reproducible (but wrong). Ko�e (2004; 2005;
2006) has summarized various situations: sometimes it is possible to estimate the size of
the bias (the shaded area in Fig. 9.1(b)). When the simple approach of eqn (9.3) is unreliable
(in either direction), it may be possible to remedy the situation by a di�erent sampling
scheme, and we turn to this now.

9.2.3 Non-Boltzmann sampling

�e solution to this problem is to sample on a non-Boltzmann distribution which favours
con�gurations with large negative values of ∆V . �is bias must be introduced in such a
way that it can subsequently be removed. Torrie and Valleau (1974; 1977b) sample from a
general density function

ρW (r) =W (r) exp
(
−βV0 (r)

) / ∫
drW (r) exp

(
−βV0 (r)

)
. (9.6)

Here W (r) = W (∆V (r)) is a positive-valued weighting function which is speci�ed
at the beginning of a simulation run. �e method described in Chapter 4 is used to
produce a Markov chain of states with a limiting distribution given by eqn (9.6). Specif-
ically, a trial move, from state m to state n, is accepted with a probability given by
min{1, (Wn/Wm ) exp[−β (δV0)nm]}. �e average of any property in the reference ensemble,
〈A〉0, can be related to averages taken over mc trials, that is, in the weighted ensemble,
using

〈A〉0 =
〈A/W 〉trials
〈1/W 〉trials

=
〈A/W 〉W
〈1/W 〉W

(9.7)

where the notation 〈· · ·〉W reminds us of the weighting. �is means that the ratioA (r)/W (r)
is calculated for each step of the simulation, and averaged over the run; the average of
1/W (r) is also required in order to obtain the �nal result. �e densities ρ0 (∆V ) and
ρW (∆V ) are related by

ρ0 (∆V ) =
ρW (∆V )/W (∆V )〈

1/W (∆V )
〉
W

. (9.8)

�us, the density function ρ0 itself may be calculated by building up a histogram dur-
ing the simulation. An appropriate choice ofW (∆V ) with an accurate estimate of the
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denominator in eqn (9.8) gives ρ0 over a much wider range of ∆V than is possible in a
conventional simulation. �e improved ρ0 can be used in eqn (9.4) to calculate the required
free-energy di�erence. Equivalently, eqn (9.7) can be used with A = exp(−β∆V ).

One of the di�culties with this method is that there is no a priori recipe forW (∆V ).
It is o�en adjusted by trial and error until ρW is as wide and uniform as possible, forming
an ‘umbrella’ over the two systemsV andV0. A useful rule of thumb is that it should
extend the range of energies sampled in a conventional mc simulation by a factor of three
or more, allowing accurate calculation of much smaller ρ0 values (Torrie and Valleau,
1977b). A popular choice is W (∆V ) = exp(−β∆V/2) (see e.g. Lee and Sco�, 1980), in
other words, the weighted sampling uses a potential equal to 1

2 [V (r) +V0 (r)]. However
Ko�e (2004) has pointed out that this (or any linear combination of the potentials) may be
a bad choice, from the viewpoint of sampling the relevant areas of con�guration space. A
be�er approach seems to be to construct the overall sampling weight function as a linear
combination of Boltzmann distributions corresponding to the systems of interest and,
possibly, intermediate systems (Valleau, 1999, section II.A). A certain amount of iteration
is required, since the coe�cients in such a linear combination, which would give equal
sampling weights to the various systems, are the inverse partition functions, which are
related to the free energies of interest themselves.

A limitation of the method is that, in practice, unlike particle insertion or grand
canonical mc, it only gives free-energy di�erences between quite similar systems. �e
calculation of absolute free energies requires an accurate knowledge of the reference
system value. Umbrella sampling is normally performed on small systems. �e larger the
system, the smaller the relative �uctuations, and the more sharply varying the density
functions. �is reduces the overlap between the distributions and makes the accurate
calculation of the free-energy di�erences more di�cult. Fortunately, the N -dependence
of relative free energies is thought to be small, and such simulations are economical.
Exploring the �uctuations in larger systems requires a more sophisticated algorithm such
as the Wang–Landau method described in Section 9.2.5.

If the two systemsV andV0 are very di�erent from one another, it may be necessary
to introduce an intermediate stage, or many intermediate stages. In this case, eqn (9.3)
can be generalized to

exp
(
−β (A −A0)

)
=

〈
exp

(
−β (V −Vn )

)〉
n

〈
exp

(
−β (Vn −Vn−1)

)〉
n−1
× · · ·

· · · ×

〈
exp

(
−β (V2 −V1)

)〉
1

〈
exp

(
−β (V1 −V0)

)〉
0

(9.9)

where systems V1 . . .Vn have been introduced with properties intermediate between
those ofV andV0. �is multistage sampling (Valleau and Card, 1972) has been employed
directly to calculate the free-energy di�erence between hard spheres and Coulombic hard
spheres. Each of the separate averages in eqn (9.9) can be evaluated with the help of
umbrella sampling, which reduces the number of intermediate stages required (Torrie
and Valleau, 1977b). As an illustration of the umbrella sampling technique, Torrie and
Valleau (1977b) have related the free energy of the Lennard-Jones �uid to that of the
inverse twel�h-power �uid, and these same authors also found it useful in the study of
liquid mixtures (Torrie and Valleau, 1977a).
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Shing and Gubbins (1981; 1982) used umbrella sampling in conjunction with test
particle insertion to calculate the chemical potential. We describe the second of their two
methods, which is the more generally applicable. A single test particle is inserted in the
�uid, at intervals during the normal simulation. It moves through the �uid, keeping the real
particles �xed, using a non-Boltzmann sampling algorithm which favours con�gurations
of high exp(−β∆Vtest) (see Section 2.4, eqn (2.75)). Each con�guration is weighted by a
factorW (Vtest). One particularly simple form forW is

W (Vtest) =



1 Vtest ≤ Vmax

0 Vtest > Vmax.
(9.10)

In the simulation of a Lennard-Jones �uid,Vmax was taken to be 200 ϵ , and the weighting
function rejected all moves which led to a signi�cant overlap. �e test particle has no real
interaction with the atoms in the �uid, and, in general, a test particle move from position
rmtest to rntest is accepted if

W (rntest)/W (rmtest) ≥ ξ (9.11)

where ξ is a random number in the range (0, 1). A�er 100–200 moves (the �rst few of
which are discarded) the test particle is removed and the regular simulation resumed.
During the run the distribution of test particle energies, ρW (Vtest), is calculated. �e
distribution is proportional to the unweighted distribution, ρ0 (Vtest), for Vtest ≤ Vmax
(see eqn (9.8)). �e constant of proportionality is most easily obtained in this case by
performing a parallel set of unweighted test particle insertions, and comparing the two
distributions in the region where they are both well known. Once ρ0 (Vtest) is known
accurately over its complete range, then the chemical potential can be calculated from

µex = −kBT ln
( ∫ ∞

−∞

dVtest ρ0 (Vtest) exp(−βVtest)

)
. (9.12)

�e usual problem with the insertion method, namely the high probability of �nding
overlaps at high densities, is controlled by the weighted sampling. Shing and Gubbins
(1982) have also proposed a method which concentrates the sampling on the con�gurations
that exhibit suitable ‘holes’ for the insertion. A useful modi�cation of the particle insertion
method has been to ‘turn on’ the test particle interaction gradually (Mon and Gri�ths,
1985). �e idea of using a variable coupling parameter has been used to estimate solubilities
(Swope and Andersen, 1984). Ko�e and Cummings (1998) have studied the calculation
of chemical potentials by staged insertion, using a reduced-radius test particle as the
intermediate stage.

All of the preceding discussion has focused on distributions of the potential energy,
and the calculation of the Helmholtz free energy. However, much of it can be applied,
unchanged, to distributions of an arbitrary order parameterq, and hence the determination
of the Landau free energy F de�ned in Section 2.11. Sometimes our interest lies in
determining the full curve F (q) (or, more generally, a surface depending on two or
more order parameters); sometimes the main aim is to calculate a free-energy di�erence
between two low-lying states, which are separated by a barrier. �e methods of umbrella
sampling may be applied to this problem, to generate a broad distribution of q which
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covers all the states of interest, as well as the more sophisticated ‘�at histogram’ sampling
methods described in Section 9.2.5.

Here, however, we turn to a method which, super�cially, has the opposite intention:
each simulation is restricted to a narrow range of q, or window. �e idea is to build
up the free-energy curve by combining the results of all these simulations. �e term
‘umbrella sampling’ is widely used in biomolecular simulation to refer to this method
of multistage sampling for the calculation of a free-energy barrier (Kaestner, 2011). Like
the methods discussed previously, it involves the application of an additional potential
to the Hamiltonian, the so-called umbrella potential. To illustrate this technique let us
consider a small peptide in water (Mu and Stock, 2002). �e object is to calculate the free
energy as a function of one of the dihedral angles, ϕ, in the peptide (see Fig. 9.2(a)). �is
can be determined from the probability density ρ (ϕ) in an unrestrained simulation (see
Section 2.11). �e umbrella potential is of the form

vW (ϕ,ϕk ) =
1
2c (ϕ − ϕk )

2 ≡ vW ,k (ϕ) (9.13)

and it is de�ned for a set of reference angles {ϕk },k = 1, . . .n, covering the range of
interest. �is is added to the normal potential for the peptide in solution V0 (r). Mc
simulations are performed with the potential V0 (r) + vW ,k (ϕ) for each value of k . �e
umbrella potential restrains the peptide to sample states in the harmonic well around the
value ϕk . If the restraint potential is removed then the system will simply not sample the
higher-energy con�gurations away from the minima in the torsional potential.

For a particular k , the biased probability distribution function is

ρW ,k (ϕ) = exp(βAk )

∫
dr exp

(
−βV0 (r)

)
exp

[
−βvW ,k

(
ϕ (r)

)]
δ
(
ϕ (r) − ϕ

)
(9.14)

where Ak is proportional to the free energy of the system with the biased potential, and r,
as usual, represents the complete set of coordinates of peptide and solvent. ρW ,k (ϕ) can
be calculated in the simulation as

ρW ,k (ϕ) =

〈
H

(
ϕ (r) − ϕ,∆ϕ

)〉
k

∆ϕ Mk
, H =




1 |ϕ (r) − ϕ | < 1
2∆ϕ

0 otherwise.
(9.15)

In eqn (9.15), the top-hat function, H , sorts the dihedral angle, ϕ (r), into bins of width ∆ϕ
around ϕ and Mk is the total number of histogram entries for simulation k . �e probability
function for the unbiased simulation can be recovered from the biased probability using

ρk (ϕ) = exp
(
−β (Ak −A0)

)
exp

(
βvW ,k (ϕ)

)
ρW ,k (ϕ) (9.16)

whereA0 is the free energy of the unbiased system. On the le�, the indexk simply indicates
which simulation gave rise to the function: in principle they are all the same, and ρ (ϕ)
can be obtained from any one of them, but in practice an individual ρW ,k (ϕ) distribution
only contains information around ϕk , and the same will be true of the function ρk (ϕ)
obtained from it via eqn (9.16). All of the ρW ,k (ϕ) distributions should be combined to
produce the full unbiased distribution. �is process is illustrated in the inset of Fig. 9.2(b):
each portion of F (ϕ), −kBT ln ρk (ϕ), is determined up to an unknown additive constant,
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Fig. 9.2 (a) Sketch of the trialanine peptide, investigated using umbrella sampling by Mu and
Stock (2002), with the central ϕ angle indicated. (b) Approximate representation of the Landau free
energy for rotation around ϕ. Also shown are three successive distributions ρW ,k (ϕ), centred at 10°
intervals of ϕk , as might be determined by umbrella sampling. �e inset shows the corresponding
biasing potentials vW ,k (ϕ) (solid curves), the sampled distributions in the form −kBT ln ρW ,k (ϕ)

(dashed curves), and their di�erence, the reconstructed portions of free energy F (ϕ) (dash-do�ed
curves). All the data is idealized, and we make no a�empt to represent the statistical noise.

and subject to statistical errors (not shown) which depend on ϕ. �is can be accomplished
using the weighted histogram analysis method (wham) (Kumar et al., 1992).

In thewham procedure, we consider a linear combination of the unbiased distributions,
which can also be expressed in terms of the biased ones

ρ (ϕ) =
n∑

k=1
Ck (ϕ)ρk (ϕ) =

n∑
k=1

Ck (ϕ) exp
(
−β (Ak −A0)

)
exp

(
βvW ,k (ϕ)

)
ρW ,k (ϕ) (9.17)
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where the coe�cients must satisfy the constraints

n∑
k=1

Ck (ϕ) = 1, ∀ϕ . (9.18)

Using the method of Lagrange multipliers, it is possible to minimize the variance in our
estimate of ρ (ϕ). A�er some straightforward algebra (Frenkel and Smit, 2002; Tuckerman,
2010) we can show that the optimum distribution is given by the coe�cients

Ck (ϕ) =
Mk exp(βAk ) exp

(
−βvW ,k (ϕ)

)
∑n

k ′=1 Mk ′ exp(βAk ′ ) exp
(
−βvW ,k ′ (ϕ)

)
and so ρ (ϕ) is conveniently wri�en in terms of the biased distributions

ρ (ϕ) =

∑n
k=1 Mk ρW ,k (ϕ)∑n

k=1 Mk exp
(
β (Ak −A0)

)
exp

(
−βvW ,k (ϕ)

) (9.19)

where
exp

(
−β (Ak −A0)

)
=

∫
dϕ ρ (ϕ) exp

(
−βvW ,k (ϕ)

)
. (9.20)

Equations (9.18)–(9.20) can be solved iteratively to convergence given an initial guess
for the (Ak −A0) parameters. �e result is illustrated, as a Landau free energy F (ϕ) =
−kBT ln ρ (ϕ), in Fig. 9.2(b), for the peptide example. (Note that Mu and Stock (2002)
analysed their data using an alternative formula to wham.) �e procedure relies on
the assumption that there is the same quality of sampling in each of the n simulations
performed. It is clear that the sampling can be performed using either an mc or md
technique, as is most convenient.

We have chosen to illustrate the method with a simple order parameter, ϕ, but our
umbrella potential could describe any reaction coordinate, q(r), or be a function of many
such coordinates. �is could describe the pathway from reactants, across a barrier, to
the products in a chemical reaction. For a simple gas-phase dissociation of a dimer, the
appropriate reaction coordinate might be the separation of the two constituent atoms.
However, in the case of the dissociation of (say) water into hydroxyl and hydroxonium
ions, the reaction pathway is a complicated function of the coordinates of the many
water solvent molecules surrounding the reacting pair (Dellago et al., 2002; Bolhuis et al.,
2002). In fact, one of the major di�culties in applying these methods and some of the
corresponding molecular dynamics techniques discussed in Chapter 10 is the choice of an
appropriate reaction coordinate or order parameter.

Wham is also an extremely useful tool for combining the results of remc (parallel
tempering) simulations at a range of di�erent state points (see Section 4.9) and the
necessary modi�cations to the prescription are discussed by Chodera et al. (2007).

Virnau and Müller (2004) have proposed a method which they term ‘successive um-
brella sampling’ in which the order parameter space is divided into rather narrow, over-
lapping, windows. In their original paper, the order parameter is discrete (it is the number
of particles, in a grand canonical simulation), and we adopt the same description here,



Estimation of the free energy 307

but the method may be equally well applied to a system with a continuous order parame-
ter. Suppose that the width of each window is w + 1, so that window 0 corresponds to
0 ≤ N ≤ w, window 1 to w ≤ N ≤ 2w, and in general window k to kw ≤ N ≤ (k + 1)w.
Any gcmc move that would take the system outside its window is rejected, and the
current state counted again in the usual way. An occupation histogram Hk (N ) of states
N is constructed within each window. A�er each simulation has run for a pre-determined
number of gcmc moves, the histograms are combined together, matching up the boundary
values for successive windows to obtain an overall probability distribution

P (N )

P (0) =
H0 (w)

H0 (0)
H1 (2w)
H1 (w)

H2 (3w)
H2 (2w)

· · ·
Hk (N )

Hk (kw)
(9.21)

where N lies in the k-th window. From this the free energy can be obtained as a function
of N .

Virnau and Müller (2004) discuss various practical details. As described earlier, the
simulations are conducted independently within each window, and hence can be done
in parallel if desired. However, this involves the preparation of starting con�gurations
for each window, and for this reason it may be more practically convenient to sample
the windows successively, taking advantage of the overlapping states to provide starting
con�gurations for each window from ones sampled in the previous one. �ere is no need to
apply any weight function within the window, as long as the windows are narrow enough
to avoid large changes in Hk (N ) between the low-N and high-N window boundaries.
However, the e�ciency might be improved by including a weight function, to make the
sampling more uniform within each window, and if the windows are tackled successively,
this weight can be extrapolated from the results of the previous window. Virnau and
Müller (2004) also discuss the estimation of errors, and argue that the optimum window
size will be system (and system-size) speci�c: a wider window will be less prone to kinetic
trapping, but may be less e�cient at sampling, especially in the absence of an accurate
weight function.

In the next section, we shall meet another method for combining the results of two or
more simulations, which has some similarities to wham. Finally, it is worth remembering
that, in the limit of narrow windows, the umbrella-sampling method becomes very similar
to conventional thermodynamic integration. �e advantage of umbrella sampling lies
in the overlap between successive windows, which helps to stitch together the separate
contributions to the free-energy curve (using wham or eqn (9.21)). Without this overlap,
each window can just give an estimate of free-energy derivatives, of which the �rst
derivative will be the most accurately determined, and the problem of generating the full
free-energy curve becomes very similar to simple thermodynamic integration.

9.2.4 Acceptance ratio methods

An interesting extension of the ideas introduced in the previous section is the work of
Benne� (1976). In the canonical ensemble, the ratio of the partition functions of two �uids
is given in terms of an arbitrary weighting functionW (r)

Q1
Q0
=
Q1
Q0

∫
drW (r) exp(−β (V1 +V0))∫
drW (r) exp(−β (V1 +V0))

=

〈
W exp(−βV1)

〉
0〈

W exp(−βV0)
〉

1

. (9.22)
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�e choiceW = exp(βV0) orW = exp(βV1) leads to eqn (9.3), but, as we have seen, this
is likely to be impractical. Benne� shows that a particular choice ofW will minimize the
variance in the estimation of Q1/Q0. �e best choice is

W = constant ×
(

Q0
(τ0/s0)

exp(−βV1) +
Q1

(τ1/s1)
exp(−βV0)

)−1
(9.23)

where (τ0/s0) and (τ1/s1) are the number of statistically independent con�gurations
generated in each of the two Markov chains (see eqn (8.16)). Substitution of eqn (9.23)
into eqn (9.22) gives

Q1
Q0
=

〈
f (+β∆V +C )

〉
0〈

f (−β∆V −C )
〉

1

exp(C ) (9.24)

where C = ln(Q1s1τ0/Q0s0τ1), ∆V = (V1 −V0) and f is the Fermi function

f (x ) =
(
1 + exp(x )

)−1
. (9.25)

Writing eqn (9.24) in terms of energy distributions, we obtain

Q1
Q0
=

∫
d(∆V ) f (+β∆V +C )ρ0 (∆V )∫
d(∆V ) f (−β∆V −C )ρ1 (∆V )

exp(C ). (9.26)

�e constant C acts as a shi� in potential, so as to bring the two systems into as close a
correspondence as possible. �e method works as follows. A simulation of each �uid is
performed, and the density functions ρ1 and ρ0 calculated by constructing histograms as
functions of ∆V . A value of C is guessed, and the ratio Q1/Q0 calculated from eqn (9.26).
C is recalculated from

C ≈ ln(Q1/Q0). (9.27)
In eqn (9.27) we have assumed that τ1/s1 ≈ τ0/s0. �is can be checked by direct calculation
using the methods described in Section 8.4. An iterative solution of eqns (9.26) and
eqn (9.27) gives a value forC and Q1/Q0. Benne� (1976) presents an alternative graphical
solution. �e method works well if there is any overlap between the functions ρ1 and ρ0.
�e overlap can be improved using umbrella or multi-stage sampling. Equation (9.26) has
been used to calculate the free energy of a model of liquid nitrogen from that of the hard
dumb-bell �uid (Jacucci and �irke, 1980a).

Equations (9.26) and (9.27) minimize the error in the estimate of the free-energy
di�erence between two systems, 1 and 0, whereas eqns (9.18) and (9.19), associated with
the restraint potentials in umbrella sampling, minimize the error in the estimate of the
distribution function, ρ. Interestingly for the special case of two simulations of the same
length (M1 = M0) and with an umbrella potential ∆V = V1 −V0, the two minimizations
produce exactly the same result.

A slightly modi�ed form of eqn (9.24) is applicable in the constant-NVE ensemble
(Frenkel, 1986)

Q1
Q0
=

〈
f

[
+(∆V − ∆E)/kBT0 +C

]〉
0〈

f
[
−(∆V − ∆E)/kBT1 −C

]〉
1

exp(C ) (9.28)

whereC = ln(Q1s1τ0/Q0s0τ1),Q meansQNV E , and ∆E = E1 −E0 is the di�erence between
the total energies in the two simulations. T0 and T1 are the instantaneous values of
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the temperature and eqn (9.28) assumes that 〈T1〉 = 〈T0〉. �e microcanonical partition
function can be related to the entropy through eqn (2.18). In the md simulations the
two density functions ρ1[(∆V − ∆E)/kBT1] and ρ0[(∆V − ∆E)/kBT0] are calculated and
eqn (9.28) is solved iteratively for C .

Benne�’s acceptance ratio method can be readily extended to incorporate data from
many states to estimate free-energy di�erences and thermodynamic averages for an
arbitrary thermodynamic state (Shirts and Chodera, 2008). �e multi-state Benne� ac-
ceptance ratio (mbar) method combines n independent simulations. To illustrate the
method, we will consider n systems at constant-NVT but with di�erent potential-energy
functions,VI , I = 1 . . .n. �e method can be readily extended to other ensembles or to
combine the data from systems at di�erent temperatures or chemical potentials. For a
particular potentialVI , τI independent con�gurations are sampled from the probability
distribution ρI = Q−1

I exp(−βVI (r)). �ese con�gurations are labelled {rI1, rI2 . . . rIτI };
they are chosen from the trajectory with a statistical ine�ciency sI = 1. �e average of
some con�gurational property A is

〈A〉I =
1
τI

τI∑
i=1
A (rI i ). (9.29)

�e Helmholtz free-energy di�erence between two states I and J is

AJ −AI = −kBT ln(Q J /QI ). (9.30)

For an arbitrary function,WI J , we note the identity

QI

〈
WI J (r) exp

(
−βVJ (r)

)〉
I
= Q J

〈
WI J (r) exp

(
−βVI (r)

)〉
J

(9.31)

which is essentially the same as eqn (9.22) in our extended notation. Using eqn (9.29) in
eqn (9.31) and summing over systems J , we obtain

n∑
J=1

QI

τI

τI∑
i=1

WI J (rI i ) exp
(
−βVJ (rI i )

)
=

n∑
J=1

Q J

τ J

τJ∑
j=1

WI J (rJ j ) exp
(
−βVI (rJ j )

)
(9.32)

for each system I . Eqn (9.32) is nothing more than a set of n coupled equations that can
be solved for all of the QI , given a set of con�gurations for each system. �e solution will
be unique up to a multiplicative constant. As in the original method of Benne�,WI J (the
extended bridge sampling estimator) is chosen to minimize the variance in Q J /QI and
the optimal form suggested by maximum-likelihood methods (Kong et al., 2003) is

WI J (r) =
τ JQ

−1
J∑n

K=1 τKQ
−1
K exp

(
−βVK (r)

) . (9.33)

Substitution of eqn (9.33) into eqn (9.32) gives an expression for the free energy

(AI −A0) = −kBT ln


n∑
J=1

τJ∑
j=1

exp
(
−βVI (rJ j )

)
∑n

K=1 τK exp
[
β
(
(AK −A0) −VK (rJ j )

)]

. (9.34)

�ese equations can be solved iteratively for AI up to an additive constant, A0. �e
similarities with the wham method, eqns (9.19) and (9.20), are evident. In fact, wham and
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mbar are equivalent in the limit that the histogram bin width in wham is reduced to
zero. Mbar reduces to the original Benne� method in the limit of two systems. Unlike
wham, mbar also provides a direct estimate of the uncertainties in the calculation of free-
energy di�erences (Kong et al., 2003). �e free-energy di�erences can also be calculated
for states that are not directly sampled. �e set of n states is increased by including
a new state, Vnew, with τnew = 0 in eqn (9.34) and without further need to check for
self-consistency. A general con�gurational property, 〈A〉, can be estimated by including
a new state [V (r) − kBT lnA (r)]new with τnew = 0 into eqn (9.32).

Recently, Paliwal and Shirts (2013) have usedmbar to explore the e�ect of the Coulomb
and Lennard-Jones cuto�s on the results of free-energy calculations, while Aimoli et al.
(2014) have used the method, in the isothermal–isobaric ensemble, to make extensive pre-
dictions of the properties of supercritical CO2 and CH4 over a wide range of temperatures
and pressures. A Python implementation of the mbar algorithm has been made available
by Shirts and Chodera (2008).

9.2.5 Wang–Landau methods

As we have established already, the probability distribution function ρ (q) of some variable
q(r), measured in, for example, the canonical ensemble, is related to the Landau free
energy F (q) (Section 2.11) by

F (q) = −kBT ln ρ (q) + constant ⇒ ρ (q) ∝ exp(−F (q)/kBT ).

It follows that introducing a weight function of the form W (q) = exp(+F (q)/kBT )
into the Metropolis acceptance/rejection criterion will result in a �at distribution ρW (q).
Several simulation methods are based on turning this idea around, and devising an iterative
method of re�ning an initial estimate of F (q) in such a way as to generate, eventually,
such a �at distribution. For reasons to become clear shortly, these are commonly referred
to as ‘density of states’ methods; recent reviews have been provided by Singh et al. (2012)
and Janke and Paul (2016).

Early versions of this method are called multicanonical or entropic sampling (Berg and
Celik, 1992; Lee, 1993; Berg et al., 1995). Assume that a histogram is used to accumulate
ρW (q), and that a table stores the current estimate of F (q) at corresponding values of q.
�e simulation begins with all the entries set to zero. A typical sequence of runs is:

1. Conduct a simulation, of a pre-determined length, sampling with e�ective potential
Ve� (r) = V (r) − F (q(r)).

2. Determine ρW (q) as a histogram, averaged over this simulation run.
3. Wherever ρW (q) > 0, reset F (q) → F (q) − kBT ln ρW (q).

�en the process returns to step 1. �e last step sets the scene for the next simulation: it
e�ectively discriminates against the more popular states, and in favour of the less popular
ones (amongst those visited so far). �e steps are repeated until some convergence criterion
is met. �e �rst (unweighted) simulation samples just the low-lying free-energy region of
q, but as the weight function builds up, higher values of F (q) are visited more frequently,
and eventually ρW (q) → constant. When this is achieved, the table of free energies is the
desired Landau free energy.

�is approach has been re�ned by Wang and Landau (2001a,b), and applied to the
case of determining the density of states. �is corresponds to the case where q = E (the
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total energy) or q = V (the potential energy). �e corresponding density ρ (E) or ρ (V )
is just the microcanonical ensemble partition function; we shall use Ω instead of ρ for
this, as it is the more usual notation. �e ‘Landau free energy’ F (q)/kBT is actually the
negative of the entropy −S (E)/kB or its con�gurational part. When this technique is
successful, therefore, it achieves the objective that we had previously suggested was very
di�cult or impossible to achieve: the determination of the entropy or free energy in a
single simulation.

Wang and Landau (2001a,b) proposed essentially two re�nements of the scheme
just described. First, the updating of the ‘free energy’ or ‘entropy’ term, and hence the
weighting that appears in the acceptance/rejection criterion, is performed at every Monte
Carlo step. Second, the amount by which this weight is updated is set at the start, and is
progressively adjusted downwards as the measured histogram becomes more and more
�at. In outline, the scheme looks like this. Initially S (V ) = 0 for all the tabulated values
ofV , and the adjustment factor is set to δS = kB.

1. Set all ΩW (V ) = 0.
2. Conduct mc moves using S (V ). Suppose a�er each move the new potential energy

isV , then reset S (V ) → S (V ) + δS and increment ΩW (V ) → ΩW (V ) + 1.
3. Continue the simulation until the sampled density of states ΩW (V ) is ‘su�ciently

�at’.
4. Reduce the entropy increment δS → 1

2δS.
�en the process returns to step 1, rese�ing the sampled density ΩW (V ) to zero, and
restarting the accumulation of this histogram. �e whole sequence, of determining a ‘�at’
histogram and then adjusting δS downwards, continues until δS is ‘su�ciently small’.
At this point, S should have converged to the (con�gurational part of the) microcanonical
entropy S (V ), and the true density of states is given by Ω(V ) ∝ exp

(
S (V )/kB

)
(compare

the usual Boltzmann expression S = kB ln Ω). An example of a Wang–Landau program is
given in Code 9.1.

Several details of this scheme need to be explained. First, in step 2, the Monte Carlo
scheme uses a standard Metropolis-like acceptance/rejection formula, but this is based
completely on the function S (V ):

Pacc = min
(
1, exp(−∆S/kB)

)
, ∆S = S

(
V (rnew)

)
− S

(
V (rold)

)
.

Notice that temperature plays no part in this algorithm. In terms of the statistical weights
(numbers of states) at each energy, Ω(V ), this updating scheme will sample states with a
probability proportional to exp(−S/kB), that is, inversely proportional to Ω. �is results
in a �at distribution of sampled energies (typically, the number of accessible states Ω(V )
increases very rapidly withV , but this is exactly cancelled by the weighting, which goes
inversely with Ω).

Second, we need to consider what �atness criterion would be appropriate in step 3.
Typically this condition is expressed as a relation between the minimum value in the
histogram, and the mean value:

min ΩW (V )

ΩW (V )
> f (9.35)
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Code 9.1 Wang–Landau simulation of chain molecule
�ese �les are provided online. �e program mc_chain_wl_sw.f90 conducts anmc sim-
ulation for a single chain molecule composed of hard square-well atoms. �is allows
the chain to explore the entire energy landscape, and the aim is to sample the potential
energy distribution uniformly. �e chain exhibits a collapse transition. A variety of
moves, such as reptation and pivot, are provided in mc_chain_sw_module.f90. For
comparison, a simple constant-NVT program, using the same moves, is given in
mc_chain_nvt_sw.f90. As usual, the programs use the utility modules of Appendix A;
the program initialize.f90 (Code 5.6) may be employed to prepare initial con�gu-
rations.

! mc_chain_wl_sw.f90
! Monte Carlo , single chain , Wang -Landau , square wells
PROGRAM mc_chain_wl_sw

! mc_chain_sw_module.f90
! Monte Carlo , single chain , square wells
MODULE mc_module

! mc_chain_nvt_sw.f90
! Monte Carlo , single chain , NVT , square wells
PROGRAM mc_chain_nvt_sw

where f is typically chosen to be 0.8–0.95. Higher values give a more stringent require-
ment for �atness, which is generally preferable, but more expensive.

�ird, when should we decide that the scheme has converged? Usually, δS is reduced
so that exp(−δS/kB) is extremely small, perhaps even comparable with the limit imposed
by the built-in discrete representation of �oating-point numbers. �is is important, because
the density of states Ω(V ), which is e�ectively being cancelled by the weight function
to give a �at sampled distribution ΩW (V ), may easily cover many orders of magnitude.
�erefore, a very accurately determined Ω(V ) is essential.

�ere are some practical issues with the scheme. �e ideal situation is where all
accessible energies are visited in the �rst run, and subsequent runs simply re�ne the
weights at each energy, giving a smoother and smoother functionS (V ). �is is seldom the
case in practice: states having new energies are o�en discovered later on in the sequence.
�e �atness calculation of eqn (9.35) can only be based on the energy bins in the histogram
that have actually been visited, so this gives a false impression during the early stages.
Also, when a new energy bin is discovered, the simulation typically gets stuck in it, until
enough increments have been added to the weight function to escape from the bin. �is
may take a substantial amount of time, if δS has been adjusted down many times since
the start. A second problem is that the entropy adjustment factor δS is reduced ‘too fast’
by the standard scheme to cope with the roughness of the landscape. �is gives a false
impression of convergence: the algorithm reaches a halt before all the peaks and troughs
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in S (V ) have been cancelled out. In principle, this can be tackled by changing to a method
which, at long mc ‘times’ t , reduces δS in a way proportional to 1/t (Belardinelli and
Pereyra, 2007a,b). �ere is one �nal issue that should be mentioned. �e ultimate output
of this scheme is the S (V ) which generates a �at distribution. From this, a wide range of
canonical ensemble averages may be generated, at any desired temperature, by including
the weight factor, along with the appropriate Boltzmann factor, in an integral over V .
However, technically the weight has not been determined from an equilibrium simulation:
even though the �nal increment δS is very small, the weighting function is changing
throughout the process. To be sure, a �nal, long, simulation should be undertaken, with a
weight that is no longer being updated, and this run should be used to calculate results.

We should spend a moment thinking about the practicalities of calculating averages
at a chosen temperature. Suppose that we are interested in a variableA, and that we have
stored the Wang–Landau simulation averages of this quantity, as a function ofV , in a
histogram: 〈A〉V . �e formula for the canonical ensemble average is

〈A〉 =

∫
dV Ω(V ) exp(−βV ) 〈A〉V∫

dV Ω(V ) exp(−βV )
=

∫
dV exp(−βV + S (V )/kB) 〈A〉V∫

dV exp(−βV + S (V )/kB)

=

∫
dV exp

(
−βF (V )

)
〈A〉V∫

dV exp
(
−βF (V )

) ,

where we introduce a ‘Landau free energy’ F (V ) for convenience. �e histogram values
may be used to compute both the integrals here. However, we must pay a�ention to the
enormous range of values covered by the integrands: the function exp[−βF (V )] will
be very sharply peaked near some value ofV which depends on the temperature. �e
solution is to �nd this maximum value, and concentrate the integration on the important
region nearby. Equivalently, �nd the minimum value of F (V ), call it Fmin, and subtract
it from F (V ) in both numerator and denominator:

〈A〉 =

∫
dV exp

[
−β

(
F (V ) − Fmin

)]
〈A〉V∫

dV exp
[
−β

(
F (V ) − Fmin

)] .

�is will guard against extremely large value of the integrands, which might otherwise
cause over�ow, and the range of integration can be truncated when the integrands fall to
extremely low values, so as to avoid under�ow.

�e Wang–Landau method is currently regarded as the �rst choice for determining
densities of states, and hence simulation results (including the free energy) across a wide
range of state points, out of a single set of runs. However, it is not guaranteed to produce
accurate results: the e�ectiveness of the sampling scheme must be system-dependent. �e
method is easily generalized to the case of variables other than the energy, and to handle
more than a single variable, although it works less well as the dimensionality of the space
to be explored increases.

9.2.6 Nested sampling

Nested sampling (ns) has the same aims as the Wang–Landau approach (estimation of
the density of states, and hence the partition function and related quantities) and is,
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similarly, an iterative method. It arose from an idea due to Skilling (2006), and was applied
to molecular simulation by Pártay et al. (2010). �e method then seems to have been
rediscovered and applied to condensed phase systems of N = 300 water molecules (Do
et al., 2011) and the solid state (Do and Wheatley, 2013). �e key elements are: (a) uniform
sampling of con�guration space without using a Boltzmann weight; (b) progressive
reduction of the accessible con�guration space by removing the high-energy regions.
Uniform sampling means choosing coordinates at random; as explained in Chapter 4, this
means that the system will spend most of its time in very high-energy states in which
there are many overlaps between particles, because the con�gurational density of states is
a very rapidly increasing function of potential energy. �is is not enough, in itself, but it
gives an estimate of the density of states ρ (V ) at high potential energy. It is then possible
to divide the set of sampled energies in two, such that a speci�ed fraction f of them lie
in the lower part, and a fraction 1 − f in the upper part. �e next stage is restricted to
simulating the lower-energy portion of the density of states in a similar way, building up
more information about ρ (V ) in this region. At each stage i of the ns process, then, we
do as follows.

1. Sample con�gurations randomly, subject to V < Vi , constructing an energy dis-
tribution ρ (V ). �is can be done by Markov chain mc, rejecting moves that would
violate the condition.

2. Determine the energyVi+1 at a �xed fraction f of ρ (V ) (a typical value would be
f = 1/2, in which caseVi+1 is the median value).

3. Increment i and repeat until some convergence criterion is met.
In the �rst stage, the upper energy limit is set to a very high value. Going from one stage
to the next, it is necessary to generate the starting condition in some way consistent
with the (reduced) upper limit on potential energy. One way of doing this is to use many
independent ‘walkers’ at each stage, and at the start of the next stage prune the ones that
lie above the new threshhold, and duplicate the ones that lie below it. �is approach also
helps reduce the danger of becoming trapped in a single low-lying minimum. We expect
ρ (V ) at each stage to increase sharply withV up to the imposed limit; each successive
stage samples a low-energy subset of the con�gurations sampled at the previous stage.
�is does not mean that the energy is dramatically reduced at each stage; indeed, it may
only require a small lowering of the ‘ceiling’ to reduce the con�guration-space volume
by half. A�erwards, an estimate of the excess partition function at any chosen inverse
temperature β = 1/kBT , follows from

Qex ≈
1
Wf

∑
i

( f i−1 − f i ) exp
(
− 1

2β (Vi−1 +Vi )
)
, where Wf =

∑
i

( f i−1 − f i ).

�e term ( f i−1− f i ) represents the fraction of con�guration space that is explored between
energiesVi−1 andVi , and the Boltzmann factor uses the mean of these energies as an
estimate of the typical energy of that region. Nested sampling is not restricted to ‘energy’
space: it may be used to compute the isothermal–isobaric partition function (Pártay et al.,
2014; Wilson et al., 2015).

A drawback of ns is that the random sampling method makes it di�cult to simulate
outside the framework of mc. Recently, it has been adapted so that conventional canonical
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ensemble simulations may be used (Nielsen, 2013) opening up the possibility of wider
application.

9.2.7 Summary

Statistical properties, such as entropy and free energy, can be calculated directly by
simulating in the grand canonical ensemble (see Sections 3.10, 4.6). Such simulations are
not useful at high density without some biased sampling trick to improve the probability
of a successful particle insertion.

Free-energy di�erences may be calculated by averaging the Boltzmann factor of the
energy di�erence between the two systems. �is is easy to incorporate as a black-box
procedure, but is fraught with danger: whichever system is chosen as the reference in
which to perform the simulation, there may be a poor overlap of the important regions of
phase space with the other system. As emphasized by Lu and Ko�e (2001a,b), usually one
direction of perturbation (in which the entropy of the target is less than the entropy of
the reference) is preferable to the other. It is almost never a good idea to simply average
the results obtained by the forward and backward routes (Lu et al., 2003; Pohorille et al.,
2010). Usually it is advisable to examine the underlying data, such as energy distributions,
provided by forward and backward routes, as illustrated in Section 9.2.2. Benne� (1976)
recommends calculating

д0 (∆V ) = ln ρ0 (∆V ) − 1
2β∆V, (9.36a)

д1 (∆V ) = ln ρ1 (∆V ) + 1
2β∆V, (9.36b)

д1 (∆V ) − д0 (∆V ) = β∆A (9.36c)

and plo�ing д0, д1, and their di�erence against ∆V , which should be a constant in the
region of overlap. �is may or may not give a good estimate of ∆A, but at least it should
be consistent with the estimate obtained, for instance, from the acceptance-ratio method,
otherwise some reconsideration is needed (Pohorille et al., 2010).

�e umbrella sampling method does give a useful route to free-energy di�erences.
However, it cannot give absolute free energies, and there is always a subjective element
in choosing the appropriate weighting function. Two systems that are quite di�erent
can only be linked by performing several intermediate simulations, even with the use
of umbrella sampling at each stage. If there is any overlap between the distributions of
con�gurational energy of a set of systems, then the mbar method is a powerful route to
the free-energy di�erences. It also provides estimates of the free-energy di�erence and
con�gurational properties of any new states within the envelope of the systems studied.

Perhaps the most direct a�ack is to calculate the chemical potential by the particle
insertion method in any ensemble (using the appropriate formula). �is method is easy
to program and �ts neatly into an existing code. �e additional time required for the
calculation is approximately 20 % of the normal run time. �is method may also fail at
densities close to the triple point, although there is some disagreement about its precise
range of validity. A useful check (as per eqn (9.36)) is to calculate the distribution of test
particle energies and real molecule energies during a run. When the logarithm of the ratio
of these distributions is plo�ed against βVtest it should be a straight line of slope one,
and the intercept should be −βµex (Powles et al., 1982). If this method gives a di�erent
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Example 9.1 Computational alchemy

�e e�cacy of a medicinal drug is determined, in part, by its ability to bind to the
active site of a protein. �e binding free energy of a molecule is the di�erence between
the free energy of the drug in the active site and in aqueous solution. Jorgensen and
Ravimohan (1985) �rst showed that the di�erence between the binding free energies
of two molecules B and A, ∆∆Gbinding, could be calculated using a thermodynamic
cycle, such that

∆∆Gbinding = ∆Gbound
BA − ∆G

aq
BA

where ∆GBA is the change in the Gibbs free energy when molecule A changes to
molecule B in either the bound or aqueous environment. �e Gibbs free energies of
‘mutation’ can be estimated using the perturbation approach of eqn (9.3) with the
averages calculated in the constant-NPT ensemble using either a Monte Carlo method
with 11 windows of overlap sampling (Jorgensen and �omas, 2008) or molecular
dynamics using the rest approach (Cole et al., 2015).

O

O
N

X

X

NH

O

O

CN

(1)
O

O
N

R′

R
X W

R′′
Y Z

NH

O

O

(2)

Inhibitors of the HIV-1 reverse transcriptase enzyme are important in anti-HIV
therapy. A particularly potent inhibitor of the wild-type enzyme is the catechol
diether (1) with X = Cl or F. However, there are concerns about the cyano-vinyl
group in the structure and the possibility that electrophilic addition could lead to
covalent modi�cation of proteins and nucleic acids. For this reason Lee et al. (2013)
used free-energy simulations to consider bicyclic (2) replacements of the cyano-vinyl
group. A pyrrole ring with the N at position W is used as the reference compound. 18
perturbations of the �ve-membered ring using C, N, O at the W, X, Y, Z positions are
considered. �e calculation of ∆∆Gbinding suggests important candidates for synthesis
and for further studies of the crystal structure of the bound inhibitors. �e indolizine
(R, R′ = H, R′′ = CN, W, Y, Z = C, and X = N) is found to be particularly potent as
measured by its EC50 value: the dose required to obtain 50 % protection of the infected
cells.

result from the straightforward average of the Boltzmann factor of the test particle energy,
then there is a problem with convergence. In this case the particle insertion should be
enhanced by umbrella sampling (Shing and Gubbins, 1982).

�e internal energy can be accurately calculated by simulation in the canonical
ensemble, and the temperature can be accurately calculated in the microcanonical ensemble.
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�is makes the thermodynamic integration of eqn (2.72) an accurate route to free-energy
di�erences. One possible disadvantage is that a large number of simulations may be
required to span the integration range. �is is not a problem if the aim of the simulation
is an extensive exploration of the phase diagram, and one short cut is to plan simula-
tions at appropriate temperatures along the integration range to enable you to perform
a Gauss–Legendre quadrature of eqn (2.72) without the need for interpolation (Frenkel,
1986). One other possible di�culty is the requirement of �nding a reversible path between
the state of interest and some reference state. Ingenious a�empts have been made to
integrate along a thermodynamic path linking the liquid with the ideal gas (Hansen and
Weis, 1969) or with the harmonic la�ice (Hoover and Ree, 1968) without encountering
the irreversibility associated with the intervening phase transitions. In the solid state, it
may be necessary to apply an external �eld to reach the Einstein crystal (Frenkel and
Ladd, 1984) and a similar technique may be used to calculate the free energy of a liquid
crystal (Frenkel and Mulder, 1985).

In Section 11.6 we return to the calculation of free energies, by nonequilibrium work
measurement. �e direct approach involving averaging of Boltzmann factors, and the
thermodynamic integration method, may be considered as extreme examples of this in
the limits, respectively, of fast and slow perturbations.

9.3 Smarter Monte Carlo
In the conventional mc method, all the molecules are moved with equal probability, in
directions chosen at random. �is may not be the most e�cient way to proceed: we might
wish to a�empt moves for some molecules more o�en than others, or to bias the moves in
preferred directions. �is preferential sampling can be accomplished using an extension
of the Metropolis solution (eqn (4.21)) of the following form:

πmn = αmn αnmρn ≥ αmnρm m , n

πmn = αmn

(
αnmρn
αmnρm

)
αnmρn < αmnρm m , n

πmm = 1 −
∑
n,m

πmn . (9.37)

We recall that πmn is the one-step transition probability of going from statem to state n.
In this case it is easy to show that microscopic reversibility is satis�ed, even if αmn , αnm .
�e Markov chain can be easily generated by making random trial moves from state
m to state n according to αmn . �e trial move is accepted with a probability given by
min(1,αnmρn/αmnρm ). �e details of this type of procedure are given in Section 4.4. We
make use of the prescription of eqn (9.37) in the following.

9.3.1 Preferential sampling

In a dilute solution of an ion in water, for example, the most important interactions are
o�en those between solute and solvent, and between solvent molecules in the primary
solvation shell. �e solvent molecules further from the ion do not play such an important
role. It is sensible to move the molecules in the �rst solvation shell more frequently
than the more remote molecules. Let us de�ne a region Rsol around the solute molecule,
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solvent molecules within the region being designated ‘in’, and the remainder being ‘out’.
A parameter p de�nes how o�en we wish to move the ‘out’ molecules relative to the ‘in’
ones: p lies between 0 and 1, smaller values corresponding to more frequent moves of the
‘in’ molecules. A move consists of the following steps (Owicki and Scheraga, 1977b).

(a) Choose a molecule at random.
(b) If it is ‘in’, make a trial move.
(c) If it is ‘out’, generate a random number uniformly on (0, 1). If p is greater than the

random number then make a trial move. If not, then return to step (a).
In step (c), if it is decided not to make a trial move, we return to step (a) immediately, and
select a new molecule, without accumulating any averages. �is procedure will a�empt
‘out’ molecule moves with probability p relative to ‘in’ molecule moves. Trial moves are
accepted with a probability min(1,αnmρn/αmnρm ) and the problem is to calculate the
ratio αnm/αmn for this scheme. Consider a con�gurationm with Nin ‘in’ molecules and
Nout ‘out’ molecules. �e chance of selecting an ‘in’ molecule is

pin =
Nin
N
+ (1 − p)Nout

N

Nin
N
+

(
(1 − p)Nout

N

)2
Nin
N
+ . . . =

Nin
N ′

(9.38)

where N ′ = pN + (1−p)Nin. Note how, in eqn (9.38) we count all the times that we look at
‘out’ molecules, decide not to try moving them, and return to step (a), eventually selecting
an ‘in’ molecule.

Once we have decided to a�empt a move, there are four distinct cases, corresponding
to the moving molecule in states m and n being ‘in’ or ‘out’ respectively. Let us consider
the case in which we a�empt to move a molecule which was initially ‘in’ the region Rsol
to a position outside that region (see Fig. 9.3). Suppose that trial moves may occur to any
of NR positions within a cube R centred on the initial position of the molecule. �en αmn
is the probability of choosing a speci�c ‘in’ molecule, and a�empting to move it to one of
these sites as shown in Fig. 9.3:

αmn =
1
Nin

Nin
N ′

1
NR
=

1
N ′NR

. (9.39)

�e chance of a�empting the reverse move, from a state containing Nout+1 = N −Nin+1
‘out’ molecules and Nin − 1 ‘in’ molecules, is

αnm =
1

N − Nin + 1

(
1 − Nin − 1

pN + (1 − p) (Nin − 1)

)
1
NR
=

p

N ′NR

(
1 −

1 − p
N ′

)−1
(9.40)

and the desired ratio can be obtained. Summarizing for all four cases we have

m → n αnm/αmn

in→ out p
(
1 − (1 − p)/N ′

)−1
(9.41a)

out→ out 1 (9.41b)
in→ in 1 (9.41c)

out→ in
[
p
(
1 + (1 − p)/N ′

)]−1
(9.41d)
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Solute Solute

(a) (b)

Fig. 9.3 (a) A�empting to move a solvent molecule out of the region Rsol around the solute
(shaded). �e cube of possible new positions R centred on the initial position of the molecule is
indicated by dashed lines. (b) A�empting the reverse move.

where N ′ is calculated for Nin molecules in state m. In the simulation, p is chosen so
that the initial probability of a�empting an ‘in’ molecule move is typically 0.5. In an
unweighted simulation, the probability of moving ‘in’ molecules obviously depends on
the system size, but would be much lower, say 10 %–20 %.

Owicki (1978) has suggested an alternative method for preferential sampling which
has been used in the simulation of aqueous solutions (Mehrotra et al., 1983). In this
method, the probability of choosing a solvent molecule decays monotonically with its
distance from the solute. We de�ne a weighting function, which typically takes the form

W ′(ri0) = r
−ν
i0 (9.42)

where ν is an integer. Here ri0 is the distance of molecule i from the solute, which we
label 0. At any instant, a properly normalized weight may be formed

W (ri0) =W
′(ri0)

/ ∑
j

W ′(r j0) (9.43)

and used to de�ne a probability distribution for the current con�guration. A molecule i
is chosen from this distribution using a rejection technique as described in Appendix E.
An a�empted move is then made to any of the NR neighbouring positions. Denoting
W (ri0) in the initial and �nal states simply byWm andWn respectively, the required ratio
of underlying transition matrix elements is

αnm/αmn =Wn/Wm . (9.44)

We have tacitly assumed that the solute molecule is �xed. �is is permissible, but relaxation
of the �rst neighbour shell will be enhanced if the solute is allowed to move as well. �is
will, of course, change all the interactions with solvent molecules. In the scheme just
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described, the solute may be moved as o�en as desired, with αnm/αmn = 1, without any
additional modi�cations.

A useful example of preferential sampling is the cavity-biased gcmc method (Mezei,
1980). Gcmc becomes less useful at high densities because of the di�culty of making
successful creation and destruction a�empts. In the cavity-biased method insertion is
only allowed at points where a cavity of a suitable radius, rc, exists. �e probabilities of
accepting a creation or destruction a�empt (eqns (4.41) and (4.42)) are modi�ed by an
additional factor pN , the probability of �nding a cavity of radius rc, or larger, in a �uid of
N molecules. A creation a�empt is accepted with a probability given by

min
(
1, exp

[
−βδVnm + ln

(zVpN
N + 1

)])
(9.45a)

and a destruction a�empt is accepted with a probability given by

min
(
1, exp

[
−βδVnm + ln

( N

zVpN−1

)])
. (9.45b)

�e simulation is realized by distributing a number of test sites uniformly throughout
the �uid. During the run each site is tested to see whether it is at the centre of a suitable
cavity or not. In this way pN is calculated with a steadily improving reliability and at the
same time it is possible to locate points in the �uid suitable for an a�empted creation. In
the event that no cavity is available, we can continue with the next move or use a scheme
which mixes the cavity sampling with the more conventional gcmc method. Details
of the mixed scheme, which requires complicated book-keeping to ensure microscopic
reversibility, are given in the original paper. Mezei reports an eightfold increase in the
e�ciency of creation/destruction a�empts in a simulation of a supercritical Lennard-Jones
�uid. Cavity bias has been included in the set of moves used by the mc module of the
charmm package (Hu et al., 2006). It can be considered a precursor to con�gurational-bias
Monte Carlo (cbmc) (see Section 9.3.4) and an extension of the method has been used to
speed up reaction ensemble mc (see Section 9.5). Loe�er et al. (2015) have adapted the
grand canonical Monte Carlo algorithm by introducing an energy-bias method for trial
insertions and deletions. �is approach allows molecules to be inserted into and removed
from regions of high (least negative) energy in the �uid (e.g. at the surface of a cluster).
�is approach is combined with either the aggregation-volume-bias (avb) mc method
(Chen and Siepmann, 2000) or the unbonding–bonding (ub) mc method (Wierzchowski
and Ko�e, 2001). �e two algorithms preferentially insert or remove molecules in a
particular sub-region of �uid (e.g. the bound region directly around another molecule).
�e combined targe�ing of particular regions and energies can deliver a signi�cant
increase in insertion/removal e�ciency and an accelerated rate of convergence for the
thermodynamic properties of the system (Loe�er et al., 2015).

9.3.2 Force-bias Monte Carlo

In real liquids, the movement of a molecule is biased in the direction of the forces acting
on it. It is possible to build this bias into the underlying stochastic matrix α of the Markov
chain. �e reason for adopting a force-bias scheme is to improve convergence to the
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limiting distribution, and steer the system more e�ciently around the bo�lenecks of
phase space (see Section 4.3). Pangali et al. (1978) adopt the following prescription for the
underlying Markov chain:

αmn =



exp
(
+λβ (fmi · δr

nm
i )

)
/C (fmi , λ,δrmax) n ∈ R

0 n < R .
(9.46)

Here we have assumed that just one atom i is to be moved, fmi is the force on this atom
in state m, δrnmi = rni − rmi is the displacement vector in a trial move to state n, λ is a
constant and C is a normalizing factor. Typically, λ lies between 0 and 1. When λ = 0,
eqn (9.46) reduces to eqn (4.27) for the conventional transition probability. As usual, R is
a cube of side 2δrmax centred on the initial position rmi (see Fig. 4.2). A li�le manipulation
shows that

C (fmi , λ,δrmax) =
∏

α=x,y,z

2 sinh(λβδrmax f
m
iα )

λβ f miα
. (9.47)

It is clear from eqn (9.46) that this prescription biases δrnmi in the direction of the force
on the atom.

�e force bias (fb) method is implemented as follows. An atom i is chosen at random
and given a trial random displacement δrnmi selected using a rejection technique (see
Appendix E) from the probability distribution determined by eqn (9.46). �e trial move is
accepted with a probability given by min(1,αnmρn/αmnρm ). �e ratio appearing here is
given by

αnmρn
αmnρm

= exp
[
−β

(
δVnm + λδrnmi · (fmi + f

n
i ) + δW

FB
)]

(9.48)

where
δW FB = −kBT ln

(
C (fmi , λ,δrmax)

C (fni , λ,δrmax)

)
(9.49)

can be calculated using eqn (9.47). For small values of δrmax

δW FB ≈ 1
6λ

2βδr 2
max

(
|δ fnmi |

2 + 2δ fnmi · fmi
)

(9.50)

where δ fnmi = fni − f
m
i . �e two parameters in the method, λ and δrmax, can be adjusted to

maximize the root-mean-square displacement of the system through phase space: a simple,
though not unique, measure of e�ciency (Rao et al., 1979; D’Evelyn and Rice, 1981). �e
fb method is particularly powerful when dealing with hydrogen-bonded liquids such
as water, which are susceptible to bo�lenecks in phase space. Molecular translation is
handled as just described, and the extension to include torque-biased rotational moves is
straightforward. �e analogous equation to eqn (9.46) is

αmn = C
−1 exp

(
+λβfmi · δr

nm
i + λβτmi · δϕ

nm
i

)
n ∈ R (9.51)

where τmi is the torque on molecule i in statem, and δϕnmi is the trial angular displacement,
that is, δϕnmi = δϕmne where e is the axis of rotation. A study of a model of water using
force bias (Rao et al., 1979) demonstrated clear advantages over conventional mc methods,
and be�er agreement with md results for this system. A further study (Mehrotra et al.,
1983) showed an improvement in convergence by a factor 2 to 3 over conventional mc.
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9.3.3 Smart Monte Carlo

Force-bias Monte Carlo involves a combination of stochastic and systematic e�ects on the
choice of trial moves. A similar situation applies to the motion of a Brownian molecule in
a �uid: it moves around under the in�uence of random forces (from surrounding solvent
molecules) and systematic forces (from other nearby Brownian molecules). We will turn
to the simulation of Brownian motion in Chapter 12 when we describe a range of coarse-
grained methods, and simply describe here the smart Monte Carlo (smc) scheme devised
by Rossky et al. (1978), which is derived from it. �e trial displacement of a molecule i
from statem to state n may be wri�en

δrnmi = βAfmi + δr
G
i . (9.52)

δrG
i is a random displacement whose components are chosen from a Gaussian distribution

with zero mean and variance 〈(δrG
iα )

2〉 = 2A, α = x ,y , z. �e quantity A is an adjustable
parameter (equal to the di�usion coe�cient multiplied by the timestep in a Brownian
dynamics simulation). �e underlying stochastic matrix for this procedure is

αmn = (4Aπ)−3/2 exp
(
−

���δr
nm
i − βAfmi

���
2
/4A

)
. (9.53)

In practice a trial move consists of selecting a random vector δrG
i from a Gaussian distri-

bution as described in Appendix E, and using it to displace a molecule chosen at random
according to eqn (9.52). �e move is accepted with probability min(1,αnmρn/αmnρm )
(see eqn (9.37)) and the required ratio is

αnmρn
αmnρm

= exp
[
−β

(
δVnm +

1
2 (f

n
i + f

m
i ) · δrnmi + δW SMC

)]
(9.54)

where
δW SMC =

βA

4
(
|δ fnmi |

2 + 2δ fnmi · fmi
)

(9.55)

and the notation is the same as for eqn (9.50). Rossky et al. (1978) tested the method by
simulating ion clusters, and Northrup and McCammon (1980) have used smc to study
protein structure �uctuations. �ere are clear similarities, and slight di�erences, between
the fb and smc methods. One di�erence is that eqn (9.53) puts no upper limit on the
displacement of a given molecule at any step, using a Gaussian probability distribution
instead of a cubic trial displacement region. However, if we write eqn (9.53) in the form

αmn = (4Aπ)−3/2 exp
(
−
β2A

4 |f
m
i |

2 −
1

4A |δr
nm
i |

2
)

exp
(
+ 1

2βf
m
i · δr

nm
i

)
(9.56)

and compare with eqn (9.46), we note that the distributions are particularly similar for
λ = 1

2 . For this choice, the two ratios governing acceptance of a move are identical if (Rao
et al., 1979)

δW SMC = δW FB (9.57)

and for small step sizes, this holds for A = 1
6δr

2
max. Comparisons between the two tech-

niques are probably quite system-dependent. Both o�er a substantial improvement over
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conventional mc on a step-by-step basis in many cases, but they are comparable with
molecular dynamics in complexity and expense since they involve calculation of forces and
torques. Both methods improve the acceptance rate of moves. �e most e�cient method,
in this sense, would make αnm/αmn = ρm/ρn when every move would be accepted, but
of course ρn is not known before a move is tried. Smc, and fb with λ = 1

2 , both approach
100 % acceptance rates quadratically as the step size is reduced. �is makes multi-molecule
moves more feasible. In fact, smc simulations with N -molecule moves and small step sizes
are almost identical with the Brownian dynamics (bd) or Schmoluchowski equation simu-
lations of Chapter 12. �e extra �exibility of smc and fb methods lies in the possibility of
using larger steps (and rejecting some moves) and also in being able to move any number
of molecules from 1 to N . An example program appears in Code 12.2.

Fb and smc simulation are not limited to the canonical ensemble. Mezei (1983) has
introduced a virial-bias volume move for simulations in the constant-NPT ensemble and
a similar technique can be used in an smc simulation (Mezei, 1983). Smc simulations have
also been used to simulate crystal growth from Lennard-Jones solutions (Huitema et al.,
1999) and polymer systems in the melt and lamellar microphases (Müller and Daoulas,
2008). More recently, Moucka et al. (2013) have compared various fb and smc algorithms
for the simulation of polarizable models of water and aqueous electrolytes.

9.3.4 Con�gurational-bias Monte Carlo

In the basic Metropolis method, an atom is moved to a new trial position by sampling the
space around its old position randomly and uniformly (see Fig. 4.2). However, it would be
more e�cient to move the atom to a point in the surrounding space where its potential
energy is large and negative, and the probability density of the trial con�guration is
correspondingly high. To accomplish this, we would need a probability map of the space
surrounding the atom in advance of the trial move. �is is precisely the technique used
in the cbmc method. A detailed probability map of the space surrounding the atom is
constructed and a trial move is made by sampling from this probability distribution (i.e.
biasing the move to positions of high probability). �e underlying stochastic matrix, αmn ,
is then known for the forward move. Since we also need the underlying stochastic matrix
αnm for the move back, a similar mapping strategy is applied in the direction from the
chosen trial state to the original atom position.

To describe the method in detail we will consider the mc simulation of a polymer
chain in a solvent. In Chapter 4 we described the use of a number of Monte Carlo methods
to study the properties of polymer melts and polymer solutions. �e problem with these
methods is that it is di�cult to move the polymer to a new trial position without creating
a signi�cant overlap with a solvent molecule or with another polymer chain. It might be
possible to place the �rst monomer in a chain at a new trial position of low energy by
randomly sampling the space around its current position, but by the time four or �ve
monomer beads have been added in this way the chance of a signi�cant overlap and a
rejection are very high.

One way to avoid this problem is to sample the space around a given bead in the
polymer chain in a biased way, so that one a�empts to add the next bead in a favourable
position of low energy and high probability (Siepmann and Frenkel, 1992). Cbmc requires
the creation of a map of the energy around a given monomer as the chain is grown and the



324 Advanced Monte Carlo methods

1

1

2

2

3

3

4

4

5

5

6

6

m

n

Fig. 9.4 A six-bead polymer on a square la�ice.m denotes the old chain and n the new one. �e
arrows point to candidate positions for bead 2. �e light-grey beads represent solvent atoms.

calculation of the so-called Rosenbluth weights, associated with this biasing (Rosenbluth
and Rosenbluth, 1955).

�is approach can be illustrated by considering a polymer (of say, six monomers) plus
a set of solvent beads, on a 2D periodic square la�ice, as shown in Fig. 9.4. Each site may
only be occupied by one bead (solvent or monomer), or can be vacant. For simplicity,
we assume nearest-neighbour interactions between solvent beads, between solvent and
monomer beads, and between monomer beads which are not directly bonded to each
other. Moves of the solvent atoms are handled by standard methods; here we consider
moves of the polymer chain. At the beginning of a trial move, the polymer in state m,
occupying positions rm1 · · · r

m
6 , is removed from the la�ice. To construct the new trial

position for the polymer, state n, we choose a random position, rn1 , for the �rst monomer.
�e weight of this monomer is de�ned as wn (1) = k exp(−βVn

1 (rn1 )) where k = 4 is the
coordination number of the la�ice and Vn

1 (rn1 ) is the interaction energy between this
monomer and solvent atoms on the la�ice. To place the second monomer, we consider
the four available la�ice points, surrounding rn1 , labelling them j = 1, . . . , 4 (arrowed in
Fig. 9.4). We calculate the potential energyVn

2 (rn2, j ) of monomer 2 at position j with the
solvent atoms on surrounding la�ice sites (excluding the intramolecular interaction with
monomer 1, because it is bonded to 2). From these energies we construct the probability
of placing the monomer at each point j:

ρ (rn2, j ) =
exp

(
−βVn

2 (rn2, j )
)

wn (2)
, where wn (2) =

k∑
j=1

exp
(
−βVn

2 (rn2, j )
)
; (9.58)

wn (2) is the Rosenbluth weight of monomer 2. We now select one of the four possible
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positions rn2, j by sampling randomly from the distribution of eqn (9.58); let rn2 denote the
chosen position and write the energy contribution asVn

2 (rn2 ). �e contribution of this
part of the move to the underlying stochastic matrix αmn is exp(−βVn

2 (rn2 ))/wn (2). We
continue to build the complete chain in this way for each of the six monomers i . Note
that k is e�ectively reduced from four to three for i > 2, since one of the neighbouring
positions (rni−1) is already occupied. In general, the potential-energy termVn

i (rni, j ) will
include interactions with non-bonded previously placed monomer beads (e.g. in Fig. 9.4,
monomer 5 interacts with monomer 2, and this term would appear inVn

5 (rn5 )), as well as
with solvent atoms. �e overall underlying matrix for the forward move is a product of
the probabilities for each stage (each of which is conditional on the result of the previous
one):

αmn =

6∏
i=1

exp
(
−βVn

i (rni )
)

wn (i )
=

exp
(
−β

∑6
i=1V

n
i (rni )

)
∏6

i=1 wn (i )
=

exp(−βVn )

Wn
(9.59)

whereWn is the overall Rosenbluth weight of the new con�guration

Wn =

6∏
i=1

wn (i ). (9.60)

Notice how, in eqn (9.59), the partial energiesVn
i (rni ) calculated at each stage sum up to

the total potential energyVn associated with the insertion of the chain: each contribution
(monomer–solvent and monomer–monomer) is counted once, as it should be. At any
stage in the process, one of the candidate positions may coincide with a solvent bead, or
an already-placed monomer bead (e.g. two of the four candidates for rn2 in Fig. 9.4 are
already occupied): in this case, the potential energy would be in�nite and the contribution
to the Rosenbluth weight would be zero. In the event that all of the candidate sites are
occupied, the Rosenbluth weight for that stage will be zero, and the whole move can be
rejected without any further calculation.

�e stochastic matrix for the reverse move αnm can be constructed by considering the
Rosenbluth weights for the conformation of the chain in statem. �e procedure is similar
to the one just outlined, with the simplifying feature that the actual monomer positions
rmi are already known, and there is no need to select them from a distribution such as
(9.58). We �rst calculate the weight wm (1) = k exp(−βVm

1 (rm1 )) for the �rst monomer
in its original position. In the next step we determine the energy of monomer 2 in its
original position rm2 and at the other three positions rm2, j , j = 1, . . . ,k − 1 at which it could
have been placed around monomer 1, if we were actually conducting the reverse move.
�e Rosenbluth weight is

wm (2) = exp
(
−βVm

2 (rm2 )
)
+

k−1∑
j=1

exp
(
−βVm

2 (rm2, j )
)
. (9.61)

As before, Vm
2 contains only interactions between the monomer and nearby solvent

beads. �e process is continued for each monomer i in sequence: the Rosenbluth weight
is calculated from the actual position rmi and the k − 1 other positions rmi, j surrounding
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monomer i − 1 which might have been selected in a reverse move, and in generalVm
i will

include interactions between monomer i and previously placed non-bonded monomers
(with indices < i), as well as solvent. A�er the whole chain m has been retraced, the
stochastic matrix for the reverse move may be wri�en

αnm =
6∏
i=1

exp
(
−βVm

i (rmi )
)

wm (i )
=

exp
(
−β

∑6
i=1V

n
i (rmi )

)
∏6

i=1 wm (i )
=

exp(−βVm )

Wm
(9.62)

where

Wm =

6∏
i=1

wm (i ). (9.63)

Microscopic reversibility in the con�gurational-bias algorithm is achieved if we select
trial states with a probability given by

min
(
1, αnmρn
αmnρm

)
= min

(
1, Wn

Wm

)
(9.64)

where we have substituted eqns (9.59) and (9.62) for αmn and αnm . �us, in cbmc, all of
the con�gurational weighting is included in the underlying matrix used to create the trial
moves.

�e extension of this method to o�-la�ice �uids can be illustrated by considering a
chain of Lennard-Jones atoms joined by harmonic springs

v
s (d ) = 1

2κ (d − deq)
2

where d is the distance between successive atoms, deq is the equilibrium bond length and
κ is the spring constant. In this example the spring is the only intramolecular bonding
potential in the problem; there are no bond bending or dihedral potentials controlling the
conformation of the chain. Lennard-Jones interactions exist between non-bonded atoms
in the chain, as well as between monomers and surrounding solvent atoms.

�e method is essentially the same as that applied to the la�ice problem with two
additional considerations. First, we can no longer calculate the Rosenbluth weights of
the growing chain exactly (since we do not have a �nite number of la�ice directions).
In this case we can choose k random locations for each monomer (where k is typically
30–50) to sample the energy landscape around the growing chain. One can show, formally,
that the convergence of the Markov chain to its correct limiting probability is una�ected
by the choice of k . Second, the intramolecular potentials need to be included. �is can
be achieved by sampling the bond vectors directly as the new chain is constructed. For
example, the possible k positions for atom 2 are

rn2, j = rn1 + djej , j = 1 . . .k, (9.65)

where the bond length dj is chosen from the distribution d2 exp[−βvs (d )] (the factor d2

comes from the volume element in spherical coordinates) and its direction ej is chosen
randomly on the unit sphere (see E.3 and E.4 for details). �e additivity of the spring
and Lennard-Jones potentials means that the corresponding probabilities can be simply
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multiplied, that is, in constructing αmn , the Boltzmann factor exp[−βvs (d )] has already
been implicitly included through this sampling method.

�e general procedure is exactly as for the la�ice model. �e �rst step in a trial move
of the polymer from state m to n is to remove the chain in state m and to randomly place
the �rst bead of the new chain at the trial position rn1 . �e corresponding Rosenbluth
weight is wn (1) = k exp[−βVn

1 (rn1 )], whereVn
1 consists of Lennard-Jones interactions

of the monomer with solvent atoms. �e next step is to select k candidate positions for
atom 2, as described earlier. �e corresponding potential energiesVn

2 (rn2, j ) again consist
just of Lennard-Jones interactions with the solvent; the intramolecular spring potential is
not included, as just explained. �ese k potential-energy values are used to construct a
Rosenbluth weight, and to select one of the k positions from a probability distribution,
de�ned by eqn (9.58); this position becomes rn2 . �is procedure is repeated to build the
trial positions for successive atoms in the chain. Note that, as the chain grows, it will
be necessary to include the Lennard-Jones interaction of the trial chain atom i with the
non-bonded atoms in the same chain that have already been placed, as well as with the
solvent atoms. Once the entire chain has been constructed, the Rosenbluth factor,Wn , is
calculated from an equation like (9.60).

�e Rosenbluth weight of the old state, m, is calculated in a similar manner to the
la�ice case. First, wm (1) = k exp[−βVm

1 (rm1 )] is calculated. �en, for atom 2, the original
position, rm2 , supplemented by (k − 1) further positions rm2, j around rm1 , chosen by the
random sampling method just described, are used to calculate the Rosenbluth weight
wm (2) through eqn (9.61). �is procedure continues until the whole length of the old
chain has been retraced. At each stage, just as for the forward move, Lennard-Jones
interactions of each monomer rmi or rmi, j , j = 1 . . .k − 1 with solvent atoms, as well as with
previously considered monomers rmi′ whose index is i ′ < i , are included in the potential
energies used to calculate wm (i ), but the spring potentials are omi�ed, since they are
used implicitly in the sampling of positions. �e overall Rosenbluth weight for statem is
given by an equation like (9.63). �e trial state n is accepted with a probability given by
min(1,Wn/Wm ) as before. An example of this kind of calculation is given in Code 9.2.

�e method has been described for a simulation of one polymer chain in a solvent
of atoms but can be straightforwardly extended to a �uid of chains (a polymer melt).
In this case, one of the polymers in the old statem is selected at random and moved in
the way just described. As always, if the move is rejected, the trial polymer is removed,
the polymer in the old con�guration is restored, and the old statem is recounted in the
Markov chain.

�e method can be readily extended to more realistic polymer potentials, where the
chain is described by not only bond-stretching potentials, but also bond-angle potentials,
v

bend (θ ), and torsional potentials, vtorsion (ϕ). Here θ is the angle between adjacent bonds
and ϕ is the dihedral angle describing the relative orientation of four adjacent monomers
(see Appendix C.2). In many cases, it is still possible to include these extra terms directly
in the sampling of monomer positions, and hence avoid incorporating them explicitly
in the Rosenbluth weights. �e extra v

bend (θ ) terms may arise, when choosing rni, j a�er
rni−1 and rni−2 since θ is de�ned in terms of those positions; similarly a v

torsion (ϕ) term may
involve rni, j and the positions of the three preceding monomers. �e angle θ is sampled
from the distribution sinθ exp[−βvbend (θ )] (again, the factor sinθ comes from the volume
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Code 9.2 Con�guration-biased simulation of chain molecule
�is �le is provided online. mc_chain_nvt_cbmc_lj.f90 carries out a cbmc simulation
of a single Lennard-Jones chain, illustrating the calculation of Rosenbluth weights
from the non-bonded interactions. �e program also illustrates the direct sampling
of intramolecular bond lengths, dictated by a harmonic spring potential. Routines
to calculate energies and carry out moves are contained in mc_chain_lj_module.f90
and, as usual, the utility modules described in Appendix A handle various func-
tions. �e program initialize.f90 (Code 5.6) may be employed to prepare initial
con�gurations.

! mc_chain_nvt_cbmc_lj.f90
! Monte Carlo , single chain , NVT , CBMC
PROGRAM mc_chain_nvt_cbmc_lj

! mc_chain_lj_module.f90
! Monte Carlo , single chain , LJ atoms
MODULE mc_module

element in polar coordinates) and ϕ from the distribution exp[−βvtorsion (ϕ)]. �en, the
unit vector ei in eqn (9.65) is expressed in terms of θ , ϕ, and the positions of the preceding
monomers.

Cbmc has now been widely applied in the simulation of polymer solutions and melts.
It has been used to model �uids of normal alkanes with as many as 70 carbon atoms (de
Pablo et al., 1993) and biologically important systems of linear and cyclic peptides (Deem
and Bader, 1996). �e method has also been used to make trial insertions of polymer
chains into �uids in grand canonical simulations and it provides a route to the free energy
in such systems. Using this approach, Smit (1995) has used constant-µ,V ,T simulations
to calculate the adsorption isotherms of butane and hexane in the zeolite silicate.

Cbmc can be extended to study branched polymer systems (Dijkstra, 1997). For a
simple twofold branch (e.g. 3 goes to 4 and 4′) it is necessary to generate two random
vectors (r34 and r34′ ) on the surface of a sphere with probabilities proportional to the
Boltzmann factors associated with all of the angle potentials vbend (θ234), vbend (θ234′ ), and
v

bend (θ434′ ). More complicated branching geometries have been successfully tackled using
a two-stage biased insertion scheme (Martin and Siepmann, 1999).

Cbmc can be combined with some of the other techniques discussed later in this
chapter for the e�cient calculation of the phase diagrams of polymer-containing systems.
For example, cbmc has been used with the Gibbs ensemble Monte Carlo method to model
the selective adsorption of linear and branched alkanes from methanol onto a carbon slit
pore (Bai and Siepmann, 2013), and Maerzke et al. (2012) have combined cbmc with the
Wang–Landau algorithm to simulate the density of states of complex chemical systems.

Finally, apart from the obvious advantages when modelling polymer systems, cbmc
can be used to good e�ect for any systems where there is a strong association of the
monomers. Recently, McGrath et al. (2010) have used the technique to perform �rst
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Fig. 9.5 A concerted rotation driven by a change in the driver angle ϕ0. �e light-grey beads,
atoms 1′, 2′, 3′ and 4′, move during the rotation.

principles Monte Carlo calculations of clusters of ten HF molecules. In this case, cbmc is
used to increase the sampling e�ciency of the cluster formation and destruction.

9.3.5 Concerted rotations

�eodorou (2010) and his co-workers have developed a series of new moves for the
equilibration of dense polymer systems. Unlike the cbmc method, which works from the
end of the polymer by threading segments through the surrounding dense phase, the
concerted rotation algorithms use trial moves that rearrange the conformation of interior
segments.

�e simplest form of concerted rotation algorithm (Dodd et al., 1993) involves changing
seven consecutive torsional angles in the chain. In the example shown in Fig. 9.5, the
concerted rotation begins by changing the driver angle ϕ0 by some randomly chosen
amount between −π and +π. �e six torsions {ϕ1 . . .ϕ6} will change so that r5 (the
position of atom 5), e6 (the unit vector along bond 5), and γ6 (the third Euler angle of the
triad 5, 6, 7 in the space-�xed frame), remain unchanged. Atoms 1, 2, 3, and 4 will move,
while all other atoms in the chain are �xed. We consider the case when the bond lengths
di and bond angles θi are constrained, noting that this condition can be readily relaxed.

�is geometrical problem is solved in the frame of bond 1 a�er the change in the angle
ϕ0 has been applied. In that frame the constraining equations are

r(1)5 = d1 + T1
(
d2 + T2

(
d3 + T3 (d4 + T4d5)

))
(9.66)

and
e(1)6 = T1T2T3T4T5e1 (9.67)

where r(1)5 and e(1)6 are the column vector representations of the position of atom 5 and
the unit bond vector of bond 6 in the frame of bond 1. di = (di , 0, 0)T = die1 where
e1 = (1, 0, 0)T and the superscript T denotes the transpose. �e matrix Ti transforms a
vector in the frame of reference of bond i + 1 into its representation in the frame of bond
i:

Ti =


cosθi sinθi 0
sinθi cosϕi − cosθi cosϕi sinϕi
sinθi sinϕi − cosθi sinϕi − cosϕi


(9.68)
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where θi is the bond angle with apex at atom i . Equation (9.67) can be expressed as an
algebraic equation in the four unknowns {ϕ1,ϕ2,ϕ3,ϕ4}

[e(1)6 ]TT1T2T3T4 − cosθ5 = 0. (9.69)

Note that γ6, which is a constraint of the geometrical problem, does not explicitly appear
in this solution. �e three equations, eqn (9.66), can be used to express ϕ2, ϕ3, and ϕ4
in terms of ϕ1, and we can rewrite eqn (9.69) as a non-linear equation in ϕ1 and the
constraints

f (ϕ1;ϕ0, r5, e6,γ6) = 0. (9.70)
Once ϕ1 . . .ϕ4 are determined, ϕ5 can be extracted from the y and z components of
eqn (9.66). ϕ6 follows from simple geometrical considerations. �us, eqns (9.66) and (9.69)
for a �xed ϕ0 can produce many solutions {ϕ1 . . .ϕ6} which enable the chain to rejoin
the main skeleton at atom 5. �ese solutions are the possible concerted rotations for a
particular ϕ0.

Although this sounds straightforward, the actual solution of eqns (9.66) and (9.69) is a
tour de force of numerical analysis. Equation (9.66) has two possible values ofϕ2 for a given
ϕ1 and two possible values of ϕ4 for a given ϕ2, so that eqn (9.69) has four branches. For
each branch, eqn (9.69) may not exist, may have no real solutions, or may have multiple
real solutions. Every solution along each branch has to be identi�ed, so that intervals
have to be searched exhaustively using a weighted bisection method. �e full details are
provided in Dodd et al. (1993, Appendix B). Finally, we note, that our description applies
to concerted rotations in the middle of the chain and a slightly di�erent algorithm applies
to rotations where the driver angle is closer than eight skeletal bonds from the chain ends,
in which case we would need a concerted rotation involving fewer torsional angles (Dodd
et al., 1993).

�is solution of the concerted rotation problem involves a change from the torsional
angles, {ϕ1 . . .ϕ6} to the positional and orientational variables, r5, e

(1)
6 ,γ6, involved in the

constraint. �e Jacobian for the transformation, J , is given by

J =
�����

1
det(B)

�����
(9.71)

where B is the 5 × 5 matrix

B = *.
,

(e1 × r51) (e2 × r52) (e3 × r53) (e4 × r54) 0
(e1 × e6)x (e2 × e6)x (e3 × e6)x (e4 × e6)x (e5 × e6)x
(e1 × e6)y (e2 × e6)y (e3 × e6)y (e4 × e6)y (e5 × e6)y

+/
-

(9.72)

and ri j = ri − rj and 0 = (0, 0, 0)T. At the end of the trial move the {ϕ1 . . .ϕ6} values are
used to calculate {r1 . . . r4} and hence det(B). If the �nal two rows of eqn (9.72) are linearly
dependent, the z component is used in place of the x or y component. Incorporating the
Jacobian in the mc move is essential to guarantee microscopic reversibility.

To perform a move, a torsional angle is chosen randomly to be ϕ0, from all of the
chains in the liquid, and a propagation direction for the concerted rotation, towards one
end of the chain or the other, is chosen randomly. For simplicity, we only consider the
case that ϕ0 is far from the ends; other cases are considered in detail in Dodd et al. (1993).
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(1) Randomly select a δϕ0 on (−δϕmax
0 ,+δϕmax

0 ) and calculate the trial value of the driver
angle ϕn0 = ϕm0 + δϕ0.

(2) Find all the ϕ1 on −π to π such that f (ϕ1;ϕn0 , r5, e6,γ6) = 0.
(a) If f does not exist or has no real solution, then reject the a�empted move.
(b) Otherwise note the number of real roots, Nn , found and uniformly select one of

these roots to be the trial state {ϕn0 ,ϕn1 , . . . ,ϕn6 }.
(3) Calculate the Jacobians of the trial state, Jn and the original state Jm using eqns (9.71)

and (9.72).
(4) Find all the solutions for the reverse concerted rotation, f (ϕ1;ϕm0 , r5, e6,γ6) = 0. One

of these roots will be ϕm1 . Note the number of roots, Nm , produced by the reverse
move.

(5) Calculate the change in potential energy, δVnm , including all interactions within
the polymer and with other surrounding polymers.

(6) Accept the trial move with a probability given by

min
[
1, Nm Jn
Nn Jm

exp(−βδVnm )

]
. (9.73)

�e acceptance criterion is based on eqn (9.37) with the ratio of underlying stochastic
matrix elements αnm/αmn = Nm/Nn , and with the Jacobians taken into account.

�e concerted rotation algorithm has been included in the set of moves used by the
mc module of the charmm package (Hu et al., 2006) and in the mcccs towhee package
(Martin, 2013). It is also used in the mcpro package to generate trial moves for protein
backbones (Jorgensen and Tirado-Rives, 2005; Ulmschneider and Jorgensen, 2003).

A number of extensions of the original concerted rotation method have been developed.
�e intramolecular double rebridging (idr) (Pant and �eodorou, 1995) is initiated by
selecting, at random, an internal trimer in the polymer; for example the three beads
behind bead i , connecting it to j , as shown in Fig. 9.6(a). �is trimer is removed. A second
trimer, the three beads behind k , connecting it to `, is also excised. Beads i–k and j–` are
now joined with trimers constructed using the nine geometrical constraints that are in
play for each trimer. �ere may be many di�erent ways of achieving this rebridging. If j
and k are separated by at least three beads, a second rearrangement can be considered by
excising the three beads ahead of i and k and reconstructing the chain as before. Each
possible rebridging in the forward and backward move needs to be identi�ed and the
corresponding Jacobians calculated for the particular move that is chosen. �e move is
accepted with a probability given by eqn (9.73). Double rebridging can also be used for
two trimers in di�erent molecules (Karayiannis et al., 2002).

�e end-bridging algorithm (Mavrantzas et al., 1999) randomly identi�es a trimer
within the �rst polymer, for example the three atoms between i and j in Fig. 9.6(b). �e
algorithm uses a list of polymer ends such as k that are within the all-trans bridging
distance 4d cos(θ0/2) of j , where d is the carbon–carbon bond length and θ0 is the equilib-
rium bond angle. One of these polymer ends is chosen at random and a trimer is inserted
between j and k , subject to the normal constraints, to create a new polymer. In this
method a polydisperse mixture of polymers of di�erent lengths is being created and these
simulations should be conducted in the semi-grand ensemble at a �xed chemical potential
di�erence between the components (Peristeras et al., 2007).
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Fig. 9.6 Further concerted rotation moves. (a) �e idr move, in which the triplets between beads i
and j and between k and ` are exchanged using a concerted-rotation algorithm. (b) �e eb move, in
which the triplet between beads i and j is extracted from one polymer and a�ached to the k end of
a second polymer to create new polymers of di�erent lengths.

Ulmschneider and Jorgensen (2004) have extended the concerted rotation algorithm.
�e use of a single driver angle to initiate the concerted rotation has been extended to
allow the modi�cation of many bond lengths, bond angles and torsional angles in the
moving section of the chain (the open chain). �is pre-rotation phase of the move is
followed by an examination of the di�erent ways of linking the open chain back to the
�xed chain; this is the post-rotation part of the move. Bo�aro et al. (2012) have shown that
it is possible to make choices in the pre-rotation part of the move by selecting changes
in the degrees of freedom from a correlated Gaussian distribution and that in this case
the post-rotation, or chain relinking, can be solved analytically. Zamuner et al. (2015)
have extended these ideas by considering the manifold of all the chain states compatible
with the �xed portion of the chain. �e chain is opened in the pre-rotation phase in the
space that is tangent to the manifold and then closed in the orthogonal space using a
root-�nding algorithm. �is method neatly avoids the explicit calculation of the Jacobians
of the forward and backward moves. �e reader is referred to the original papers for
details of these re�nements.
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9.4 Simulation of phase equilibria
9.4.1 Gibbs ensemble Monte Carlo

�e Gibbs ensemble Monte Carlo method (Panagiotopoulos, 1987) allows for the direct
simulation of two coexisting �uid phases, for example a liquid and a gas. �e method uses
two independent, periodic, simulation boxes at the same temperature: we can imagine
box I to be deep in the coexisting liquid phase and box II to be deep in the coexisting
gas phase. Box I contains N I atoms in volume V I and box II contains N II in a volume
V II. Each box is surrounded by periodic images in three dimensions and there are no
real interfaces in this method. �e combined boxes form a representative system from a
canonical ensemble at constant N = N I +N II, constantV = V I +V II and constantT (Smit
et al., 1989). Since the two boxes are at equilibrium, then P I = P II = P and µI = µII = µ,
and the algorithm is designed to ensure that this is the case.

�e simulation proceeds with three di�erent types of move: an atom displacement; a
volume rearrangement; and an atom exchange. For an atom-displacement move, a cycle
of trial displacements is a�empted in box I using the normal Metropolis criterion for
accepting or rejecting such moves (see Section 4.5). A corresponding cycle of moves is
a�empted in box II.

For a volume rearrangement, equal and opposite changes in the volume are made in
boxes I and II at the same overall pressure. For a trial a�empted volume change, δV in
box I, the ratio of the probabilities for the old and new state is (eqn (4.33))(

ρn
ρm

)
I
= exp

[
−βδV I

nm − βPδV + N
I ln(V I + δV ) − N I lnV I

]
. (9.74a)

At the same time, a corresponding volume change of −δV is made in box II(
ρn
ρm

)
II
= exp

[
−βδV II

nm + βPδV + N
II ln(V II − δV ) − N II lnV II

]
. (9.74b)

�e ratio of probabilities for the combined moves in the two independent boxes is obtained
by multiplying these ratios together(

ρn
ρm

)
vol
= exp

[
− β

(
δV I

nm + δV
II
nm

)
+ N I ln

(
1 + δV

V I

)
+ N II ln

(
1 − δV

V II

)]
. (9.75)

�e combined volume move is accepted with probability min[1, (ρn/ρm )vol]. Note that
the unknown coexistence pressure, P , is not required for the acceptance test.

For an atom exchange move, one of the two boxes is chosen with equal probability,
say box I. �e �rst part of the trial move consists of creating an atom in box I at a constant
chemical potential µ. �e ratio of the probabilities of the new and old states is (eqn (4.41))(

ρn
ρm

)
I
= exp

[
− βδV I

nm + ln
(

zV I

N I + 1

)]
. (9.76a)

At the same time, a corresponding trial atom destruction is made in box II(
ρn
ρm

)
II
= exp

[
− βδV II

nm + ln
(
N II

zV II

)]
. (9.76b)
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Code 9.3 Gibbs ensemble simulation
�is �le is provided online. �e program mc_gibbs_lj.f90 controls the simulation,
reads in the run parameters, selects moves, and writes out the results. It uses the
routines in mc_gibbs_lj_module.f90 and the utility routines of Appendix A. �e
program initialize.f90 (Code 5.6) may be employed to generate a pair of initial
con�gurations.

! mc_gibbs_lj.f90
! Monte Carlo , Gibbs ensemble
PROGRAM mc_gibbs_lj

! mc_gibbs_lj_module.f90
! Energy and move routines for Gibbs MC, LJ potential
MODULE mc_module

�e ratio of probabilities for the combined exchange move is the product of these(
ρn
ρm

)
ex
= exp

[
− β

(
δV I

nm + δV
II
nm

)
+ ln

(
V IN II

V II (N I + 1)

)]
. (9.77)

�e combined exchange move is accepted with probability min[1, (ρn/ρm )ex]. Note that
the unknown coexistence chemical potential, µ, is not required for the acceptance test.
An example Gibbs ensemble simulation program is given in Code 9.3.

During the course of a simulation using the Gibbs method, the number of atoms in
each box and the volume of each box will evolve until the individual boxes reach the
coexisting densities, ρ` and ρg, at the speci�ed temperature. �is evolution should be
monitored by plo�ing the individual density of each box as a function of the number of
mc cycles. Individual simulations, at di�erent temperatures, will provide pairs of densities
along the binodal or coexistence curve. It is straightforward to check that equilibrium has
been achieved by calculating the virial pressure and chemical potential directly in each
box and making sure that they are equivalent. In the Gibbs method, the appropriate form
of the Widom particle insertion equation for the total chemical potential in box I is

µI = −kBT ln 1
Λ3

〈(
V I

N I + 1

)
exp(−βV I

test)

〉
I

(9.78)

whereV I
test is the potential energy of inserting a ghost particle into box I.

�e method will only work at temperatures below the critical temperature of the
model �uid. As this critical temperature is approached from below, the method becomes
less reliable. As ρ` approaches ρg, the identity of the two boxes will change frequently
during the course of the simulation and it may be impossible to identify a ‘liquid’ and a
‘gas’ box. �is problem will be evident in the plot of densities as a function of the number
of cycles. Although it is not possible to use the Gibbs method up to the critical point, it is
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possible to use the results of simulations belowTc to obtain a �rst estimate ofTc by ��ing
the data to the law of rectilinear diameters

ρ` + ρg

2 = ρc +A
���T −Tc

��� (9.79)

and the scaling law
ρ` − ρg = B ���T −Tc

���
β
. (9.80)

A and B are constants and here β is the scaling exponent (β = 0.32 in three dimensions
and β = 0.125 in two dimensions).

One of the strengths of the Gibbs method is that it is easily extended to mixtures
(Panagiotopoulos et al., 1988). �e only important new consideration is in the atom
exchange move. NI and NII in eqn (9.77) now refer to the number of atoms of one particular
species in boxes I and II respectively. �ere may be a number of distinct species in both
boxes. For the condition of microscopic reversibility to hold there are two steps:
(a) choose either box for the trial creation with equal probability;
(b) select, with a �xed (but otherwise arbitrary) probability, which of the species is to

be interchanged.
We note that during the simulation, one of the regions can empty of atoms of one or
more species. �is is likely to happen if the species are present in low concentrations at
coexistence. �e simulation can continue in the normal way under these circumstances.
When a box is empty, an a�empt to transfer an atom from that box is immediately rejected.

For mixtures, the Gibbs method can be performed with the total system in the constant-
NPT ensemble. Equation (9.75) is modi�ed to allow for independent and di�erent volume
moves in boxes I and II. In this case, the two independent volume changes can occur
simultaneously, but faster convergence is achieved by changing the volume of only one
region at a time (using eqn (4.33)). Of course, if we a�empted this kind of simulation on
a single component system we would end up with both boxes in a liquid phase or gas
phase, depending on whether the imposed value of the pressure, P , was above or below
the actual coexistence pressure. �e Gibbs method can be readily extended to osmotic
equilibria (Panagiotopoulos et al., 1988). In this case, the two regions are imagined to
be separated by a semipermeable membrane which restricts the exchange of certain
species but allows the exchange of the membrane-permeable species. Only atoms of the
la�er species are interchanged between the boxes. �e volume rearrangement criterion
is modi�ed to take into account the osmotic pressure di�erence imposed across the
membrane, Π = P I − P II. �e volume rearrangement move is accepted with a probability
given by min[1, (ρn/ρm )osm] where(

ρn
ρm

)
osm
= exp

[
−β (δV I

nm+δV
II
nm )+N I ln

(
1+ δV

V I

)
+N II ln

(
1− δV

V II

)
−βΠ δV

]
. (9.81)

A check of the validity of this method is to compare the applied osmotic pressure, Π, with
the calculated average pressure di�erence between the two boxes.

�e Gibbs ensemble method can be used to consider the vapour–liquid equilibria of
simple molecular �uids (Stapleton et al., 1989), and extended to more complicated binary
molecular mixtures (de Pablo et al., 1992; Do et al., 2010). With the addition of cbmc,
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the method can be used to predict the phase equilibria of �uids containing long-chain
hydrocarbons (Bai and Siepmann, 2013). Vorholz et al. (2004) have used it to study the
solubility of carbon dioxide in aqueous solutions of sodium chloride where the so-called
salting-out e�ect, the reduction in the solubility of CO2 on addition of the ions, is predicted
by the simulation. �e method can also be used to consider the equilibria of quantum
�uids such as neon using quantum wave packet methods where a Lennard-Jones potential
(ϵ/kB = 35.68 K, σ = 2.761 Å) with quantum parameter ~/(σ

√
mϵ ) = 0.0940 gives a good

�t to the experimental liquid–vapour curve (Georgescu et al., 2013). Finally the method
can be extended to study multiphase equilibria by increasing the number of boxes that
are used concurrently in the simulation (Lopes and Tildesley, 1997).

9.4.2 �e Gibbs–Duhem method

Once a single point (P ,T ) on the coexistence curve has been accurately established, it is
possible to use the Gibbs–Duhem integration method (Ko�e, 1993a,b) to calculate other
points at coexistence. �e method starts from the Clapeyron equation (itself derived from
the Gibbs–Duhem equation)(

d ln P

dβ

)
σ
= −

∆H

βP∆V
= f (β, P ), (9.82)

where the derivative is taken along the coexistence line. ∆H = Hα −Hβ is the enthalpy
di�erence between the two coexisting phases α and β , and ∆V is the corresponding
volume di�erence (both are extensive quantities). Equation (9.82) is a smooth, �rst-order
di�erential equation where the right-hand side, f , depends on both the independent and
dependent variables.

�is equation can be solved using a predictor–corrector method (Press et al., 2007,
section 17.6) which requires a number of e�cient evaluations of f . �e Gibbs–Duhem
method uses two independent simulations of the coexisting phases to estimate f (β, P ) at
each step of the process. �e two coexisting phases must be simulated by constant-NPT
mc (see Section 4.5) or md (Section 3.9). �e strength of the method is that it avoids any
a�empted particle insertions, and can therefore be used to model solid–liquid coexistence,
where the grand canonical and Gibbs Monte Carlo methods would fail.

Consider the vapour–liquid equilibrium of a single-component Lennard-Jones �uid.
We require a starting point on the coexistence curve, (β0, P0). �is could come, for example,
from a Gibbs simulation or by thermodynamic integration to calculate the free energy.
Once this point is established we have a �rst estimate of f (β0, P0) = f0. We can now
a�empt to move up or down the coexistence curve by a small interval of inverse tempera-
ture, δβ . Using the simplest trapezoidal predictor, we can estimate the coexisting pressure
at β1 = β0 + δβ ,

ln P1 = ln P0 + δβ f0. (9.83)

�e two separate simulations of the gas and liquid phase can now be performed at (β1, P1)
and from the new estimates of ∆H and ∆V we calculate f1. �ese can now be used in the
corresponding corrector formula to obtain a be�er estimate of P1

ln P1 = ln P0 +
δβ

2
(
f1 + f0

)
. (9.84)
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A short run is now performed at the new P1 (le� side of eqn (9.84)) to obtain a be�er
estimate of f1. �is cycle is repeated until the corrector step has converged and the �nal
(β1, P1) is the new point on the coexistence curve.

Simulations of this type can be continued along any coexistence curve in small steps
of β . Once we have determined two points on the curve, f0 and f1, it is possible to use the
more accurate mid-point predictor–corrector scheme and when three points are known,
we can employ the Adams predictor–corrector (Press et al., 2007).

One immediate question is why, or whether, the method is thermodynamically stable.
At various points, we will be simulating two boxes at a value of (T , P ) that is not exactly
on the coexistence curve. Consequently, one of the two phases will be unstable with
respect to the other. �ere is a possibility that the gas phase will condense or the liquid
phase evaporate. �is not likely to happen at low temperatures where the free-energy
barrier between the phases is large. �e signi�cant metastable range of the two phases
saves the day. However, as we approach the critical point in a liquid–gas equilibrium
this unwanted phase change can occur and the method will cease to converge. Ko�e
(1993a) demonstrates that this problem can be mitigated by coupling the volume changes
in the two simulation boxes. �is introduces a Jacobian into the coupled partition function
which modi�es the Hamiltonian and the sampling distribution.

�e Gibbs–Duhem method, although originally applied to the coexistence line in the
(P ,T ) projection of the phase diagram for a single-component �uid, can be extended to
other projections for liquid mixtures. �e Clapeyron-like equations for the liquid-vapour
coexistence of binary mixtures (for use in the semi-grand ensemble) are(

∂β

∂ξ2

)
σ ,P
=

∆x2
ξ2 (1 − ξ2)∆h(

∂ ln P

∂ξ2

)
σ ,β
=

∆x2
ξ2 (1 − ξ2) (Z` − Zg)

(9.85)

where ∆h = ∆H/N is the di�erence in enthalpy per particle between liquid and gas, ξ2 is
the fugacity fraction (ξ2 = f2/( f1 + f2) where fi = exp[β (µi − µ−◦i )] is the fugacity of com-
ponent i), ∆x2 = x2, ` − x2,g (x2 is the mole fraction of component 2 in a coexisting phase),
and Z = PV /NkBT is the compressibility factor in each coexisting phase. Equation (9.85)
determines how the temperature and pressure change with fugacity fraction along the
coexistence curve. Mehta and Ko�e (1994) have calculated pressure–composition projec-
tions of the mixture phase diagram using Gibbs–Duhem integration. Simulations of the
two coexisting phases are accomplished using either a semi-grand approach in which
molecules a�empt to change their species identity, keeping the total number of molecules
�xed, or an osmotic approach involving insertions or deletions of one of the species, while
the number of molecules of the other species remain �xed. (Note, the Clapeyron-like
equations for the osmotic approach are given in terms of f2 rather than ξ2 (Mehta and
Ko�e, 1994).) Galbraith and Hall (2007) have used the Gibbs–Duhem method to study
the solid–liquid coexistence of CO2, C2H6, and F2 mixtures modelled using the diatomic
Lennard-Jones potential. Moucka et al. (2013) have used the method to model aqueous
NaCl solutions at ambient conditions, using the standard simple point charge/extended
(spc/e) force �eld for water and the Joung–Cheatham force �eld for the electrolyte. �e
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water chemical potential is calculated using the osmotic ensemble Monte Carlo algorithm
by varying the number of water molecules at a constant amount of solute.

�e method can be readily extended to consider phase equilibria for polydisperse
�uids. For example, in a �uid of polydisperse hard-spheres, the pressure and activity
distribution in both the solid and liquid phases are equal. �e activity ratio (or fugacity
ratio) distribution

f (σ )

f (σ0)
= exp

[
β
(
µ (σ ) − µ (σ0)

)]
= exp

[
β∆µ (σ )

]

is related to the chemical potential di�erence relative to a particular diameter σ = σ0.
Bolhuis and Ko�e (1996) have modelled f (σ ) as a Gaussian distribution peaked at σ0
with variance ν . In this case, the Gibbs–Duhem method traces the locus of the solid–liquid
transition in the (P ,ν ) plane. Monte Carlo simulations are performed in the isobaric
semi-grand ensemble. �e appropriate Gibbs–Duhem-like equation is

dP
dν =

∆m2
2ν2β∆v

, (9.86)

where m2 is the second moment of the size distribution of the hard spheres (measured
with respect to the origin,m1 = 0), v is the volume per hard sphere, and ∆ indicates the
di�erence between the coexisting phases. Integration of eqn (9.86) from the monodisperse
limit (ν → 0) is used to trace the coexistence pressure as a function of the variance of the
imposed activity distribution. A ‘terminal’ polydispersity is observed above which there
can be no �uid–solid coexistence. It is possible to extend this technique to use a more
general form of the activity distribution (Ko�e and Bolhuis, 1999).

9.5 Reactive Monte Carlo
A Monte Carlo simulation technique for modelling chemical reactions at equilibrium was
developed independently by Smith and Triska (1994) and Johnson et al. (1994). Reactive
canonical Monte Carlo (also known as the reaction ensemble method) considers a general
chemical reaction

C∑
i=1

νiAi = 0 (9.87)

where Ai is the chemical symbol for species i and νi is its stochiometric coe�cient
(positive for products, negative for reactants, and zero for species that do not change in
the reaction). �e sum is over all of the C species. For a chemical reaction at equilibrium,
the chemical potentials satisfy

C∑
i=1

νiµi = 0. (9.88)

Consider a state of the system m before the chemical reaction occurs. Using the
approximation of separable molecular internal degrees of freedom (Münster, 1969; Gray
and Gubbins, 1984), the probability of �nding the system in statem is

ρm =
1

QµVT
exp

[ C∑
i=1

(
βNiµi − ln(Ni !) + Ni lnqi

)
− βVm

]
, (9.89)
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where Ni is the number of molecules of species i , qi is the partition function for an
isolated molecule of species i , andVm is the intermolecular potential energy for all of the
molecules in the con�gurational state m. Generally, qi = qt,iqr,iqv,iqel,i , is the product of
the translational, rotational, vibrational, and electronic contributions to the single molecule
partition function andVm is assumed to be independent of the internal quantum state
of the molecule. For a single-component �uid containing N atoms, eqn (9.89) reduces to
eqn (4.39). A single reaction proceeds in the forward direction to a new state n, changing
the number of molecules of each species by νi . �e probability of the new state is

ρn =
1

QµVT
exp

[ C∑
i=1

(
β (Ni + νi )µi − ln[(Ni + νi )!] + (Ni + νi ) lnqi

)
− βVn

]
. (9.90)

�e ratio of the probabilities for the single reaction is

ρn
ρm
= exp(−βδVnm )

( C∏
i=1

qνii

) ( C∏
i=1

Ni !
(Ni + νi )!

)
(9.91)

where we have used eqn (9.88) to eliminate the chemical potentials. �e partition functions
for the isolated molecules can be calculated from �rst principles. �ey can also be expressed
in terms of the ideal gas equilibrium constant (Hill, 1956)

C∏
i=1

qνii = Kid (T )
C∏
i=1

(βp−◦V )νi = Kid (T ) (βp
−◦V )ν̄ (9.92)

where p−◦ is the standard state pressure and ν̄ is the sum of the stochiometric coe�cients.
In this way eqn (9.91) can be wri�en as

ρn
ρm
= exp(−βδVnm ) (βp−◦V )ν̄ exp(−∆G−◦/RT )

C∏
i=1

Ni !
(Ni + νi )!

(9.93)

where ∆G−◦ is the standard molar Gibbs free energy of the reaction, which can be estimated
from thermodynamic tables, and R is the gas constant.

�e ratio of the probabilities for the reverse reaction can be obtained by substituting
−ν for ν in eqn (9.91) and in eqn (9.93) additionally changing the sign of ∆G−◦ and ν̄ . It is
possible to develop a Monte Carlo scheme in which the forward and backward reactions
occur with equal probability. �e transition probability is independent of the chemical
potential and it is possible to �x the temperature and work at constant density (in the
constant-NVT ensemble) or at constant pressure (in the constant-NPT ensemble) where
N is now the total number of atoms rather than molecules.

As a simple example, consider the dimerization reaction (Johnson et al., 1994)

2 NO2 −−−⇀↽−−− N2O4. (9.94)

For the forward reaction

ρn
ρm
= exp(−βδVnm )

NNO2

(
NNO2

− 1
)
qN2O4(

NN2O4
+ 1

)
q2

NO2

(9.95)
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Fig. 9.7 �e backward trial move for a reactive canonical Monte Carlo simulation of the NO2
dimerization reaction. Una�ected molecules are a lighter shade. An N2O4 molecule is replaced by
an NO2 molecule (randomly oriented) plus a second NO2 molecule inserted at a random position.

and for the back reaction

ρn
ρm
= exp(−βδVnm )

NN2O4
q2

NO2(
NNO2

+ 2
) (
NNO2

+ 1
)
qN2O4

. (9.96)

�e canonical version of the algorithm would proceed as follows (see Fig. 9.7). One of the
three following possible trial moves is a�empted with a �xed probability.
(1) Choose a molecule at random and a�empt a change in its position (and orientation).
(2) A�empt a forward reaction step.

(a) Choose an NO2 molecule at random.
(b) Change this molecule to an N2O4 molecule, picking a random orientation.
(c) Choose another NO2 molecule at random and delete it.
(d) Accept the move with a probability min(1, ρn/ρm ) where ρn/ρm is given by

eqn (9.95).
(3) A�empt the reverse reaction step.

(a) Choose an N2O4 molecule at random.
(b) Change the molecule to an NO2 molecule, picking the orientation at random.
(c) Randomly insert another NO2 molecule into the �uid.
(d) Accept the move with a probability min(1, ρn/ρm ) where ρn/ρm is given by

eqn (9.96).
Steps (2) and (3) must have equal probability to ensure microscopic reversibility. To
perform simulations at constant-NPT , it is also necessary to perform a trial volume
change move as discussed in Section 4.8.

�e method can be readily generalized to a set of independent linear chemical reactions.
It does not require an a priori knowledge of the chemical potentials. �e method can
be straightforwardly extended for use with the Gibbs ensemble Monte Carlo method to
study combined physical and chemical equilibria. In this case only one of the reacting
species needs to be transferred between the simulation boxes, since the chemical reaction
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step will establish equilibrium in each of the coexisting phases. �e method will not be
successful at high densities when it is unlikely that a product molecule can be successfully
inserted into the �uid. �e method is also complicated to implement for systems with
many chemical reactions since each reaction would need to be considered many times to
achieve equilibrium.

�e reaction ensemble Monte Carlo method has been widely applied to reactions
con�ned in porous solids or near solid surfaces, reactions at high temperature and high
pressure, reactions in solution and at phase boundaries (Turner et al., 2008). For example,
Malani et al. (2010) have developed a model for silica polymerization at ambient tem-
peratures and low densities which focuses on SiO4 coordination. �e model explicitly
includes the energetics of hydrolysis and condensation reactions. Nangia and Garrison
(2010) have used the method to study dissolution at mineral–water interfaces with spe-
ci�c emphasis on silicates. �e equilibrium properties of the system are explored using
the combined reactive Monte Carlo and con�gurational-bias Monte Carlo methods. �e
full three-dimensional structure of the mineral with explicit water molecules can be
tackled with this combination. �e reaction ensemble method has also been combined
with dissipative particle dynamics (see Chapter 12) to study both static and dynamical
properties of a simple polydisperse homopolymer system (Lisal et al., 2006). �e technique
has been used to predict the e�ect of solvents, additives, temperature, pressure, shear, and
con�nement on the polydispersity of the polymer.



10
Rare event simulation

10.1 Introduction
�e simulation of ‘rare events’ poses a particular challenge. Broadly speaking, a rare event
consists of a transition from one region of phase space to another. �e system typically
resides for a long period in either region alone: long enough sensibly to de�ne distinct
time-averaged properties. At equilibrium, one state may be signi�cantly more stable than
the other, in which case we say that the other state is thermodynamically metastable.
Typically, we wish to study the rate of conversion of one state into the other, and possibly
the ‘path’ that the system takes (in some suitable set of reaction coordinates). �ere are
several common examples. �e orientational switching of a liquid crystal, following the
application of an electric �eld, may fall into this category. Conformational interconversion
in polymers and biomolecules, the nucleation of a crystal from the melt, and chemical
reactions are other examples.

�e problem for the simulator is that the residence periods may be much longer than
the maximum practical length of a simulation. �e transition process itself may occur on a
microscopic timescale, suitable for direct simulation by molecular dynamics or Brownian
dynamics; however, the transition rate is not simply given by the speed of this part of the
process.

In this chapter, we shall discuss some of the simulation techniques developed to study
the dynamics of rare events. We begin in Section 10.2 with the simplest situation, when the
assumptions of transition state theory (tst) apply, and discuss how this leads to an exact
result in Section 10.3. �is leads, in Section 10.4, to the question of identifying suitable reac-
tion coordinates and paths. �en we go to the other extreme, and consider in Section 10.5
how to measure a rate of transition while making the fewest possible assumptions: the
so-called transition path sampling (tps) approach. �is method is formally exact but can
be quite expensive to implement. In Section 10.6, we discuss methods such as forward �ux
sampling (ffs) and transition interface sampling (tis) which a�empt to combine features
of both approaches, to give rigorous results while remaining computationally e�cient.
Finally, we give a summary in Section 10.7.

In the present chapter we cannot cover all the details of this �eld. Fortunately, the
background theory, and many of the practical details, are described in several excellent
books and review articles (Chandler, 1987; Dellago et al., 2002; Moroni, 2005; Bolhuis and
Dellago, 2010; van Erp, 2012).

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
© M. P. Allen and D. J. Tildesley 2017. Published in 2017 by Oxford University Press.



Transition state approximation 343

(a)
F

q

kA→B

A
B

q†

(b) 1
hA (q)

00

hB (q)
1

qq†

(c)

A B

q′

q

‡

q†

Fig. 10.1 Reaction coordinates and free energies (schematic). (a) Free energy as a function of a
single reaction coordinate F (q), for a system with two minima, A and B, separated by a maximum
at q† (vertical dashed line). (b) �e indicator functions hA (q) (solid line) and hB (q) (do�ed line).
(c) Free energy (dark for low values, light for high values) as a function of two reaction coordinates
F (q,q′), for a system with two basins A and B, with a saddle point at ‡, and a typical ‘transition
path’ (solid line). �e vertical dashed line marks the ‘transition state’ that would be deduced by
considering the single reaction coordinate q.

10.2 Transition state approximation
In some circumstances it is physically reasonable to divide phase space into two regions,
each associated with one of the two states, which we call A and B (see Fig. 10.1). It may
be possible to identify a reaction coordinate q, a function of coordinates and momenta,
for which a Landau free energy

F (q) = −kBT ln
〈
δ
(
q − q(r)

)〉
+C

may be de�ned (see Section 2.11); in the following, q is assumed to be a function of
coordinates only, q = q(r), but this may not be the case in general. �e dividing line
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between A and B is located at the maximum of this function, which we call the transition

state q†. We assume that the probability density near the maximum is much lower than
in the basins on either side. Let us take A to be the region q < q†, and B to correspond to
q > q†, and de�ne two indicator functions

hA (q) = Θ(q† − q), hB (q) = Θ(q − q†), where Θ(x ) =



0 x < 0
1 x > 0

(10.1)

which take values of one or zero in the appropriate regions. Note that hA + hB = 1, and
that the ensemble averages

〈hA〉 =

∫
r∈A dr exp

(
−βV

)
∫

dr exp
(
−βV

) =

∫ q†

−∞
dq exp

[
−βF (q)

]

∫∞
−∞

dq exp
[
−βF (q)

] ≡ QA
Q
, (10.2a)

〈hB〉 =

∫
r∈A dr exp

(
−βV

)
∫

dr exp
(
−βV

) =

∫∞
q† dq exp

[
−βF (q)

]

∫∞
−∞

dq exp
[
−βF (q)

] ≡ QB
Q
, (10.2b)

where Q = QA + QB, give the probability of the system being in region A or region
B, respectively. �e forward rate is expressed as kA→B〈hA〉 where 〈hA〉 represents the
(normalized) population of reactants and kA→B is the rate constant. A similar expression
applies to the reverse reaction and, at equilibrium, 〈hB〉kB→A = 〈hA〉kA→B.

All of the foregoing discussion may seem straightforward, given q, but there is no
general, unique way of de�ning a reaction coordinate, and di�erent choices of q will lead
to di�erent free-energy curves. More seriously, Fig. 10.1(c) reminds us that it may be
appropriate to discuss the transition in terms of several reaction coordinates, and that the
‘obvious’ location of a transition state (a saddle point in the multidimensional case) may
be unrelated to the location in the one-dimensional case.

In the tst approximation, a trajectory crossing the plane q = q† is assumed to have
negligible probability of returning. In this case, the rate constant for the transition may
be evaluated from purely static ensemble averages

kTST
A→B =

〈
q̇Θ(q̇) δ (q − q†)

〉
〈hA〉

(10.3)

with a similar expression for kTST
B→A. �e factor Θ(q̇) is included to ensure that only positive-

going �uxes are counted; sometimes this is dropped, and q̇ is replaced by 1
2 |q̇ |, to give the

same result. �is may be wri�en

kTST
A→B =

〈
q̇Θ(q̇) δ (q − q†)

〉
〈δ (q − q†)〉

〈δ (q − q†)〉

〈hA〉
=

〈
q̇Θ(q̇) δ (q − q†)

〉
〈δ (q − q†)〉

exp
[
−βF (q†)

]

∫ q†
−∞

dq exp
[
−βF (q)

] .

�e �rst, kinetic, term is essentially the average of q̇Θ(q̇) for states at q†, and may o�en
be evaluated exactly without the need of a simulation: it will be proportional to

√
kBT /M ,

where M is a mass associated with the generalized coordinate q. �e second term is the
probability density at the transition state; this, or equivalently the free energy F (q†)
relative to A, may be evaluated by the methods discussed in Section 9.2. Tst is discussed
in more detail in the reviews cited earlier and by Vanden-Eijnden and Tal (2005).
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10.3 Bennett–Chandler approach
Benne� (1977) and Chandler (1978) have extended the tst approach to give an expression
for the rate constant, which is (in principle) exact. Consider the correlation function

CA→B (t ) =
〈hA (0)hB (t )〉

〈hA〉
. (10.4)

At long times, t > tmol, where tmol is a typical molecular relaxation time, CA→B (t ) ap-
proaches its plateau value 〈hB〉 with an extremely slow exponential growth (Chandler,
1987; Moroni, 2005) determined by the sum of the rate constants

CA→B (t ) ≈ 〈hB〉
(
1 − exp(−kt )

)
,

ĊA→B (t ) ≈ 〈hB〉k exp(−kt )

where k = kA→B + kB→A. Using the expressions 〈hB〉kB→A = 〈hA〉kA→B and hA + hB = 1,
this may be wri�en as

ĊA→B (t ) ≈ kA→B exp(−kt ),

and hence
kA→B ≈ ĊA→B (t ) for tmol < t � k−1. (10.5)

�is expression is only true for t > tmol. It is possible to show that the tst expression
may be re-wri�en as

kTST
A→B = ĊA→B (t = 0+) (10.6)

that is, tst makes the assumption that the exponential behaviour holds even when t → 0,
which is consistent with the underlying assumption that reactive trajectories only cross
q = q† once. �is results in an overestimate of the true rate, and the correction factor is
usually called the transmission coe�cient κ

kA→B = κ k
TST
A→B, 0 ≤ κ ≤ 1 (10.7)

where κ = κ (t ) is approximately constant for tmol < t � k−1, and

κ (t ) =

〈
q̇(0)hB

(
q(t )

)〉
q†〈

q̇(0)hB
(
q(0+)

)〉
q†

=

〈
q̇(0)hB

(
q(t )

)〉
q†〈

q̇(0)Θ
(
q̇(0)

)〉
q†

. (10.8)

Both averages are taken with the constraint q(0) = q† applied. �is is easily done in
molecular dynamics by the methods described in Section 3.4, remembering to include cor-
rections for the metric tensor; the resulting ensemble is sometimes called the ‘blue-moon
ensemble’ (Carter et al., 1989; Cicco�i and Ferrario, 2004). Alternatively, the constraint
may be applied approximately, by umbrella sampling, in either md or mc. To obtain the
numerator of eqn (10.8), it is necessary to use the con�gurations sampled in the con-
strained ensemble as starting points for unconstrained trajectories, which are used to
correlate the �ux crossing the transition state at t = 0 with the population of state B at
later times. �is takes account of all the recrossings of the transition state, which are
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neglected in tst. However, many independent trajectories may need to be used in order
to calculate κ with reasonable statistical uncertainty.

�e scheme just described proceeds from the choice of reaction coordinate q, through
the calculation of the free-energy curve F (q), to the identi�cation of a transition state
q† at its maximum, and �nally the calculation of the tst result and the transmission
coe�cient κ. In principle, the same answer should be obtained from di�erent choices
of q; in practice, bad choices will result in very ine�cient, and imprecise, calculations
of κ. In fact, it may be di�cult to �nd a good choice. A small value of κ indicates that
many recrossings of the q = q† surface are occurring. �e fact that positive-going and
negative-going trajectories all contribute to the numerator of eqn (10.8), with opposite
signs, is a problem. Various modi�cations of the scheme, to counter these de�ciencies,
have been proposed (Bergsma et al., 1986; White et al., 2000).

It is also possible to improve the de�nition of the transition state (Hummer, 2004).
Because of the variational inequality kA→B ≤ kTST

A→B, eqn (10.7), we may de�ne the best
dividing surface, and in principle the best reaction coordinate, so as to minimize kTST

A→B.
As pointed out by Chandler (1978), this is equivalent to maximizing F (q†). �is gives
rise to a variety of practical approaches (Truhlar et al., 1996; see also Vanden-Eijnden and
Tal, 2005), broadly termed variational tst; in practice, these methods are limited by the
expense of varying the de�nition of q, and thereby parameterizing the reaction path in
terms of a single reaction coordinate. Variational tst does not a�empt to calculate the
exact result, although it might well provide the optimum starting point for dynamical
trajectories which could be used to e�ciently compute the transmission coe�cient.

10.4 Identifying reaction coordinates and paths
Figure 10.1(c) gives the traditional cartoon of a reaction path, linking two basins (local
minima) A and B in a low-dimensional free-energy landscape, and passing through a saddle
point ‡which acts as a transition state. In the previous section, we have discussed the even
simpler picture, Fig. 10.1(a), of a single reaction coordinate, with a transition state † located
at the maximum, and not (in general) coinciding in any sense with ‡. It is important to
realize that the real situation is much more complicated: the system actually explores
a 3N -dimensional potential-energy landscape (or even a 6N -dimensional manifold, if
momenta are included) which is intrinsically ‘rough’ and contains large numbers of
high-dimensional local minima and saddle points (Wales, 2004). �e basins A and B will
be linked by an ensemble of paths, representing all thermally accessible routes through
this landscape, and a proper description of the transition will require us to sample this
ensemble. Even if we adopt a reduced description in terms of a few reaction coordinates,
and use them to de�ne a free energy, it is still an ensemble of paths, not a single path;
by the same token, it will be misleading to think that there is a single transition state.
Before turning to methods aimed at rigorously sampling this ensemble, in Section 10.5, we
mention methods which a�empt to deduce the relevant reaction coordinate(s) and/or to
identify a single representative path, or a small number of such paths. �e hope is that the
path ensemble may be characterized by small �uctuations away from the representative
paths, and that perhaps a coarse-grained dynamics, or even tst, involving just the reduced
variables will be satisfactory. For an excellent recent review, see Rohrdanz et al. (2013).
Examples of these approaches are the zero-temperature and �nite-temperature string
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method (E and Vanden-Eijnden, 2010), di�usion maps (Rohrdanz et al., 2011; Zheng et al.,
2011), di�usion-map-directed molecular dynamics (Preto and Clementi, 2014), and sketch
maps (Cerio�i et al., 2011; Tribello et al., 2012).

If one can identify a small set of candidate reaction coordinates, then it may be
possible to accelerate the sampling of those variables, and possibly select from them the
most suitable one to describe the reaction. Metadynamics (Laio and Parrinello, 2002) is
a method that combines molecular dynamics with an idea that is common to several
accelerated simulation techniques: progressively �a�ening the free-energy landscape, so
as to sample uniformly in a chosen reduced set of coordinates. It is reviewed in detail
elsewhere (Laio and Gervasio, 2008), and is widely implemented in simulation packages.
�e usual approach is to add to the potential-energy function a set of Gaussian functions
of variables such as q, q′ in Fig. 10.1(c), which are centred on con�gurations that have
already been visited. �e e�ect is to bias the dynamics against visiting those same regions
again and, as the trajectory proceeds, it explores higher and higher free energies. �e
same approach is used in Wang–Landau sampling, discussed in Section 9.2.5. �e e�ective
potential evolves in time; ideally it will eventually provide an estimate of the desired free-
energy landscape. �e convergence to this limit, and the range of exploration of di�erent
basins, may be controlled in a scheme known as well-tempered metadynamics (Barducci
et al., 2008). An advantage of the method is its �exibility and ease of implementation for
a wide choice of reduced variables. In the current context, the dynamical nature of the
evolution seems to enhance the likelihood of discovering the saddle-points lying between
basins, although (of course) the dynamics is biased by the added terms in the potential. In
so-called reconnaissance metadynamics (Tribello et al., 2010) the method is extended to
allow the use of a very large number of generalized coordinates, and this opens up the
possibility of using it to identify the relevant reaction coordinates and pathways.

Various other simulation methods, based on the tst assumption, involve accelerating
the dynamics within basins, while a�empting to estimate the transition rates between
basins. Examples are hyperdynamics (Kim and Falk, 2014) and temperature-accelerated
dynamics (Sorensen and Voter, 2000); they are most commonly applied to dynamics in
the solid state but have also been used to study protein folding problems. Similar ideas
appear in the conformational �ooding approach of Grubmüller (1995). We do not discuss
these further but refer the reader to a recent review (Perez et al., 2009b).

10.5 Transition path sampling
In this section we modify the de�nitions of the regions A and B so that they only refer
to the basins around the reactant and product states. We once again de�ne functions
hA (r) and hB (r) taking values h = 1 around the states r ∈ A and r ∈ B respectively,
h = 0 otherwise, but we allow the possibility of a substantial region of con�guration
space in which both are zero. Hence we no longer require hA (r) + hB (r) = 1. However,
we anticipate that it will be possible to de�ne these regions such that the probability of
con�gurations where hA (r) = hB (r) = 0 is low, that is, the system spends most of its time
in either A or B. Hence 〈hA〉 + 〈hB〉 ≈ 1. �is removes a�ention from a critical ‘transition
region’ separating A and B, and focuses it on the paths which link A and B. By the same
reasoning, it is hoped that the results are not critically dependent on the de�nitions of
the boundaries of the two regions, and there is no need to de�ne a reaction coordinate.
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Fig. 10.2 A transition path joining two states A and B in a two-dimensional free-energy landscape.
�e boundaries of the states are indicated by solid lines. �e coordinates q, q′, are not needed to
de�ne A, B, or the path.

With these de�nitions in place, it is possible to de�ne an equilibrium ensemble of
transition paths, that is, those trajectories beginning in A and ending in B. A path (see
Fig. 10.2) may be thought of as a sequence of points in phase space (r(t ), p(t )), separated
by regular intervals of time δt (or some other parameter), and linked by the normal time
evolution (which could be deterministic, as inmd, or stochastic, as in Brownian or Langevin
dynamics). �e probability of a given path is then the product of all the conditional
probabilities linking successive phase space points, P (r(t ), p(t ) → r(t + δt ), p(t + δt ))
multiplied by the initial probability P (r(0), p(0)). �e probability of the subset of transition
paths is then obtained by including factors of hA (r(0), p(0)) and hB (r(tpath), p(tpath)).

Transition path sampling (tps) involves generating a succession of such reactive
trajectories by a standard importance-sampling Monte Carlo method (Bolhuis et al., 2002).
�e methods only di�er slightly depending on the type of dynamics being used; here we
assume standard md. As usual in importance sampling, there are two stages: proposal
of a new trajectory, constructed in some way from an existing one, and acceptance or
rejection of this proposal in a way that obeys detailed balance. �ere are two common
methods of proposing new trajectories: shi�ing and shooting. �e shi�ing move deletes
a section of the trajectory from one end, and adds a new section, of equal time, at the
other end: hence the path is shi�ed forwards or backwards in time. In the simplest case of
microscopically reversible dynamics, and an equilibrium distribution of initial conditions,
the acceptance–rejection criterion reduces to simply applying the conditions that the
start point still lies within A, and the end point still lies within B. �e shooting move is
illustrated in Fig. 10.3. It entails the selection of a timestep, at random, somewhere along
the trajectory, and the perturbation of (typically) particle momenta to give new values,
followed by forward and backward time integration until a new trajectory is complete. In
the simple case of dynamics which preserve the stationary equilibrium distribution, such
as the canonical one, and assuming that the starting points are selected in a symmetric
way, the acceptance–rejection criterion is once again fairly simple: it includes factors to
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Fig. 10.3 Generating a new path (open circles) from an existing one (�lled circles) by a shooting
move initiated from the arrowed position.

enforce the requirement that the trajectory go from A to B, multiplied by a Metropolis-like
factor involving ratios (new/old) of products of ensemble weights for the con�gurations
along the new and old trajectories. Di�erent variations of these moves for di�erent kinds
of simulation are discussed elsewhere (Bolhuis et al., 2002). Shi�ing and shooting moves
are complementary in nature. �e shi�ing move is relatively cheap to implement and
may have a high acceptance rate because much of the new trajectory is the same as the
old one; on the other hand, it does not achieve a dramatic exploration of the landscape.
�e shooting move o�en produces a radically di�erent path, which must be followed in
its entirety, and may have a lower acceptance rate; however, when successful, the move is
very e�ective. Typically the perturbations applied in shooting moves are small, although
‘aimless shooting’ (Mullen et al., 2015), in which all momenta are reselected from the
Maxwell–Boltzmann distribution, combined with �exibility in the trajectory lengths, can
be useful.

Although tps may seem complicated, the dynamics involved in the computation of
the trajectories is quite standard, and the additional features of generating new starting
points, and accepting or rejecting the new trajectories, can be handled by a surrounding
script or shell program. �e method can therefore be added to established simulation
packages without too much e�ort.

In terms of averages over those paths, denoted 〈. . .〉A→B, the correlation function
CA→B (t ), and through eqn (10.5) the rate constant kA→B, may be calculated (Dellago et al.,
2002). In a sense, it is necessary to connect the weights associated with the ensemble
of paths to those of a conventional ensemble. �is follows by recognizing eqn (10.4),
the de�nition of CA→B (t ), as a ratio of two partition functions: QA→B (t )/QA. QA→B (t )
counts the paths that start in A and end in B at time t . QA counts all the paths that start
in A, irrespective of their end point, and hence is proportional to the probability of the
system being in region A. �is ratio may be regarded as the exponential of a free-energy
di�erence, and computed by umbrella sampling, using methods akin to those described
in Chapter 9. However, at �rst sight, this needs doing, complete with the sampling of
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many independent paths, over a range of t in order to establish the plateau behaviour
characteristic of intermediate times tmol < t � k−1. Further consideration leads to a more
e�ective method. �e quantity 〈hB (t )〉A→B can be determined by averaging over paths.
�en, the ratio

〈hB (t )〉A→B
〈hB (t ′)〉A→B

=
QA→B (t )

QA→B (t ′)

can be calculated for arbitrary t and t ′, without doing any umbrella sampling. Next, the
value of CA→B (t

′) may be computed by umbrella sampling for just one time t ′. Finally,
the equation

CA→B (t ) =
QA→B (t )

QA
=
〈hB (t )〉A→B
〈hB (t ′)〉A→B

CA→B (t
′)

allows us to obtain CA→B (t ) at arbitrary times. It is expected that there will be a range of
values of t for which CA→B (t ) increases linearly with t , so that its time derivative has the
necessary plateau, and in fact this can be checked from the behaviour of 〈hB (t )〉A→B in
the �rst stage. �en eqn (10.5) gives kA→B.

Once the transition path ensemble is properly sampled, it should be possible to
compute not only the rate but also some features of the paths themselves, perhaps even
identifying a suitable reaction coordinate and transition state, if one exists. �is can be
done by analysing so-called commi�or surfaces, which connect con�gurations having
the same likelihood of arriving in B rather than A (Best and Hummer, 2005; Peters and
Trout, 2006).

Whatever method is used, the tps approach is quite expensive, involving an extended
dynamical simulation covering the timescale of the process of interest, before accepting or
rejecting each new trajectory as a member of the desired ensemble; the whole procedure
then needs to be repeated enough times to give statistically signi�cant results. Of course,
this expense must be compared with the alternatives: brute-force simulation of rare events
is never likely to be competitive, while the techniques described in the previous sections
involve serious approximations, assumptions, or biasing factors. A recent review (Bolhuis
and Dellago, 2015) covers a variety of practical pitfalls and misconceptions regarding the
method, including some of the a�empts made to improve e�ciency, discussed in the next
section.

10.6 Forward �ux and transition interface sampling
�e approaches described in this section rely on the de�nition of a single coordinate q, to
describe the progress of the reaction, but without needing to identify a transition state
value q† as in sections 10.2 and 10.3. Instead, in the spirit of the previous section, it is
assumed that region A may be de�ned by q < qA ≡ q0, and region B by q > qB ≡ qn , in a
sensible way. �e assumption is that trajectories entering region A or B reach equilibrium,
and lose memory, before leaving again. �en n − 1 intermediate values of q are inserted
between these boundaries, as illustrated in Fig. 10.4. �e forward rate constant may be
wri�en (van Erp et al., 2003)

kA→B =
〈Φ0〉

〈hA〉
P (q0 → qn ) =

〈Φ0〉

〈hA〉

n−1∏
i=0

P (qi → qi+1). (10.9)
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q0 q1 q2

?

A

Fig. 10.4 States and interfaces de�ned in terms of a reaction coordinateq. (a) Schematic free-energy
landscape, and de�nition of interfaces. An example reactive trajectory is shown. (b) Calculating the
outgoing �ux at q0 using an equilibrium trajectory. Two outward crossings of the interface (black
dots) are counted, and stored for future use. (c) Calculating the conditional probability P (q1 → q2)
from stored con�gurations at q1. Two partial paths are shown which reach q2 without �rst returning
to A (black dots), and hence contribute to the transition path ensemble. One path returns to A, and
does not contribute. A fourth path, indicated by a question mark, is discussed in the text.

�e �rst term is the �ux of states from basin A to the boundary at q0. �e second term
is the conditional probability that a con�guration starting at q = q0, heading out from
A, will arrive at a later time at interface q = qn , entering region B, rather than returning
to A. In the second part of eqn (10.9), this conditional probability is factorized into a
product of terms. Each term represents a conditional probability of reaching interface qi+1
from qi , rather than returning to A; included in this condition is the requirement that the
trajectory started in A, and crossed qi for the �rst time before proceeding onwards. �e
aim of the techniques described in this section is the same as in Section 10.5: to generate
trajectories sampled from the transition path ensemble linking A and B. �e hope is that
it can be done in a more e�cient way.

Here we explain how this is tackled in ffs (Allen et al., 2006a,b). �e �ux term
〈Φ0〉/〈hA〉 is typically measured in an equilibrium molecular dynamics simulation, by
simply dividing the number of outgoing crossings of the boundary surface by the sim-
ulation time. Each time this occurs, the con�guration (r, p) is saved for the next stage.
�e more saved con�gurations, the be�er: numbers of order 103 have been used in tests
(Allen et al., 2006a,b). �erefore, the position of the boundary q0 needs to be chosen such
that equilibrium trajectories in the A basin reach q = q0 infrequently (because only an
insigni�cant part of the basin should lie on the q > q0 side), but not too infrequently.
�is is illustrated in Fig. 10.4(b). On the rare occasions in which a trajectory escapes
from A and makes the transition to B spontaneously, the procedure is restarted with a
new con�guration, equilibrated in A. In subsequent stages, the probability P (qi → qi+1)
is evaluated for each successive pair of interfaces, by picking a starting con�guration
randomly from the stored set at q = qi , and following the dynamics until it either reaches
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q = qi+1 or returns all the way to A. �e con�gurations which do reachqi+1 are themselves
stored, to be used as starting points for the next section. �is is shown diagrammatically
in Fig. 10.4(c). �e dynamics, therefore, needs to have a stochastic element to it, in order
that di�erent trajectories are generated by the same starting con�guration. It is tempting,
but wrong in principle, to achieve this e�ect simply by randomizing the velocities at
the start of each qi → qi+1 trajectory. In a similar vein, it is important to realize that
the method does not make any Markovian assumptions about the successive conditional
probabilities appearing in eqn (10.9): they are all linked by the conditions applied to the
ensemble of starting points.

�e outcome from these successive calculations is a set of conditional probabilities,
which are multiplied together, as well as the initial outgoing �ux, according to eqn (10.9).
�e method relies on obtaining good statistical estimates of each of these quantities,
which in turn requires a suitable choice of the number and location of interfaces. Allen
et al. (2006a) have described ways to estimate the e�ciency of this, and related, methods;
Borrero and Escobedo (2008) and Kratzer et al. (2013) have described ways to optimize
the approach. As a practical point, it is not essential to make q0 coincide with the criterion
used to de�ne the basin A (Allen et al., 2006b). Indeed, it may be desirable to have a
‘tighter’ boundary around the minimum. Some partial trajectories might cross the q = q0
boundary at locations q′ which lie within the basin of a�raction of B, and hence not
actually be on the way back to A. Such a path is indicated with a question mark in
Fig. 10.4(c). To make sure that trajectories are correctly identi�ed as not belonging to
the transition path ensemble, it may be useful to de�ne the initial state separately from
the interface q0, for example as in Fig. 10.3: all reactive transition paths would originate
within this region, and a non-reactive partial path would be identi�ed by following it all
the way back to this region. �is highlights one possible ine�ciency of the method: the
need to follow some trajectories for a very long time, until their fate becomes clear. �e
ffs method has been reviewed by Allen et al. (2009). A harness to implement ffs, and
a generalization of the approach called stochastic process rare event sampling (spres)
(Berryman and Schilling, 2010), has been provided for a range of md packages (Kratzer
et al., 2014).

A potential drawback of these methods, which follow trajectories forwards from the
reactant basin A to the product basin B, is the e�ect of a�rition. In other words, only a
certain fraction of the starting con�gurations at each interface will succeed in reaching
the next interface, and this e�ect is cumulative. As a result, if one traces the trajectories
back from B to A, it is likely that they originate from just a few starting points, or perhaps
even just one point, on the interface q0. �is may mean that the true ensemble of transition
paths is poorly sampled, as discussed by van Erp (2012). For this reason, although ffs is
conceptually simple and fairly easy to implement, this is a reason to prefer the somewhat
more complicated tis approach. However, ffs has one signi�cant advantage, namely that
the rate equation is equally valid for an out-of-equilibrium, driven system.

�e original tis method (van Erp et al., 2003; Moroni et al., 2004a; Moroni, 2005; van
Erp and Bolhuis, 2005) works within the same framework of interfaces de�ned by a
coordinate q, but uses a more sophisticated way of building the ensemble of transition
paths. From a given path, which crosses the qi interface, the ‘shooting’ method of the
previous section is used to generate perturbed trajectories, which are typically followed
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Example 10.1 Homogeneous crystal nucleation

�e formation of a crystal nucleus, in an undercooled liquid, is an excellent example
of a rare event for which the simulation techniques of this chapter may be useful
(Yi and Rutledge, 2012; Turci et al., 2014). A typical experimental nucleation rate of
106 cm−3 s−1 translates into a single nucleation event every 1012 s in a simulation
box of 104 molecules. Major questions to be addressed are whether or not classical
nucleation theory applies, whether the structure of the critical nucleus is the same as
that of the �nal product crystal, what is the free-energy barrier, and, of course, what
determines the rate? Early, brute-force, simulations of Lennard-Jones atoms used
temperatures of order 50 % of the equilibrium freezing temperature, and system sizes
N ≈ 106 (Swope and Andersen, 1990) to suggest that both body centred cubic (bcc)
and fcc nuclei formed, but only the la�er would go on to form crystals. Later work,
using umbrella sampling based on bond-orientational order parameters (ten Wolde
et al., 1995) employed systems N ≈ 105, but also a much more modest degree of
undercooling, 20 %, to suggest that the critical nuclei had a core–shell structure. �e
same authors made a �rst a�empt to calculate the rate through the Benne�–Chandler
method (ten Wolde et al., 1996). Lennard-Jones freezing has been subsequently ex-
amined by metadynamics (Trudu et al., 2006) and tis (Moroni et al., 2005b). �ese
simulations showed that there is a range of ‘critical’ nucleus sizes and degrees of
crystallinity, with shape and internal structure playing a role.
A particularly nice example of these techniques is the study of a so�-core model of
colloidal suspensions by Lechner et al. (2011). �ese authors obtained a reweighted
path ensemble from replica-exchange tis simulations, which was then analysed in
detail to obtain information about the nature of the reaction coordinate. �ey showed
that, as well as the structure of the nucleus, the size of a prestructured cloud of
particles surrounding the nucleus could also be a signi�cant order parameter in the
crystallization mechanism.

forward in time, to interface qi+1, and backward in time, to check that they originated
in the A basin. �ere are acceptance–rejection criteria for the new path, relative to the
old one, based on reaching the correct end points, and on the path length. Moroni et al.
(2005a) have shown how the free-energy pro�le of the process may be obtained at no
additional computational cost, while Borrero et al. (2011) have discussed how to optimize
the method.

If an assumption is made that the trajectory loses memory over two interfaces, then
full transition paths may be constructed from partial paths in a more e�cient way (Moroni
et al., 2004b). �is is likely to be true if the dynamics is di�usive in nature, that is, heavily
overdamped due to large frictional and random force e�ects (see Section 12.2). A similar
assumption, of memory loss during the transition from one interface to the next, underpins
the milestoning approach (Faradjian and Elber, 2004).
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10.7 Conclusions
Sampling of rare events remains a signi�cant challenge for simulation, and there is no
single technique that will work in every case. �ere are a few regularly used small-scale
testbeds, such as the alanine dipeptide system, and the 38-atom Lennard-Jones cluster,
which may be used to calibrate and compare di�erent methods. However, systems of
interest are o�en much larger, of high dimensionality, and contain very many metastable
minima and saddle points. �e area of crystal nucleation provides a good example of
the way in which improved simulation techniques have shed more and more light on a
di�cult problem, and this is discussed in Example 10.1.

It may be that the ensemble of transition paths cannot be thought of in terms of
small variations from a ‘representative’ trajectory, but instead includes many contributing
‘channels’, which are hard to convert into one another using the methods described
in this chapter. It is possible to combine tps and its relations with techniques such as
parallel tempering/replica exchange (Section 4.9) (Vlugt and Smit, 2001), or Wang–Landau
sampling (Section 9.2.5) (Borrero and Dellago, 2010), to improve e�ciency and calculate
rates at a range of temperatures simultaneously. Other tricks of this kind are possible
within the tis scheme (van Erp and Bolhuis, 2005; van Erp, 2007; Bolhuis, 2008). �is area
remains highly active, and the reader is recommended to consult the recent literature for
the latest developments.



11
Nonequilibrium molecular
dynamics

11.1 Introduction
So far in this book, we have considered the computer simulation of systems at equilibrium.
Even the introduction, into the molecular dynamics equations, of terms representing
the coupling to external systems (constant-temperature reservoirs, pistons, etc.) have
preserved equilibrium: the changes do not induce any thermodynamic �uxes. In this chap-
ter, we examine adaptations of md that sample nonequilibrium ensembles: nonequilibrium
molecular dynamics (nemd). One motivation for this is to improve the e�ciency with
which transport coe�cients are calculated, the route via linear response theory and time
correlation functions (eqns (2.116)–(2.130)) being subject to signi�cant statistical error.
�is has been discussed in part in Chapter 8. Another is to examine directly the response
of a system to a large perturbation lying outside the regime of linear response theory, as
occurs in a shock wave. Finally, it proves possible to calculate free-energy di�erences by
using nonequilibrium techniques.

One problem with time correlation functions is that they represent the average
response to the naturally occurring (and hence fairly small) �uctuations in the system
properties. �e signal-to-noise ratio is particularly unfavourable at long times, where
there may be a signi�cant contribution to the integral de�ning a transport coe�cient.
Moreover, the �nite system size imposes a limit on the maximum time for which reliable
correlations can be calculated. �e idea behind nonequilibrium methods is that a much
larger �uctuation may be induced arti�cially, and the signal-to-noise level of the mea-
sured response improved dramatically. By measuring the steady-state response to such a
perturbation, problems with long-time behaviour of correlation functions are avoided.
Nemd measurements are made in much the same way as that used to estimate simple
equilibrium averages such as the pressure and temperature. �ese methods correspond
much more closely to the procedure adopted in experiments: shear and bulk viscosities,
and thermal conductivities, are measured by creating a �ow (of momentum, energy, etc.)
in the material under study. �e growing interest in understanding liquid �ow in porous
media, micro�uidics, and nano�uidics, have all stimulated the development of reliable
methods of simulating such systems directly.

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
© M. P. Allen and D. J. Tildesley 2017. Published in 2017 by Oxford University Press.
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Early a�empts to induce momentum or energy �ow in a molecular dynamics simula-
tion have been reviewed by Hoover and Ashurst (1975). One possibility is to introduce
boundaries, or boundary regions, where particles are made to interact with external
momentum or energy reservoirs (Ashurst and Hoover, 1972; 1973; 1975; Hoover and
Ashurst, 1975; Tenenbaum et al., 1982). �ese methods, however, are incompatible with
periodic boundary conditions, and so they introduce surface e�ects into the simulation.
Most of the approaches we shall describe avoid this by being designed for consistency
with the usual periodic boundaries, or by modifying these boundaries in a homogeneous
way, preserving translational invariance and periodicity. However, in some cases, the �ow
against an interface is itself of interest, and we shall give some examples later.

Nonequilibrium molecular dynamics simulations have grown in popularity over
the last few years, and several excellent reviews (Cicco�i et al., 1979; Hoover, 1983a,b;
Evans and Morriss, 1984a) and books (Evans and Morriss, 2008; Tuckerman, 2010) may
be consulted for further details.

�e methods we are about to describe all involve perturbing the usual equations of
motion in some way. Such a perturbation may be switched on at time t = 0, remaining
constant therea�er, in which case the measured responses will be proportional to time-
integrated correlation functions. �e long-time steady-state responses (the in�nite time
integrals) may then yield transport coe�cients. Alternatively, the perturbation may be
applied as a delta function pulse at time t = 0 with subsequent time evolution occurring
normally. In this case, the responses are typically proportional to the correlation functions
themselves: they must be measured at each timestep following the perturbation, and
integrated numerically to give transport coe�cients. Finally, an oscillating perturbation
∝ sinωt may be applied. A�er an initial transient period, the measured responses will
be proportional to the real and imaginary parts of the Fourier–Laplace transformed
correlation functions, at the applied frequency ω. To obtain transport coe�cients, several
experiments at di�erent frequencies must be carried out, and the results extrapolated to
zero frequency. �e advantages and disadvantages of these di�erent techniques will be
discussed following a description of some of the perturbations applied.

�e perturbations typically appear in the equations of motion as follows (Evans and
Morriss, 1984a)

q̇ = p/m +Ap · F (t ) (11.1a)
ṗ = f −Aq · F (t ). (11.1b)

�e condensed notation disguises the complexity of these equations in general. Here,F (t )
is a 3N -component vector representing a time-dependent applied �eld. It can be thought
of as applying to each molecule, in each coordinate direction, separately. �e quantities
Aq (q, p) andAp (q, p) are functions of particle positions and momenta. �ey describe
the way in which the �eld couples to the molecules, perhaps through a term in the system
Hamiltonian. Each can be a 3N × 3N matrix in the general case, but usually many of the
components vanish. �e perturbation can o�en be thought of as coupling separately to
some property of each molecule (e.g. its momentum), in which caseAq andAp become
very simple indeed. However, some properties (e.g. the energy density, the pressure
tensor), while being formally broken down into molecule-by-molecule contributions,
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actually depend on inter-molecular interactions, and soAq andAp must be functions of
all particle positions and momenta in the general case.

In standard linear response theory, the perturbation is represented as an additional
term in the system Hamiltonian

H ne = H +A(q, p) · F (t ) = H +
∑
i

Ai (q, p) · F i (t ) (11.2)

in which case we simply have

Aq = ∇qA(q, p), Ap = ∇pA(q, p). (11.3)

�e average value 〈B〉ne of any phase function B (q, p) in the nonequilibrium ensemble
generated by the perturbation is given by

〈B (t )〉ne = −
1

kBT

∫ t

0
dt ′

〈
B (t − t ′)Ȧ(0)

〉
· F (t ′) (11.4)

assuming that the equilibrium ensemble average 〈B〉 vanishes and that the perturbation
is switched on at time t = 0. However, it has long been recognized that the perturbation
need not be derived from a Hamiltonian (Jackson and Mazur, 1964). Provided that

∇q · q̇ + ∇p · ṗ =
(
∇q ·Ap − ∇p ·Aq

)
· F (t ) = 0 (11.5)

the incompressibility of phase space still holds, and eqn (11.4) may still be derived. In this
case, however, Ȧ cannot be regarded as the time derivative of a variableA. Rather, it is
simply a function of q and p, de�ned by the rate of change of internal energy

Ḣ = −
(
(p/m) ·Aq + f ·Ap

)
· F (t ) ≡ −Ȧ · F (t ). (11.6)

�us, Aq and Ap are su�cient to de�ne Ȧ in eqn (11.4). �ese equations have been
developed and extended by Evans and co-workers (Evans and Morriss, 1984a; 2008).

When a perturbation is applied in molecular dynamics, typically the system heats up.
�is heating may be controlled by techniques analogous to those employed in constant-
temperature md, as discussed in Chapter 3. �e thermosta�ing method is important in
de�ning the nonequilibrium ensemble being simulated (Evans and Morriss, 2008). In the
following sections, for simplicity, we shall omit the extra terms in the equations of motion
which serve this purpose. �is choice corresponds to a perturbation which is applied
adiabatically, that is, the work done on the system exactly matches the increase in the
internal energy. We shall return to this in Section 11.7. Moreover, in most of this chapter,
the perturbations are assumed to apply to an atomic system, or to the centres of mass of
a system of molecules. Accordingly, we shall revert to the notation r, p rather than q, p.

11.2 Spatially oscillating perturbations
Some of the earliest nonequilibrium simulations a�empted to measure the shear viscosity
of an atomic Lennard-Jones �uid. One technique, which maintains conventional cubic
periodic boundary conditions, is to use a spatially periodic perturbation to generate
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L
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x

F cosky

Fig. 11.1 Spatially oscillating shear �ow perturbation. �ree periodic boxes are shown. �e force
function F cosky is plo�ed as a function of y on the le�. �e arrows on the right indicate the
forces acting on each molecule.

an oscillatory velocity pro�le (Gosling et al., 1973; Cicco�i et al., 1976b; 1979). At each
timestep in an otherwise conventional md simulation, an external force in the x-direction
is applied to each molecule. �e magnitude of the force depends upon the molecule’s
y-coordinate as follows:

f ext
ix = F cos(2πnyi/L) = F coskyi (11.7)

where F is a constant, and the wavevector k = (0,k, 0) = (0, 2πn/L, 0), with n an integer,
is commensurate with the side L of the simulation box. �is force �eld is illustrated in
Fig. 11.1 for the lowest wavelength case, n = 1. On applying this perturbation and waiting,
a spatially periodic velocity pro�le develops. Speci�cally, at a given y-coordinate, the
mean x-velocity of a molecule should be

〈vx (y )〉ne ≈
ρ

k2η
F cosky . (11.8)

By ��ing their results to this equation, Gosling et al. (1973) were able to estimate the
shear viscosity η with signi�cantly less computational e�ort than that required using
equilibrium methods.

It is worth examining carefully the origins of eqn (11.8). �e perturbation of eqn (11.7)
is a non-Hamiltonian one, but falls into the general scheme of the last section. Writing in
a slightly more general form

f ext
ix (t ) = F (t ) exp(−ikyi ) (11.9)
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we can show that the response in any k-dependent quantityB (k ) is related to a correlation
function involving the transverse current j⊥x (k, t ) or the transverse momentum p⊥x (k, t ):

j⊥x (k, t ) =
1
V

N∑
i=1

vix exp
(
ikyi (t )

)
(11.10a)

p⊥x (k, t ) =
1
V

N∑
i=1

pix exp
(
ikyi (t )

)
. (11.10b)

�ese equations are analogous to eqns (2.137b), (2.137c), except that we take the k-vector
in the y direction and make the x-component of the velocity explicit. Speci�cally, the
perturbation of eqn (11.9) appears in eqn (11.1) in the following way. For all i , we have
Aqix = − exp(−ikyi ), while all the remainingAq andAp terms vanish. We therefore
have (eqn (11.6)) Ȧ = ∑

i (pix/m)Aqix = −V j⊥x (−k ). �us

〈B (k, t )〉ne =
V

kBT

∫ t

0
dt ′

〈
B (k, t − t ′)j⊥x (−k, 0)

〉
F (t ′) (11.11)

and for the response in the current itself

〈j⊥x (k, t )〉ne =
V

kBT

∫ t

0
dt ′

〈
j⊥x (k, t − t

′)j⊥x (−k, 0)
〉
F (t ′). (11.12)

�e equilibrium time correlation function is real and is linked to the shear viscosity
through the Fourier–Laplace transform, valid at low k,ω (Hansen and McDonald, 2013):

V

kBT

〈
j⊥x (k,ω)j

⊥
x (−k )

〉
≈

ρ/m

iω + k2η(k,ω)/ρm
. (11.13)

�is equation may be used to de�ne a k,ω-dependent shear viscosity η(k,ω), which goes
over to the transport coe�cient η on taking the limit ω → 0 followed by the limit k → 0.
Taking the zero-frequency limit here means time-integrating from t = 0 to t = ∞, so

V

kBT

∫ ∞

0
dt

〈
j⊥x (k, t )j

⊥
x (−k )

〉
=

ρ2

k2η(k )
. (11.14)

If the perturbation remains constant, F (t ) = F from t = 0 onwards, this is essentially
the quantity appearing on the right of eqn (11.12) as the integration limit goes to in�nity
and the steady state is obtained. �us

〈j⊥x (k, t → ∞)〉ne =
F ρ2

k2η(k )
. (11.15)

Apart from a factor of ρ linking the current and velocity pro�le, and the explicit appearance
of the cosky term re�ecting the fact that a real perturbation (the real part of eqn (11.9))
yields a real, in-phase response, this is eqn (11.8). Note how the method relies on a k-
dependent viscosity going smoothly to η as k → 0. �is means that in a real application,
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several di�erent k-vectors should be chosen, all orthogonal to the x-direction, and an
extrapolation to zero k should be undertaken (Cicco�i et al., 1976b).

�e same sinusoidal perturbation may be applied as a delta function in the time
F (t ) ∝ δ (t ), which superimposes a sinusoidal initial velocity pro�le on the equilibrium
distribution. �e subsequent time decay may then be observed and the viscosity extracted.
Averaging over several repetitions of the experiment is required to obtain good statistics.
�is approach has been termed ‘transient molecular dynamics’ (�omas and Rowley,
2007).

A variant of this approach, in which the applied force has the form

f ext
ix = sgn(yi )F (t ) =




F (t ) 0 ≤ yi < L/2
−F (t ) −L/2 ≤ yi < 0

with F (t ) =



F t > 0
0 t ≤ 0

(11.16)

has been proposed by Backer et al. (2005). �is corresponds to a constant force, with equal
and opposite values depending on whether the particle lies in the upper or lower half of
the box. Decomposing this square-wave form in a Fourier series, and applying the same
analysis as before, gives the velocity pro�le

〈vx (y )〉ne ≈
ρ

2ηF y ( 1
2L − |y |). (11.17)

Extracting the viscosity then amounts to ��ing to a piecewise parabolic, rather than
sinusoidal, velocity pro�le, similar to the classical Poiseuille �ow experiment between
planar walls. A disadvantage of this method is the discontinuous nature of the �ow at
y = 0 and y = L/2, which will cause signi�cant heating, and possibly density variation,
in the vicinity. Although the perturbation is periodic, this version of the method is more
comparable with the inhomogeneous, boundary-driven methods discussed in Section 11.4.

�ere is plenty of scope to extend nemd methods to study quantities other than the
transport coe�cients of hydrodynamics and their associated correlation functions. In an
atomic �uid, an example is the direct measurement of the dynamic structure factor S (k,ω)
(Evans and Ojeda, 1992). Here, a spatially periodic perturbation is applied which couples to
the number density. �e method yields a response function that may be converted directly
to S (k,ω) in a manner preserving the quantum mechanical detailed balance condition,
eqn (2.153), whereas conventional methods of obtaining S (k,ω) (through eqn (2.136))
yield the symmetrical, classical function.

�e pitfalls inherent in using �nite-k perturbations are well illustrated by another
a�empt to measure η via coupling to the transverse momentum density (Cicco�i et al.,
1979). In this case, the perturbation is of Hamiltonian form, eqn (11.2), with

A · F (t ) = Vp⊥x (−k, t )F (t ) (11.18)

and k = (0,k, 0) as before. �e responses in this case are given by

〈B (k, t )〉ne =
V

kBT

∫ t

0
dt ′

〈
B (k, t − t ′)Pyx (−k, 0)

〉
ikF (t ′) (11.19)

where

Pyx (k, t ) =
1
V

∑
i

mvix viy exp(ikyi )+
1
V

∑
i

∑
j>i

yi j fi jx

( exp(ikyi ) − exp(ikyj )
ikyi j

)
(11.20)
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is de�ned so that ṗ⊥x (k, t ) = ikPyx (k, t ) (compare eqn (2.122)). Speci�cally

〈Pyx (k, t )〉ne =
V

kBT

∫ t

0
dt ′

〈
Pyx (k, t − t

′)Pyx (−k, 0)
〉

ikF (t ′). (11.21)

Now the in�nite time integral of
〈
Pyx (k, t )Pyx (−k )

〉
can be calculated by applying a

steady perturbation and measuring the long-time response of the out-of-phase component
of Pyx (k ) (i.e. the sinky component if a real cosky �eld is applied, because of the ik
factor in eqn (11.21)). Unfortunately, this quantity vanishes identically for non-zero k .
�is is because in the equation

η = lim
ω→0

lim
k→0

V

kBT

∫ ∞

0
dt exp(−iωt )

〈
Pyx (k, t )Pyx (−k )

〉
(11.22)

the k → 0 limit must be taken �rst (yielding eqn (2.119)). It is not possible to de�ne a
quantity η(k,ω) which has sensible behaviour at low ω simply by omi�ing the limiting
operations in eqn (11.22). Of course, the same di�culty applies in any a�empt to measure
η via an equilibrium md calculation of eqn (11.22). A way around this problem has been
given by Evans (1981a), but in either case (equilibrium or nonequilibrium calculations)
the wavevector and frequency-dependent correlation function in eqn (11.22) is required
before the extrapolation to give η can be undertaken.

In a similar vein, it is straightforward to introduce a Hamiltonian perturbation which
couples to a Fourier component of the energy density and which can yield the energy
current autocorrelation function (Cicco�i et al., 1978; 1979). �e link with the transport
coe�cient, however, su�ers from the same drawback: the limit k → 0 must be taken
before ω → 0 (i.e. before a steady-state time integration) or the function vanishes.

11.3 Spatially homogeneous perturbations
If a zero-wavevector transport coe�cient is required, then a zero-wavevector technique
is preferred. Generally this requires both a modi�cation of the equations of motion, and a
compatible modi�cation of the periodic boundary conditions. In this section we consider
several examples, mostly targe�ed at the transport coe�cients de�ned in Chapter 2.

11.3.1 Shear �ow

A useful review of the literature, combined with an explanation of many of the nonequi-
librium algorithms used to study viscous �ow of liquids, has been provided by Todd
and Daivis (2007). �e simplest approach is to simulate planar Coue�e �ow, in which a
uniform shear is applied to the system. A set of suitably modi�ed periodic boundaries was
proposed by Lees and Edwards (1972) and is illustrated in Fig. 11.2. In essence, the in�nite
periodic system is subjected to a uniform shear in the xy plane. �e simulation box and
its images centred at (x ,y ) = (±L, 0), (±2L, 0), etc. (for example, A and E in Fig. 11.2) are
taken to be stationary. Boxes in the layer above, (x ,y ) = (0,L), (±L,L), (±2L,L), etc. (e.g.
B, C, D) are moving at a speed (dvx/dy )L in the positive x direction (dvx/dy is the shear
rate, or strain rate, and we will use the symbol F (t ) for it). Boxes in the layer below,
(x ,y ) = (0,−L), (±L,−L), (±2L,−L), etc. (e.g. F, G, H) move at a speed F L in the negative
x direction. In the more remote layers, boxes are moving proportionally faster relative



362 Nonequilibrium molecular dynamics

D
E

F

C

G

B
A

H
L

Fig. 11.2 Homogeneous shear boundary conditions. Each row is moving relative to the ones above
and below, as indicated by the large arrows.

to the central one. Box B, for example, starts o� adjacent to A but, if F is a constant, it
will move away in the positive x-direction throughout the simulation, possibly ending up
hundreds of box lengths away. �is corresponds to a simple shear in one direction (see
Fig. 11.2). It is most convenient to represent this using shi�ed cubic boxes, rather than by
deforming the box, since a steady shear can then be maintained without the box angles
becoming extremely acute (compare Fig. 9.4). Of course it is also possible to make F vary
sinusoidally in time, in which case the box B will oscillate about its initial position. �e
periodic minimum image convention must be modi�ed in this case. �e upper layer (BCD
in Fig. 11.2) is displaced relative to the central box by an amount δx which is equal to the
box length L multiplied by the strain (the time-integrated strain rate):

δx = strain × L =
(∫ t

0
dt ′F (t ′)

)
L = F tL for constant F .

Suppose, as usual, that we work in a cubic box of unit length. �en the minimum image
correction becomes

rij(1) = rij(1) - ANINT ( rij(2) ) * strain
rij(:) = rij(:) - ANINT ( rij(:) )

where strain stores the current value of the strain. �us, an extra correction is applied to
the x component, which depends upon the number of boxes separating the two molecules
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Code 11.1 Molecular dynamics using Lees–Edwards boundaries
�ese �les are provided online. �e program md_nvt_lj_le.f90 contains an md pro-
gram which, together with md_lj_le_module.f90 and the utility modules of Ap-
pendix A, implements molecular dynamics of shear �ow using Lees–Edwards bound-
aries. An isokinetic version of the sllod algorithm is used (Pan et al., 2005).

! md_nvt_lj_le.f90
! MD, NVT ensemble , Lees -Edwards boundaries
PROGRAM md_nvt_lj_le

! md_lj_le_module.f90
! Force routine for MD, LJ atoms , Lees -Edwards boundaries
MODULE md_module

in the y direction. Note that adding or subtracting whole box lengths to or from the
horizontal displacement (i.e. whole units to or from the strain) makes no di�erence to this
correction and it is convenient to take the strain to lie in the range (− 1

2 ,
1
2 ). It is advisable

to keep replacing molecules in the central box as they cross the boundaries, especially
if a steady-state shear is imposed, to prevent the build-up of substantial di�erences in
the x coordinates. When this is done, the x velocity of a molecule must be changed as
it crosses the box boundary in the y-direction, for consistency with the applied velocity
gradient. �e di�erence in box velocities between adjacent layers is F L, or, if the velocity
is being handled in units where L = 1, simply F . Suppose this is stored in the variable
strain_rate. �en periodic boundary crossing is handled as follows.

r(1,:) = r(1,:) - ANINT ( r(2,:) ) * strain
v(1,:) = v(1,:) - ANINT ( r(2,:) ) * strain_rate
r(:,:) = r(:,:) - ANINT ( r(:,:) )

However, as we shall see shortly, most algorithms for shear �ow in Lees–Edwards
boundary conditions actually store and use the peculiar velocities, that is, molecular
velocities relative to the local streaming velocity created by the applied velocity gradient.
�ese peculiar velocities are also the ones to which a thermostat should be applied. �ey
should not be subjected to the periodic boundary correction, as they are the same for
every periodic image. An example of a program using Lees–Edwards boundaries may be
found in Code 11.1.

For large simulations, it may be desirable to speed up the calculation by using a
neighbour list. If so, it makes more sense to use a cell-structure, linked-list method
rather than the simple Verlet approach, because of the steadily changing box geometry
(Evans and Morriss, 1984a). �ere is a subtlety here, since the shi�ing layers of boxes may
necessitate searching more cells than is the case in a conventional simulation. �e way
this is done is shown in Code 11.2.

�e Lees–Edwards boundary conditions alone can be used to set up and maintain a
steady linear velocity pro�le, with gradient dvx/dy . �e shear viscosity is then estimated
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Code 11.2 Cell structure and linked lists in sheared boundaries
�is �le is provided online. �is module, together with link_list_module.f90
(Code 5.3), is intended as a drop-in replacement for md_lj_le_module.f90 (Code 11.1).
It may be built with md_nvt_lj_le.f90 of Code 11.1 and the utility modules of
Appendix A, to give a molecular dynamics program for shear �ow using Lees–
Edwards boundaries.

! md_lj_llle_module.f90
! Force routine for MD, LJ, Lees -Edwards , using linked lists
MODULE md_module

from the steady-state nonequilibrium average of Pyx (k = 0),

〈Pyx (t → ∞)〉ne = −η(dvx/dy ). (11.23)

�is technique was used by Naitoh and Ono (1976; 1979) and Evans (1979c,a), and by
many others subsequently. It is a satisfactory way to mimic steady Coue�e �ow occurring
in real systems (Schlichting, 1979).

However, the modi�ed boundaries alone are not su�cient to drive the most gen-
eral time-dependent perturbations. Now we wish to apply a shear perturbation to each
molecule, instead of just relying on the modi�ed boundaries. It is possible to devise a
perturbation term of Hamiltonian form, eqn (11.2), to do this (Hoover et al., 1980b):

A · F (t ) =
(∑

i

yipix

)
F (t ). (11.24)

F is the instantaneous rate of strain, that is, F = dvx/dy . �is gives equations of motion
of the form (eqns (11.1), (11.3))

ẋi = pix/m + yiF (t ) ṗix = fix

ẏi = piy /m ṗiy = fiy − pixF (t )

żi = piz/m ṗiz = fiz . (11.25)

�ese equations are implemented in conjunction with the periodic boundary conditions
of Lees and Edwards (consider replacing yi with yi ± L in eqn (11.25)). We will show that
they are a consistent low-k limit of eqns (11.18), (11.19). If the perturbation in eqn (11.18)
is divided by −ik to give instead

A · F (t ) = Vp⊥x (−k, t )F (t )/(−ik ) =
∑
i

exp(−ikyi )
−ik pixF (t ), (11.26)

the exponential may be expanded and the �rst term dropped because of momentum
conservation. Taking the limit k → 0 then gives eqn (11.24). F (t ) is the instantaneous
rate of strain. �e analogue of eqn (11.19) is then

〈B (t )〉ne = −
V

kBT

∫ t

0
dt ′

〈
B (t − t ′)Pyx

〉
F (t ′) (11.27)
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and eqn (11.21) becomes

〈Pyx (t )〉ne = −
V

kBT

∫ t

0
dt ′

〈
Pyx (t − t

′)Pyx
〉
F (t ′) (11.28)

where zero-k values are implied throughout. Historically, this approach is termed the
dolls tensor algorithm.

In fact, rather than eqns (11.25), a di�erent set of equations is preferred for the
simulation of shear �ow (Evans and Morriss, 1984a,b; Ladd, 1984), and these are usually
referred to as the sllod equations:

ẋi = pix/m + yiF (t ) ṗix = fix − piyF (t )

ẏi = piy /m ṗiy = fiy

żi = piz/m ṗiz = fiz . (11.29)

�ese equations are non-Hamiltonian but generate the same linear responses as eqns (11.25)–
(11.28). �ey are preferred because they are believed to give correct non-linear properties
(Evans and Morriss, 1984b) and the correct distribution in the dilute gas (Ladd, 1984)
where eqn (11.25) fails (see also Daivis and Todd, 2006). �ey also generate trajectories
identical to the straightforward Lees–Edwards boundary conditions when F (t ) is a
constant. �is follows from an elimination of momenta

ẍi = fix/m + yi Ḟ (t ), ÿi = fiy /m, z̈i = fiz/m. (11.30)

If a step function perturbation is applied, that is, F (t ) = constant for t > 0, eqns (11.30)
are integrated over an in�nitesimal time interval at t = 0 (this sets up the correct initial
velocity gradient) and evolution therea�er occurs with normal Newtonian mechanics
(Ḟ = 0) plus the modi�ed boundaries. For the more general case (e.g. F (t ) oscillating in
time) step-by-step integration of eqns (11.29) or (11.30) is needed.

11.3.2 Extensional �ow

Coue�e �ow, as simulated through the preceding equations, contains some rotational
character. �e shear viscosity may, alternatively, be investigated by combining an expan-
sion in the x-direction with a compression in the y-direction. �is generates irrotational,
planar extensional �ow. �e appropriate sllod equations for this case are

ẋi = pix/m + xiF (t ) ṗix = fix − pixF (t )

ẏi = piy /m − yiF (t ) ṗiy = fiy + piyF (t )

żi = piz/m ṗiz = fiz . (11.31)

(We note that there has been some disagreement in the literature as to the correct equa-
tions to use for extensional �ow (Daivis and Todd, 2006; Edwards et al., 2006) which
seems, as yet, unresolved.) At �rst sight, it seems impossible to apply these perturbations
continuously and inde�nitely in time, because the simulation box becomes extremely elon-
gated and narrow. However, as shown by Kraynik and Reinelt (1992) and implemented
in md by Todd and Daivis (1998; 1999) and Baranyai and Cummings (1999), it is possible
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(a) (b)

(c) (d)

Fig. 11.3 Operation of the Kraynik and Reinelt (1992) periodic boundaries for planar elongational
�ow. Expansion occurs vertically, and contraction horizontally. (a) Initially cubic periodic boundary
system, tilted with respect to the �ow axes, highlighting four triangular regions of the reference
cell. (b) At time 1

2∆t , before remapping of periodic boundary conditions. (c) At time 1
2∆t , a�er

remapping. A�ention has been switched to di�erent periodic images of particles, in three of the
four shaded regions of the box. �ose in the lightest-shaded triangle are unchanged. (d) At time ∆t ,
giving cubic periodic boundaries once more. �e simulation will continue for another 1

2∆t before
the next remapping.

to simulate planar extensional �ow using a box which is oriented at a particular angle
with respect to the extension/compression axes, and is periodically remapped onto itself.
We denote this time period as ∆t : it will be signi�cantly longer than the md timestep δt .
�e way this happens is very similar to the famous Arnold ‘cat map’ (Hunt and Todd,
2003; Todd and Daivis, 2007). �e deformation, and remapping, of the simulation box is
illustrated in Fig. 11.3. �e initially cubic periodic boundary system (a) is tilted at an
angle θ = tan−1 ((

√
5 − 1)/2) ≈ 31.72° to the elongation direction. Four di�erent regions

of the original reference cell are highlighted. Expansion and contraction occur in the xy
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plane (the z direction is unperturbed), so the initially square cross-section deforms into
a parallelogram shape. At time 1

2∆t , illustrated in (b), it is possible to choose a di�erent
combination of the periodic images of particles lying in the four regions to create a new
parallelogram, at a perpendicular orientation, as shown in (c). �is simply amounts to
reselecting the set of particles de�ning the basic simulation cell: there is no physical
change to the system. A�er another 1

2∆t of elongation, the cross-section becomes a square
again, as seen in (d). �e simulation then proceeds as before.

Several technical issues arise in this method. For a given choice of boundaries, with a
prescribed rotation angle of the box axes relative to the �ow directions, there is an exactly
calculable strain, and hence a well-de�ned time interval ∆t , between remappings. It makes
sense to choose the timestep δt , and the rate of deformation, such that ∆t consists of an
integer number of steps. During that period, the principal axes of the periodic system will
evolve in a well-de�ned way, but to implement the minimum image and periodic boundary
conventions as the particles move, it is necessary to transform back and forth between
coordinate systems. �is needs to be done in a numerically robust way, avoiding the
build-up of large numbers as the strain increases with time. �e �nite precision available
on a computer can cause a dri� in total momentum, which needs to be corrected. Several
of these points are discussed by Todd and Daivis (2007). Finally, it would also be possible
to start with a cubic box, and wait until a time ∆t before remapping; this would mean that
a highly elongated box would be transformed back into the original cubic shape. However,
the e�ciency of the program will be highest if the maximum elongation of the periodic
box is kept as small as possible (or, more speci�cally, the minimum distance between
periodic images is not allowed to become too small). Switching periodic boundary systems
at the 1

2∆t mark relative to the cubic shape, as we describe here, rather than at ∆t , works
be�er (Daivis, 2014).

Similar considerations have been applied to the simulation of mixed shear and elon-
gational �ow (Hunt et al., 2010). Long-time uniaxial extensional �ow, in which expansion
along x is matched by compression along both y and z, can in principle be tackled using
modi�ed boundaries (Hunt, 2015), although a remapping of the kind discussed earlier is
not possible.

11.3.3 Expansion and contraction

To estimate the bulk viscosity directly, a homogeneous nemd technique based on the
zero-k expression, eqn (2.124), very closely related to those used for shear viscosity, has
been developed by Hoover et al. (1980a,b). �e modi�ed equations of motion are

ṙi = pi/m + riF (t ), ṗi = f i − piF (t ) (11.32)

and they correspond to a homogeneous dilation or contraction of the system. �ey are
combined with uniformly expanding or contracting periodic boundary conditions, of
the kind described for the constant-pressure dynamics of Andersen (1980) in Section 3.9.
In fact, there is a close connection between the two methods, the di�erence lying in
the quantities held �xed and those allowed to vary. In practice, the time dependence
is oscillatory, and an extrapolation to zero frequency is required to estimate the bulk
viscosity.
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11.3.4 Heat �ow

�e development of a nonequilibrium method of determining the thermal conductivity
has been a non-trivial exercise. Essentially identical homogeneous algorithms, compatible
with periodic boundaries, were developed independently by Evans (1982), Evans and
Morriss (1984a), and Gillan and Dixon (1983). �e modi�ed equations are

ṙi = pi/m (11.33a)

ṗi = f i + δϵiF (t ) + 1
2

∑
j

f i j
(
ri j · F (t )

)
−

1
2N

∑
j

∑
k

f jk
(
rjk · F (t )

)
. (11.33b)

Here,F (t ) is a three-component vector chosen to lie (say) in the x-direction:F = (F , 0, 0).
�e term δϵi = ϵi − 〈ϵi 〉 is the deviation of the ‘single-particle energy’ from its average
value (see eqn (2.129)). �e last term in eqn (11.33b) ensures that momentum is conserved
(it redistributes non-conservative terms, with a negative sign, equally amongst all the
particles). �ese equations are non-Hamiltonian, but satisfy the condition laid down
in eqn (11.5), and so allow linear response theory to be applied in the usual way. �e
responses are related to correlations with the zero-k energy �ux jϵx :

〈B (t )〉ne =
V

kBT

∫ t

0
dt ′

〈
B (t − t ′)jϵx

〉
F (t ′) (11.34)

where

jϵx =
1
V

*.
,

∑
i

δϵi ẋi +
∑
i

∑
j>i

(
vi · f i j

)
xi j

+/
-
. (11.35)

In particular,

〈jϵx (t )〉ne =
V

kBT

∫ t

0
dt ′

〈
jϵx (t − t

′)jϵx
〉
F (t ′) (11.36)

so (compare eqn (2.127)) the thermal conductivity is given by a steady-state experiment,
with F (t ′) = F a�er t = 0,

λTT = 〈j
ϵ
x (t → ∞)〉ne/F . (11.37)

�e method induces an energy �ux, without requiring a temperature gradient which
would not be compatible with periodic boundaries. Note that in mixtures, the formulae
are more complicated, and involve the heat �ux rather than the energy �ux; these two
are identical if all the molecules have the same mass (Hansen and McDonald, 2013).

11.3.5 Di�usion

Nonequilibrium methods to measure the di�usion coe�cient or mobility are most closely
connected with the original derivations based on linear-response theory (Kubo, 1957;
1966; Lu�inger, 1964; Zwanzig, 1965). �e mobility of a single molecule in a simulation
may be measured by applying an additional force to that molecule and measuring its
dri� velocity at steady state (Cicco�i and Jacucci, 1975). �is is a useful approach when
a single solute molecule is present in a solvent. �e generalization of this approach to
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measure mutual di�usion in a binary mixture was considered by Cicco�i et al. (1979),
and it is simplest to consider in the context of measuring the electrical conductivity in a
binary electrolyte. A Hamiltonian perturbation (eqn (11.2)) is applied with

A · F (t ) = −
∑
i

qixiF (t ) (11.38)

so the equations of motion are conventional except for

ṗix = fix + qiF (t ). (11.39)

Here, qi = ±1 (say) is the charge on each ion. Responses are then related to correlations
with the charge current

j
q
x (t ) =

1
V

∑
i

qi ẋi (11.40)

and in particular

〈j
q
x (t )〉ne =

V

kBT

∫ t

0
dt ′

〈
j
q
x (t − t

′)j
q
x

〉
F (t ′). (11.41)

Applying a steady-state �eld for t > 0, and measuring the steady-state induced current,
gives the electrical conductivity. Cicco�i et al. (1979) made it clear, however, that it is not
necessary for the particles to be charged; the quantities qi simply label di�erent species.
In the case of a neutral 1:1 binary mixture, the steady-state response in j

q
x is simply related

to the mutual di�usion coe�cient Dm (Jacucci and McDonald, 1975):

Dm =
V

ρ

∫ ∞

0
dt

〈
j
q
x (t )j

q
x (0)

〉
(11.42)

where ρ is the total number density. Hence

Dm =
kBT

ρF
〈j
q
x (t → ∞)〉ne (11.43)

if we apply F at t = 0.
�is approach has been taken to its natural conclusion, when the two components

become identical (Evans et al., 1983; Evans and Morriss, 1984a). Now the qi are simply
labels without physical meaning, in a one-component system: half the particles are
labelled +1 and half labelled −1 at random. When the perturbation of eqn (11.38) is
applied, eqn (11.43) yields the self-di�usion coe�cient. Evans et al. (1983) compare the
Hamiltonian algorithm described here with one derived from Gauss’s principle of least
constraint, and �nd the la�er to be more e�cient in establishing the desired steady state.
For a one-component �uid, of course, there is less motivation to develop nonequilibrium
methods of measuring the di�usion coe�cient, since equilibrium simulations give this
quantity with reasonable accuracy compared with the other transport coe�cients. Before
leaving this section, we should mention that k-dependent perturbations which induce
charge currents may also be applied, much as for the other cases considered previously
(Cicco�i et al., 1979).
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11.3.6 Other perturbations

When it comes to molecular �uids, many more quantities are of interest. All the methods
described previously can be applied, but there is the choice of applying the perturbations
to the centres of mass of the molecules, or to other positions such as the atomic sites
(if any) (Allen, 1984; Ladd, 1984; Allen and Maréchal, 1986). �is choice does not a�ect
the values of hydrodynamic transport coe�cients, but di�erences can be seen at non-
zero wavevector and frequency. Shear–orientational coupling can be measured like this
(Evans, 1981b; Allen and Kivelson, 1981) as can the way in which internal motions of
chain molecules respond to �ows (Brown and Clarke, 1983).

In addition, totally new nemd techniques may be applied to molecular �uids. Evans
and Powles (1982) have investigated the dielectric properties of polar liquids by apply-
ing a suitable electric �eld and observing the response in the dipole moment. Normal
periodic boundaries are employed in this case. Evans (1979b) has described a method of
coupling to the antisymmetric modes of a molecular liquid via an imposed ‘sprain rate’.
No modi�cation of periodic boundaries is necessary, merely the uniform adjustment of
molecular angular velocities. �e transport coe�cient measured in this way is the vortex
viscosity: its measurement by equilibrium simulations is fraught with danger (Evans
and Stree�, 1978; Evans and Hanley, 1982). Evans and Gaylor (1983) have proposed a
method for coupling to second-rank molecular orientation variables. �is is useful for
determining transport coe�cients which appear in the theory of Rayleigh light sca�ering
and �ow birefringence experiments. Indeed, predicted Rayleigh and Raman spectra may
be generated directly by this method. Director reorientation in �eld-induced alignment
of a nematic liquid crystal has also been studied by nemd (Luckhurst and Satoh, 2010).

11.4 Inhomogeneous systems
Nonequilibrium simulations of inhomogeneous systems arise in two contexts: when a
boundary-driven perturbation is preferred to one of the homogeneous methods described
in the previous section, and when dynamics, such as �uid �ow, in the vicinity of an
interface is of intrinsic interest.

As mentioned at the start of the chapter, boundary-driven �ow (of momentum, energy,
etc.) was one of the earliest approaches in nemd (Ashurst and Hoover, 1972; 1973; 1975;
Hoover and Ashurst, 1975; Tenenbaum et al., 1982). �e disadvantage of this technique is
that measurements of bulk transport coe�cients must be made in the region far from the
boundaries, requiring a simulation box which is large enough to give a substantial bulk
region. However, if this requirement is met, then the method has the advantage that the
bulk region can be simulated using unperturbed equations of motion, with all external
e�ects (including the thermostat) con�ned to the boundaries. �is approach is closer to
what is done in most real experiments, although we must not lose sight of the fact that
the applied �elds and measured �ows in a simulation may be several orders of magnitude
larger than in real life.

An elegant technique due to Holian (reported by Hoover and Ashurst (1975) and by
Erpenbeck and Wood (1977)) provides a starting point to discuss so-called reverse nemd
methods. �e technique of Holian measures the di�usion coe�cient by ‘colouring’ or
‘labelling’ particles in a conventional md simulation. A very similar method has recently
been published by Dong and Cao (2012), �e idea is to establish a steady-state �ux of
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particles of two types, in opposite directions, by a suitable relabelling scheme which is
localized to speci�c regions of the box. In Holian’s method, the relabelling occurs when
particles cross the periodic box boundary wall in particular directions. In the method
of Dong and Cao (2012), two regions are identi�ed, half a box length apart, and particle
labels are swapped between them. �e essential points are that the relabelling has no
e�ect on the physical dynamics (because all the atoms are identical, except for the labels)
and that, away from these highly localized regions, the labels are conserved quantities,
so di�usion determines the relation between labelled particle �ux and concentration
gradient. Measuring the ratio of these two quantities gives the di�usion coe�cient. (A
slightly di�erent approach, but based on a similar idea of studying the density and �ux of
particles initially labelled by position, has also appeared (Powles et al., 1994).) Just to be
clear, in all the methods of this paragraph, the system remains (physically) homogeneous:
the treatment of di�usion serves as an introduction to the methods about to be described,
which do cause some variation of properties with position.

�is basic idea of reverse nemd has been proposed by Müller-Plathe, and applied
to the calculation of thermal conductivity (Müller-Plathe, 1997; Bedrov and Smith, 2000;
Zhang et al., 2005), shear viscosity (Müller-Plathe, 1999; Bordat and Müller-Plathe, 2002),
and the Soret coe�cient (Müller-Plathe and Reith, 1999; Polyakov et al., 2008). In these
cases, atomic velocities in the di�erent regions of the box are exchanged so as to generate
a heat �ow or shear �ow. For example, the ‘ho�est’ particle in one region is exchanged
with the ‘coldest’ particle in the other region. In contrast to the di�usion method just
described, this exchange does a�ect the dynamics, so we can expect a non-Boltzmann,
nonequilibrium, distribution of positions and velocities within the exchange regions, and
close to them. However, in the bulk region, once more, unperturbed Newtonian dynamics
will apply. An advantage of the method is that the exchanges conserve overall energy
and momentum, so despite the nonequilibrium nature of the simulation, thermosta�ing
is, at �rst sight, not required. �e desired transport coe�cient is calculated as the ratio of
the �ux (of energy or momentum) to the observed gradient (of temperature or velocity,
respectively). In principle, the former is known exactly from the imposed exchange rate.
A key parameter is the frequency with which exchanges are a�empted, which governs
the strength of the perturbation: exchanging too rarely will produce a small response
compared with the thermal noise, while doing it too o�en will take the system out of
the linear response regime. Tenney and Maginn (2010) point out that, for example in
the shear viscosity case, gradients in �uid temperature and density may arise, causing
nonlinear velocity pro�les and erroneous results. For molecular �uids, it is simplest to
exchange centre-of-mass velocities (Bedrov and Smith, 2000; Bordat and Müller-Plathe,
2002) to avoid a sudden perturbation of internal degrees of freedom (which may include
constrained bond lengths, angles, etc.) resulting from an exchange of atomic velocities
not accompanied by a change in molecular orientations and internal coordinates.

11.5 Flow in con�ned geometry
We turn now to the nonequilibrium simulation of �ow in the vicinity of surfaces, where
the aim is to measure intrinsic dynamical properties of the �uid–surface interfacial region
itself. �e systems of interest may include planar or structured solid surfaces, surfaces
modi�ed by the a�achment of molecules, as in the case of polymer brushes, defouling
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agents, etc., or simply �uid–�uid interfaces. �e �ow of molecular �uids through micro-
scopic channels is of great interest, thanks to potential applications such as desalination.
In nano�uidics, surface e�ects are of critical importance.

A common geometry consists of a slab formed of parallel walls, separated by a distance
in the z direction, with periodic boundary conditions in the x and y directions. �is will
be further discussed in Chapter 14. We assume that the walls are not perfectly �at and
smooth, that is, that the potential energy changes if they are moved in the xy-plane,
relative to the �uid con�ned between them. Keeping the walls stationary, but applying a
constant force in the x direction to all the �uid molecules, will generate planar Poiseuille
�ow, at least for the situation where the walls are far enough apart. Moving the two
walls in the +x and −x directions, respectively, without any other external forces, will
produce the analogue of boundary-driven planar Coue�e �ow. Of course, depending
on the physics of the system, the actual response to these perturbations may be more
complicated. At the smallest wall separations, the problem is be�er regarded as one of
surface friction and lubrication, rather than �uid hydrodynamics.

In the hydrodynamic context, for the simplest situation in which the transverse xy
structure of the wall is taken to act in an averaged way, we model the �ow velocity as
v(z) = (vx (z), vy (z), vz (z)). �e e�ect of each boundary can be characterized by a single
parameter, a friction coe�cient ζ between the �uid and the wall, supplemented by an
estimate of the position, zw, at which the friction is assumed to act:

v
′
x (zw) =

1
`
vx (zw) v

′
y (zw) =

1
`
vy (zw) vz (zw) = 0 (11.44)

where the prime denotes the derivative with respect to z, ` = η/ζ is the slip length, and
η is the shear viscosity in the bulk. In all these equations, the velocities are measured
in the frame of reference of the wall. �e x and y conditions represent the equality of
the transverse stresses (forces per unit area) acting on an in�nitesimal boundary layer at
z = zw, namely a viscous stress coming from the bulk �uid, and a frictional stress which
acts between the boundary and �uid:

Pzx = η v
′
x (zw) = ζ vx (zw), Pzy = η v

′
y (zw) = ζ vy (zw). (11.45)

�e no-slip boundary condition corresponds to ζ → ∞, ` → 0; if this is assumed, then
the position of the boundary corresponds to the vanishing of the transverse velocity �eld
(relative to the wall) under any �ow conditions. On the other hand, if the boundary
position zw is assumed known, then ` can be deduced from the velocity and its gradient
at this position: geometrically it is the extrapolation length of the velocity pro�le (i.e.
the distance beyond zw at which the linearly extrapolated velocity vanishes). With an
increasing interest in nano�uidics, in which channel sizes may approach molecular
dimensions, and smooth or superhydrophobic surfaces, which may exhibit very low
friction (Kannam et al., 2011; 2012b) determining both these parameters by molecular
simulation may be of interest.

On the face of it, performing nemd simulations and measuring the velocity pro�le gives
a route to the surface friction coe�cient ζ , and possibly the position of the hydrodynamic
boundary zw. Typically, a single Coue�e �ow or Poiseuille �ow simulation is not su�cient
to calculate them. Either results from simulations of both kinds must be combined, or a
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systematic study of varying slab width must be conducted (or, of course, both). On top
of this, the apparent friction coe�cient may vary with �ow rate, re�ecting changes in
the surface structure or other nonlinear e�ects. Some case studies, illustrating how these
problems are approached in practice, are presented brie�y in Example 11.1.

Kannam et al. (2012b) have argued that the nemd approach, involving a �t to the
velocity pro�le, is not practical for determining the slip length, especially in the interesting
regime when it becomes large, because of the sensitivity of the method to variations in the
pro�le. Before discussing nemd further, it is appropriate to ask whether an equilibrium
time correlation function exists for the friction coe�cient ζ , and whether this provides a
practical route to determining it.

Bocquet and Barrat (1994) provided a derivation of equilibrium time correlation func-
tions for the wall parameters. �e relevant expressions are:

ζ =
1

AkBT

∫ ∞

0
dt 〈

Fw
x (t )Fw

x (0)〉 (11.46a)

zw =

∫ ∞

0
dt 〈

Fw
x (t )Pzx (0)

〉
∫ ∞

0
dt 〈

Fw
x (t )Fw

x (0)〉 (11.46b)

where A is the wall area, and

Pzx =
∑
i

pixpiz/mi +
(
f f
ix + f w

ix

)
zi (11.47a)

Fw
x =

∑
i

f w
ix . (11.47b)

f f
ix is the force on particle i due to all other particles in the �uid and f w

ix is the force on
i due to the wall. �e pressure tensor component Pzx is calculated using these forces
multiplied by the zi coordinate (contrast the usual case of periodic boundary conditions
which use an explicitly pairwise form of the virial term). �e correlation functions also
involve the total wall–�uid force Fw

x . ζ is the wall friction coe�cient. Note that a shi� in
the origin of z coordinates simply shi�s zw by the same amount and leaves ` invariant.

Eqn (11.46a) for ζ has been contested (Petravic and Harrowell, 2007), on the grounds
that it seems to depend on the wall separation, and is therefore not a true single-surface
property. It is clear that there are some subtleties associated with taking the limits in
the correct order (Bocquet and Barrat, 2013). A careful analysis in terms of the �nite-slab
hydrodynamic modes (Chen et al., 2015) has suggested the origin of the discrepancy: the
formulae of Bocquet and Barrat (1994), eqns (11.46), appear to be valid only in the limit
of large wall separation.

Hansen et al. (2011) have proposed an alternative equilibrium md method. �is relies
on de�ning a �uid slab of width ∆ near one of the walls, which is signi�cantly smaller
than the gap Lz between the walls, but larger than the thickness of the �rst �uid layer
near the wall. Correlation functions involving the slab velocity and the wall–slab force
are now calculated

CvF (t ) =
〈
v

slab
x (0)Fw

x (t )
〉
, Cv v (t ) =

〈
v

slab
x (0)vslab

x (t )
〉

(11.48)
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Example 11.1 Measuring the slip length

Di�erent groups have approached the practical problem of quantifying the friction
coe�cient ζ , or slip length `, of a �uid near a solid wall, in di�erent ways.
Barrat and Bocquet (1999b) use the method of simultaneously ��ing Coue�e and
Poiseuille �ow pro�les to study slip lengths at a non-we�ing interface: they use
Lennard-Jones interactions, with the solid represented by a �xed fcc la�ice, and
with the a�ractive r−6 term adjusted so that the �uid–solid potential is less a�ractive
than the �uid–�uid potential. �e wall separation is Lz/σ ≈ 18, and the observed slip
lengths are in the range 2 ≤ `/σ ≤ 40, so 0.1 ≤ `/Lz ≤ 2.
Duong-Hong et al. (2004) �t Poiseuille and Coue�e �ow pro�les for a dpd model with
each wall composed of a double-layer of dpd beads, supplemented by a bounce-back
boundary condition. �ey assume that the hydrodynamic boundary coincides with
the physical wall position, and �t their results with the no-slip boundary condition:
since they observe smooth pro�les and measure very low �ow velocities near the
walls, this is probably quite an accurate assumption.
Pastorino et al. (2006) and Müller and Pastorino (2008) examine Poiseuille and Cou-
e�e �ow of a polymer melt con�ned between smooth walls with gra�ed polymer
brushes. �ey illustrate the consequences of taking the hydrodynamic boundary
condition to coincide with the physical wall position, on the apparent slip length.
With no brush, ` → ∞, but as the gra�ing density increases, ` decreases to a very
small value, and even apparently goes negative. �is corresponds to the vanishing
of the extrapolated velocity pro�le within the brush, and is clearly associated with
partial penetration of the brush by the melt. �ey also observe a layer, near the wall,
in which the �ow is in the ‘wrong’ direction, due to cyclic motion of the gra�ed chain
ends.
Varnik and Binder (2002) consider Poiseuille �ow of polymer chains. �ey explicitly
consider the hydrodynamic boundary position, and estimate it via the local viscosity
which is calculated from z-resolved stress and velocity pro�les. �e hydrodynamic
boundary is taken to be the place where the local viscosity diverges. �is position
is also observed to be where the velocity gradient vanishes. �e hydrodynamic
boundary is observed to be of order one monomer length inside the physical wall, and
to move away from it asT is lowered, that is, when �uid–wall a�raction is e�ectively
increased. Slip lengths of order 10σ are illustrated.
Priezjev and Troian (2004) study the slip length in fene polymeric systems (see
eqn (1.33)) between double-layer fcc walls with Coue�e �ow, for chain lengths up
to 16. Again, it is assumed that the hydrodynamic boundary and the physical wall
position coincide. �ey choose L/σ ≈ 25 and observe 2 ≤ `/σ ≤ 35 at low shear rates.
�ey also show a close proportionality with the slip length as estimated from the
shear viscosity in bulk, and the structure factor and di�usion coe�cient in the �rst
�uid layer, using the expression of Barrat and Bocquet (1999a). Similar assumptions
are used in their study of �uid �ow near pa�erned surfaces (Priezjev et al., 2005).
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where now Fw
x is the total force on the slab due to the wall. Hansen et al. (2011) then write

a relation between the Laplace transforms of these correlation functions, and a Laplace
transformed friction kernel ζ̃ (s ):

ζ̃ (s ) = −
1
A

C̃vF (s )

C̃v v (s )
⇒ ζ = −

1
A

∫∞
0 dt CvF (t )∫∞
0 dt Cv v (t )

(11.49)

and they determine ζ by ��ing the functions C̃vF (s ) and C̃v v (s ).
Mundy et al. (1996; 1997) and Tuckerman et al. (1997) presented a nonequilibrium

method to calculate these coe�cients. Neglecting the thermostat, their method is based
on a form of the sllod equations

ẋi = pix/mi + γ (zi − Z0), ṗix = fix − γpiz (11.50)

with conventional expressions for the other components. �e perturbation is de�ned to
be zero at a chosen coordinate Z0. When implemented with appropriate thermosta�ing
this generates a linear velocity pro�le with gradient γ , having a zero value at Z0. It should
be noted that, in this method, the boundaries do not move. Linear response theory based
on these equations and the analysis of Bocquet and Barrat (1994) then gives

〈
Fw
x
〉

NE =
γ

kBT

∫ ∞

0
dt

〈
Fw
x (t )Q̇ (0)

〉
where Q̇ = Pzx − Z0F

w
x and 〈· · · 〉NE denotes the steady-state (long-time) nonequilibrium

average. Comparison with eqns (11.46) gives〈
Fw
x
〉

NE
A

= ζ γ (zw − Z0)

which has the same physical interpretation as eqn (11.45). Hence, simulations at two
chosen values of Z0, measuring 〈

Fw
x
〉

NE, will give enough information to determine the
two boundary parameters. In principle, these could come from a single simulation using
the response at both walls, but it is quite likely that the �ow at one of them will be so high
as to lie outside the linear response regime. �erefore, care should be taken. In practice,
thermosta�ing needs to be applied to all the degrees of freedom, as discussed in the papers
(Mundy et al., 1996; 1997; Tuckerman et al., 1997). We note in passing that the relation
between the sllod equations, Lees–Edwards boundaries, and wall-driven Coue�e �ow
has been discussed by Petravic (2007). Finally, at the risk of repetition, the reservations of
Kannam et al. (2012b) about nemd methods may still apply to this approach, especially
when the slip length is high, and the underlying equations (Bocquet and Barrat, 1994)
seem to be inapplicable when the wall separation is small.

When the �uid �ow occurs in highly con�ned and/or non-planar geometries, notably
nanotubes, additional e�ects come into play. �e curvature of the surface itself may
modify the friction coe�cient. Surface structuring of the liquid may extend through most
of the channel, so that the shear viscosity of the bulk �uid is not a useful parameter.
For the smallest nanotubes, the motion may be e�ectively restricted to a single �le of
atoms, when the conventional equations of di�usion and viscous �ow no longer apply.
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�e �ow of water in carbon nanotubes has been an especially challenging problem,
with reported slip lengths spanning several orders of magnitude, in both simulation
and experiment (for a summary see Kannam et al., 2013). In addition to all the technical
simulation issues, the results in highly con�ned geometries can be sensitive to the water
model employed: for example, whether it is �exible or rigid, whether hydrogen-bond
networks are easily formed and broken, and even by subtle electronic structure e�ects
(see e.g. Cicero et al., 2008). Although nemd methods are quite commonly applied to this
problem, great care must be taken in interpreting the results, and it may be advisable
to compare with equilibrium md: Kannam et al. (2012a) have extended the approach of
Hansen et al. (2011) to handle cylindrical geometry. For su�ciently narrow channels,
the standard hydrodynamic description of �uid �ow must incorporate e�ects such as
rotation–translation coupling. Increasingly, molecular simulations are used to supplement
experiments in this area, and cast light on the origins of interesting �ow e�ects (Hansen
et al., 2009; Bonthuis et al., 2009; Hansen et al., 2010; Bonthuis et al., 2011).

�ermosta�ing the system, as always, is a sensitive issue (Bernardi et al., 2010). One
approach, when the walls are physically constructed of atoms which are allowed to vibrate,
is to apply a thermostat to the wall particles only, and allow a thermal gradient to develop
in the �uid. �is has the merit of corresponding to the physical situation in which heat is
dissipated at the walls. A second approach is to re-thermalize the particle velocities when
they collide with the wall. However, Bernardi et al. (2010) discourage the use of ‘frozen’
(i.e. rigid) walls, and �uid atom thermosta�ing, because of consequent introduction of
arti�cial e�ects.

11.6 Nonequilibrium free-energy measurements
In this section we turn to the use of nonequilibrium simulations to measure free-energy
di�erences. Already, in Chapter 9, we have encountered methods in which some parameter,
λ, is varied, so as to convert one system, A, into another, B. In principle, if this is done
quasi-statically (i.e. in�nitesimally slowly), the work doneW may be expressed as the
integral of a thermodynamic force, −∂A/∂λ, itself the average of a mechanical force〈
∂H /∂λ

〉
. Hence, by numerical integration, the free energy ∆A =W may be obtained.

(One may consider repeating the experiment many times and averaging the work, but
for quasi-static changes we do not distinguish betweenW and 〈W〉.) Several variants of
this technique are described in Chapter 9.

What happens if the variation of λ is done rapidly? Examples from real life include
stretching a biomolecule (Liphardt et al., 2002; Collin et al., 2005), or pulling a colloidal
particle through water using some laser tweezers (Wang et al., 2002; Carberry et al., 2004).
In a simulation, this would correspond to a �nite-time τ , and repeating the simulation
many times will give a distribution of results. Each simulation gives

W =

∫ τ

0
dt

(
∂H (λt ; rt , pt )

∂λt

)
λ̇t = H (λτ ; rτ , pτ ) −H (λ0, r0, p0). (11.51)

�e system coordinates and momenta will follow a path (rt , pt ), t = 0 . . . τ , and the work
W will depend on this whole path; henceW depends on the initial con�guration (r0, p0),
and we will need to average over this with (let us say) a canonical ensemble.
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P (W )

0 W∆A−∆A

P+ (W )P− (−W )P− (W )

Fig. 11.4 Schematic plot of probability distributions for work P+ (W ) involved in the forward
process (full lines), and negative work P− (−W ) of the reverse process (dashed lines). We also show
the distribution of work P− (W ) of the reverse process (dash-do�ed lines), of which P− (−W ) is a
re�ection. Narrower peaks are for low speeds, and broader curves for high speeds.

Let us call A→ B the ‘forward’ process, denoted ‘+’, and B→ A the ‘reverse’ process,
denoted ‘−’. �en the Second Law of thermodynamics tells us that

〈W〉+ ≥ ∆A, and 〈W〉− ≥ −∆A, (11.52)

with the equalities only holding for reversible (in�nitesimally slow) processes. Following
from the work of Evans and Searles (1994; 2002), Jarzynski (1997), and Crooks (1999), one
can write down much more precise and useful equations. �e Crooks �uctuation theorem
states that

P+ (W )

P− (−W )
= exp

(
W − ∆A

kBT

)
(11.53)

relating the probability distributions for the work done in the forward and reverse pro-
cesses. Figure 11.4 illustrates what is meant by the two probability functions in this
expression. �e Jarzynski relation〈exp(−W/kBT )

〉
+ = exp(−∆A/kBT ) (11.54)

relates the work of the forward process to the corresponding free-energy change. It is very
surprising at �rst sight, because the quantity on the le� is the average of a nonequilibrium
quantity apparently depending on the speed of the transformation, while the right-hand
side is purely based on equilibrium thermodynamics. Nonetheless, it is an exact equality,
easily derived from eqn (11.53), and the more familiar inequality 〈W〉+ ≥ ∆A is perfectly
consistent with it.

�ese two equations, (11.53) and (11.54), and variations of them, underpin several
techniques for measuring free-energy di�erences in simulations. �e distributions of
Fig. 11.4 show several features that in�uence practical concerns. Just as for some of the
techniques discussed in Chapter 9, it is usually safer to compare probability distributions
than simply calculate a single number, so a method that uses eqn (11.53) is likely to be
more reliable than a ‘black box’ implementation of eqn (11.54). Any pairs of forward
and reverse trajectories that are being compared must be the opposite of each other,
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that is, the control parameter λ must change at the same speed, in opposite directions.
All the corresponding forward and reverse distributions cross at the same value ofW ,
which according to eqn (11.53) is ∆A. Moreover, where P+ (W ) and P− (−W ) overlap,
it is possible to plot ln

(
P+ (W )/P− (−W )

)
vs βW , giving a straight line of gradient 1

passing through zero atW = ∆A. Wu and Ko�e (2005) and Ko�e (2006) have given some
heuristic guidelines to help assess the reliability of the forward and reverse processes.

A signi�cant simpli�cation occurs if the probability distribution of the workW done
in a nonequilibrium process is Gaussian, because then it is completely de�ned by its �rst
two moments: 〈W〉 and σ 2 = 〈W2〉 − 〈W〉2. �e properties of Gaussian distributions
imply that 〈

exp(−βW )
〉
+
= exp

(
−β〈W〉+

)
exp(σ 2β2/2) = exp(−β∆A)

where the last equation is Jarzynski’s. Hence, taking logs,

〈W〉+ −
σ 2

2kBT
= ∆A, or (βσ )2 = 2β (〈W〉+ − ∆A).

�is makes it clear that 〈W〉+ ≥ ∆A, and also that the average amount of work dissipated
is related to the �uctuations in the work done. �e variance of the dissipative work
is exactly twice the distance of the mean value from ∆A, when measured in units of
kBT . Figure 11.4 has been sketched, roughly, with this in mind, that is, the further from
equilibrium, the broader the distribution. Of course, there is no guarantee that the actual
distribution of work in a nonequilibrium simulation will be Gaussian, but it gives a guide
to the expected behaviour. �e faster the process is performed, the further the peak of the
distribution will be from the desired free energy.

It is important to understand the nature of the averaging going on in such a process.
Although the equilibrium free-energy di�erence ∆A = AB−AA appears in both eqn (11.53)
and (11.54), we only ever need to assume that the starting con�gurations for these tra-
jectories (forward or reverse) are at equilibrium! A�er the driving forces are switched
o� at t = τ , the �nal con�gurations will almost certainly not be at equilibrium: they will
subsequently relax to equilibrium (at the new state point) without any further work being
done; this does not a�ect the validity of the equations, which have been veri�ed under a
range of assumptions about the type of dynamics involved in the time evolution, and the
applied thermosta�ing.

�e rate of switching is one of the parameters that can be chosen to optimize the
method. At one extreme, very slow switching, we recover the thermodynamic integration
route mentioned at the start of this section. At the other extreme, instantaneous switching,
there is no dynamical evolution at all and we get eqn (9.3). As well as this choice, one can
imagine introducing a bias into the sampling, much as was done for static free-energy
methods described in Chapter 9. A useful summary of optimization approaches has been
published by Dellago and Hummer (2014).

Frequently the free energy is desired as a function F (q) of some quantity, q(r), a
combination of atomic coordinates. Common examples of this are the e�ective free energy
(including averaged solvent e�ects) between two biomolecules, as a function of their
separation, or the barrier to transfer of a molecule through a lipid bilayer, as a function
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of centre-of-mass position. �e Landau free energy is wri�en, as in (2.172), in terms of a
probability distribution function F (q) = −kBT ln〈δ (q − q(r))〉 calculated in the canonical
ensemble.

By accumulating and analysing the work done at intermediate stages, one can calculate
a free-energy pro�le, A(λ), which is a function of the control parameter λ. If λ and q are
the same thing, then this is identical with F (q). However, it is quite common for λ and
q to be di�erent: λ is typically a control parameter in the Hamiltonian, with q being a
generalized coordinate to which it is coupled. �e Hamiltonian might take the form

H (λt ) = H (λ0) + ∆V (λt ,q), with H (λ0) = HA, and H (λτ ) = HB. (11.55)

Hummer and Szabo (2001; 2005) approached this problem using the same kind of his-
togram reweighting scheme described in Chapter 9 (Ferrenberg and Swendsen, 1989) and
writing the desired distribution as a linear combination of distributions in q obtained at
di�erent times in the nonequilibrium process. �e weights appearing in this combina-
tion are intended to emphasize the contributions from the trajectory which sample best
the region around each value of q. Oberhofer and Dellago (2009) have reconsidered the
selection of weights, and propose an optimal way of selecting them, but conclude that the
original choice of Hummer and Szabo performs well. Amongst several other approaches
to improving the method, Vaikuntanathan and Jarzynski (2011) have proposed a way of
reducing dissipation in the calculated work, by introducing arti�cial ‘escorted’ trajectories.

11.7 Practical points
In almost all of the perturbations described earlier, work is done on the system, and it
will heat up if no thermostat is applied. So far, we have neglected the additional terms
in the equation of motion that are necessary to thermostat the system. However, the
thermosta�ing method is very important, and an incorrect approach to temperature
control can invalidate the results of a nonequilibrium measurement.

Usually, the state point is controlled at each step of the simulation. �is can be done
by the methods described in Chapter 9, to give either isothermal or adiabatic equations
of motion. A term −ξ (r, p)p is added to the momentum equations given in the previous
sections, with ξ chosen by a Lagrange multiplier technique so as to constrain the kinetic
temperature, or the energy, to the desired value.

�e most important question is ‘what to thermostat?’ In �uid �ow, the particle velocity
consists of two parts. �e �rst of these is the ‘streaming velocity’, which is free of thermal
�uctuations and should correspond (at least over length scales and time scales which
are large compared with molecular ones) to solutions of the appropriate hydrodynamic
equations (for example, the Navier–Stokes equation). �e second component, the ‘thermal’
or ‘peculiar’ velocity, is measured with respect to the streaming velocity. �is is subject
to all the thermal �uctuations that are neglected in continuum hydrodynamics. Nearby
molecules in a simulation will have the same streaming velocity (or very nearly so)
but di�erent thermal velocities, in general. Only the la�er should be thermosta�ed: the
temperature corresponds to the mean-squared deviations of the molecular velocities with
respect to the local �ow. However, in the equations of motion, the thermosta�ing term
−ξ (r, p)p involves momenta calculated in an external, stationary, frame of reference. �is
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raises a problem, because the streaming velocity is one of the ‘outputs’ from a simulation,
not one of the ‘inputs’. �ere is no simple way of separating the two parts of the overall
velocity. In the simplest geometry, using the Lees–Edwards boundaries and the sllod
equations to simulate Coue�e �ow, it might seem reasonable to assume a linear velocity
pro�le determined by the applied velocity gradient. However, this is not foolproof: in
an inhomogeneous system (for example, containing a �uid–�uid interface) this linear
pro�le will be incorrect (Padilla et al., 1995), and deviations from such a pro�le arise
spontaneously in �uids which exhibit shear banding.

One approach, the pro�le unbiased thermostat (put), involves averaging the velocity,
as a function of the spatial coordinates, over a period of time, and using this as the
streaming velocity (Evans and Morriss, 1986). �is is then subtracted from each molecule’s
velocity prior to thermosta�ing, and added back again a�erwards. �e averaging requires
the accumulation of a histogram, on some chosen spatial resolution. For a simple planar
�ow (Coue�e or Poiseuille, for instance), a histogram dividing the system into slabs
(Padilla et al., 1995), or a Fourier decomposition in one direction (Travis et al., 1995),
would be suitable. Travis et al. (1995) also point out the need to consider the orientation
dependence of the streaming velocity for molecular systems. �e procedure is clearly
easiest if the �ow can be assumed to be steady in time, although a method to handle
dynamical streaming velocities has been proposed (Bagchi et al., 1996).

A second approach is to use a thermostat which is based on relative velocities, such
as the pairwise Lowe–Andersen thermostat (Lowe, 1999) described in Chapter 12, or a
pairwise version of the Nosé–Hoover thermostat (Allen and Schmid, 2007). An alternative
is the con�gurational temperature thermostat of Braga and Travis (2005), eqn (3.76). �is
last method was used by Costa et al. (2013) in dynamic nemd simulations of Coue�e
�ow. Daivis et al. (2012) have compared di�erent thermosta�ing methods for shear �ow,
�nding that measured shear viscosities are generally insensitive to the details, but normal
stress di�erences are strongly dependent on the thermostat.

A second practical di�culty, especially relevant for shear and extensional �ows, is the
implementation of a cell neighbour list scheme to improve the e�ciency of the program.
For a shearing system, one can either use the ‘shi�ing box’ representation (Lees and
Edwards, 1972) of Fig. 11.2, or an equivalent scheme (Evans, 1979c; Hansen and Evans,
1994) in which each box is sheared into a parallelogram (in 3D, a parallelopiped); for
elongational �ow, Fig. 11.3 shows how the boxes are deformed into such a shape, but
it is also possible to rotate and remap the periodic system into a ‘shi�ing box’ form,
when constructing lists. Whichever representation is used, the periodic system of cells
may be made commensurate with the simulation box; however, a�ention needs to be
paid to the minimum dimensions of the (possibly elongated) cells, and to the (possibly
time-dependent) de�nition of the set of ‘neighbouring cells’ which are scanned for atoms
within interaction range. Hansen and Evans (1994) and Bhupathiraju et al. (1996) have
explained how to do this for shear �ow; in the shi�ing-box format, it is just necessary
to reset the cell connectivity when the neighbouring boxes reach an o�set of half a box
length, or equivalently when the shear angle reaches tan−1 0.5 ≈ 26.6°. Matin et al. (2003)
have discussed practical ways of doing this for the Kraynik–Reinelt periodic boundaries of
planar elongational �ow. A signi�cant di�erence is that the number of cells must change
with time, as the box dimensions change.
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11.8 Conclusions
Should we use nonequilibrium methods? It is still an open question as to whether or
not they are more e�cient at estimating bulk transport coe�cients than equilibrium
simulations. It should be remembered that the techniques described in Chapter 8 can
produce an entire range of correlation functions and transport coe�cients from the output
of a single equilibrium run. Nonequilibrium simulations are normally able to provide only
one fundamental transport coe�cient, plus the coe�cients describing cross-coupling
with the applied perturbation, at once. If the basic simulation is expensive (e.g. for a
complicated molecular model) compared with the correlation function analysis, then
equilibrium methods should be used. On the other hand, nemd is claimed to be much
more e�cient when the comparison is made for individual transport coe�cients. By
applying a steady-state perturbation, the problem of integrating a correlation function
which has noisy long-time behaviour (or similarly examining an Einstein plot) is avoided,
but it is replaced with the need to extrapolate, in a possibly ill-de�ned manner, to zero
applied perturbation. Chen et al. (2009) argue, in a short note, that the nemd approach
is rarely advantageous, provided the equilibrium correlation functions are analysed in a
sensible way. �e debate will, no doubt, continue.

A similar discussion surrounds the use of nonequilibrium methods for the calculation
of free-energy di�erences: are they really more economical (for a given accuracy) than
conventional methods? Oberhofer et al. (2005) consider this question, and conclude that,
provided similar consideration is given to biasing the sampling in each case, fast switching
is generally inferior to slow switching. �ey make the point that the time evolution
implicit in the nonequilibrium approach is really not critical, in the sense that it is used
simply to generate a mapping between ensembles. Dellago and Hummer (2014) essentially
reinforce this conclusion, highlighting the fact that the exponential work average of the
Jarzynski equation, for strong driving, tends to be dominated by a small number of large
contributions, giving high statistical errors, and a risk of bias in the result. �ey suggest
that fast switching may be more successful when several distinct pathways connect the
states of interest. �ey also point out that, as this is a relatively newly developed �eld,
there is still the potential for more sophisticated variants to be devised. However, of
course, it is essential to make a fair comparison between standard and newly developed
techniques before drawing conclusions.
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Mesoscale methods

12.1 Introduction
�e simulation techniques we shall describe in this chapter are motivated by the desire
to bridge the time and/or length scales between a detailed description of the molecular
system of interest and the behaviour that it exhibits. �is may involve approximating
the interactions between molecular sub-units; an extension of the united-atom approach
which is o�en called ‘coarse graining’. It may also mean dividing the system into (at
least) two parts, and treating them at di�erent levels of detail. For static properties this is
sometimes described as ‘integrating out’ some of the degrees of freedom; if dynamical
properties are of interest, it involves adopting a ‘reduced’ equation of motion, in which
the time-dependent e�ects of the omi�ed variables are approximately accounted for.

Consider the simulation of a large molecule (e.g. a protein) or a collection of suspended
particles (a colloid) in a solvent such as water. Even though the motion of the solvent
molecules is of li�le intrinsic interest, they will be present in large numbers, and they will
make a full molecular simulation very expensive. In such a case, it may be reasonable to
adopt an approximate approach: the solvent particles are omi�ed from the simulation, and
their e�ects upon the solute represented by a combination of random forces and frictional
terms. Newton’s equations of motion are thus replaced by some kind of Langevin equation,
and this will be the subject of the �rst few sections.

Such a simple description makes many approximations, and neglects one possibly
important e�ect on the solute motion: the hydrodynamic �ow of the solvent. Several
methods have been proposed to put this ingredient back into the simulation, and we
shall describe three of these: dissipative particle dynamics, the multiparticle collision
method (originally called stochastic rotation dynamics), and the la�ice Boltzmann method.
�ese methods have been particularly successful in the study of complex �uids, for
example amphiphilic molecules which form a variety of phases including micelles, vesicles,
and bilayers. In the terminology of �uid dynamics, these methods tackle problems at
intermediate values of the Knudsen number Kn, the ratio between the mean free path of
the particles and the characteristic length scale of inhomogeneities in the system (Raabe,
2004); molecular dynamics would apply for Kn & 1, while the solution of the continuum
Navier–Stokes equations would be suitable for Kn � 10−1.

�ese techniques allow us to tackle problems at the mesoscale, rather than the
microscale (or atomistic) level. �ere are other aspects to this: the systematic approach

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
© M. P. Allen and D. J. Tildesley 2017. Published in 2017 by Oxford University Press.
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to coarse graining the interactions, and the relation between dynamical algorithms and
Monte Carlo methods, to name but two. We discuss these at the end of the chapter.

12.2 Langevin and Brownian dynamics
�e Langevin equation is a stochastic di�erential equation, describing the Brownian mo-
tion of particles in a liquid, as well as a number of other physical systems (Chandrasekhar,
1943; Snook, 2007; Co�ey and Kalmykov, 2012). Formally, it may be derived by applying
projection operator methods to the equations of motion for the phase space distribution
function (Zwanzig, 1960; 1961a,b) or the dynamical variables themselves (Mori, 1965a,b);
an elegant uni�ed treatment has been presented by Nordholm and Zwanzig (1975). �e
essential physical idea behind the derivation is time scale separation: the variables that are
retained are assumed to vary much more slowly than those that are represented by stochas-
tic terms. More details may be found elsewhere (Berne and Pecora, 1976; Mc�arrie, 1976;
Hansen and McDonald, 2013).

Our starting point is the Langevin equation in the following form:

ṙ = v = p/m, ṗ = f − ξv + σẇ = f − γp + σẇ. (12.1)

As usual, each vector represents the complete set of N particles. �e last three terms are,
respectively, the e�ects of the systematic forces of interaction between the particles, the
frictional forces on them due to the solvent, and the so-called random forces, which are
represented by the time derivative of a (3N -dimensional) Wiener process w. Here the
friction coe�cient ξ (or equivalently the damping constant γ ) is related by the equation

ξ =mγ =
kBT

D

to the di�usion coe�cient D of the particles in the absence of any interactions, that is, if
we set f = 0. �e coe�cient σ governs the strength of the random forces. It is related to ξ
through the �uctuation–dissipation theorem

σ =
√

2ξkBT =
√

2γmkBT .

Given this equation, and the properties of w discussed later, it can be shown that eqn (12.1)
generates a trajectory that samples states from the canonical ensemble at temperature
T . �e key relations between ξ , σ , and D essentially go back to Einstein’s analysis of
Brownian motion; details can be found elsewhere (Chandrasekhar, 1943; Kubo, 1966;
Snook, 2007; Marconi et al., 2008; Co�ey and Kalmykov, 2012). Simulation methods which
use eqn (12.1), as well as the version without inertia which will be given shortly, are
generally referred to as Brownian dynamics (bd) techniques, or sometimes as Langevin
dynamics.

We should spend a moment discussing the physics, and the mathematics, implicit in
eqn (12.1), especially the random force term. Each of the 3N components wiα (i = 1 . . .N ,
α = x ,y, z), is assumed to be independent. �e de�nition of a Wiener process wiα is
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that its change over a di�erentially small time interval dt is a random variable, normally
distributed, with variance equal to dt . In other words, we may write

dw = w(t + dt ) −w(t ) =
√

dt G (12.2)

where each component of G, Giα , is an independent Gaussian random variable, with zero
mean 〈Giα 〉 = 0 and unit variance, 〈GiαG jβ 〉 = δi jδα β . So, ẇ is not properly de�ned, since
dw is not proportional to dt in the limit dt → 0. �e

√
dt-dependence means that the

momentum part of eqn (12.1) should really be wri�en

dp = f dt − γp dt + σ dw

and this form, together with eqn (12.2), translates straightforwardly into a numerical
integration algorithm with a nonvanishing timestep δt , as we shall see. Before discarding
ẇ, however, we note that its time correlation function is proportional to a Dirac delta
function 〈ẇiα (0)ẇiα (t )〉 ∝ δ (t ). �is is consistent with the picture of rapid, random,
bu�eting of a particle by the surrounding solvent. It is also the de�ning characteristic of
‘white noise’, which is a term sometimes used to describe the random force term.

We should note two more important features of the stochastic term: it is uncorrelated
with any of the dynamical variables (positions and velocities) at earlier times, and it is
an additive term, which avoids some complications of stochastic calculus. �is simpli�es
the construction of a numerical algorithm. �e earliest approach (Ermak and Buckholz,
1980) had the disadvantage of not reducing to a stable molecular dynamics method in
the limit of low friction ξ → 0. Later suggestions (Allen, 1980; 1982; van Gunsteren and
Berendsen, 1982; 1988) were designed to give Verlet-equivalent algorithms in this limit,
and the particular suggestion of Brünger et al. (1984) has been widely adopted.

�e fact that the stochastic terms are independent of the coordinates and momenta
means that the equations in the absence of forces are exactly soluble, and this allows the
construction of a symplectic integration algorithm, using an approach similar to the one
that yields velocity Verlet (see Section 3.2.2). An operator-spli�ing method may be devised
in various di�erent ways (see e.g. Co�er and Reich, 2006; Bussi and Parrinello, 2007;
Melchionna, 2007). �ese have been analysed in some detail (Leimkuhler and Ma�hews,
2013a,b). �e optimal method, which they call ‘baoab’, involves inserting, into the middle
of the usual ‘kick–dri�–kick’ sequence, the exact solution of the force-free momentum
equation

dp = −γp dt +
√

2γmkBT dw

which is

p(t + δt ) = exp(−γδt )p(t ) +
√

1 − exp(−2γδt )
√
mkBTG.
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Code 12.1 Brownian dynamics program
�is �le is provided online. �e bd programme bd_nvt_lj.f90, combined with the
standard Lennard-Jones module md_lj_module.f90 (Code 3.4) for the forces, and the
utility modules of Appendix A, carries out Langevin equation dynamics using the
baoab algorithm of Leimkuhler and Ma�hews (2013a).

! bd_nvt_lj.f90
! Brownian dynamics , NVT ensemble
PROGRAM bd_nvt_lj

�is gives the following algorithm

p(t + 1
2δt ) = p(t ) + 1

2δtf (t ) (12.3a)
r(t + 1

2δt ) = r(t ) + 1
2δtp(t +

1
2δt )/m (12.3b)

p′(t + 1
2δt ) = exp(−γδt )p(t + 1

2δt ) +
√

1 − exp(−2γδt )
√
mkBTG (12.3c)

r(t + δt ) = r(t + 1
2δt ) +

1
2δtp

′(t + 1
2δt )/m (12.3d)

p(t + δt ) = p′(t + 1
2δt ) +

1
2δtf (t + δt ). (12.3e)

Here, eqns (12.3a) and (12.3e) are the (completely standard) half-step kicks. Eqns (12.3b)
and (12.3d) are the usual dri� equations, but for half a step at a time. �e frictional and
random force terms together appear in the middle step (12.3c). Leimkuhler and Ma�hews
have shown that this algorithm performs well at both high and low values of the friction,
using test systems such as a one-dimensional oscillator, Lennard-Jones and Morse potential
atomic clusters, and alanine dipeptide (solvated and unsolvated). An example bd program
is given in Code 12.1.

At high friction, the relaxation of the momenta can be assumed to occur instanta-
neously. Se�ing ṗ = 0 in eqn (12.1) and substituting into the equation for ṙ gives the
Brownian dynamics equation of motion (i.e. the Langevin equation without inertia)

ṙ = ξ−1
(
f + σẇ

)
=

D

kBT

(
f + σẇ

)
. (12.4)

A simple algorithm for this (Ermak and Yeh, 1974; Ermak, 1975) is

r(t + δt ) = r(t ) +
D

kBT
f (t )δt +

√
2Dδt G. (12.5)

Again, the di�usion coe�cient enters as a parameter of the method, and determines
the variance of the last term, the random Gaussian displacements. In the absence of
forces, we would see displacements δriα = riα (t + δt ) − riα (t ) satisfying 〈δr 2

iα 〉 = 2Dδt
as expected. �is algorithm can also be interpreted as a Monte Carlo method of the
kind discussed in Section 9.3, and we return to this in Section 12.3. �e formalism may
easily be extended from atomic systems to include rigid and non-rigid molecules, and
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the incorporation of constraints is straightforward (van Gunsteren and Berendsen, 1982)
although the usual care should be taken in their application (van Gunsteren, 1980; van
Gunsteren and Karplus, 1982).

�e previous equations all ignore memory e�ects in the random force as well as indirect
interactions between the atoms, mediated by the solvent. In principle, the inclusion of
a speci�ed memory function into the Langevin equation is straightforward (Cicco�i et
al., 1976a; Doll and Dion, 1976; Adelman, 1979; Ermak and Buckholz, 1980; Cicco�i and
Ryckaert, 1980). Essentially, this corresponds to the inclusion of additional derivatives of
the momentum in the equations of motion, or to the extension of the time correlation
function of the random force from a delta function to, for example, a decaying exponential.

�e simplest e�ect of the surrounding solvent is to replace the bare interaction between
solute particles by a potential of mean force. We shall discuss this in Section 12.7. �e
second e�ect, neglected in the simple Langevin and Brownian dynamics equations, is the
e�ect that solvent �ow, induced by one molecule, has on the surrounding molecules. If this
hydrodynamic e�ect is not tackled directly (as in Sections 12.4–12.6), it can be introduced
approximately into the Brownian dynamics algorithm via a con�guration-dependent
di�usion coe�cient. �e way this appears in the equation of motion depends on the
convention adopted for stochastic di�erentials; however, the integration algorithm is
unambiguously wri�en (Ermak and McCammon, 1978)

r(t + δt ) = r(t ) +
D(t )

kBT
· f (t )δt + ∇ · D(t )δt + R. (12.6)

Here, as usual, the vectors contain 3N components; D is a 3N × 3N di�usion tensor
or matrix, whose components depend on molecular positions. �e random part of the
displacement, R, is selected from the 3N -variate Gaussian distribution with zero means
and covariance matrix 〈

RR
〉
= 2Dδt . (12.7)

As a consequence, the components of R are correlated with each other. Sampling these
random variables is a comparatively time-consuming exercise, depending on some expen-
sive manipulations of the matrix D. Two forms of D are commonly adopted. �e simplest,
suggested by the equations of macroscopic hydrodynamics, is the Oseen tensor. Writing
D as an N × N set of 3 × 3 matrices Di j for each pair of molecules,

D =
*.....
,

D11 D12 · · · D1N
D21 D22 · · · D2N
...

...
. . .

...
DN 1 DN 2 · · · DNN

+/////
-

this takes the form

Di j =




kBT

6πηa 1 i = j

kBT

8πηri j

(
1 + r̂i j r̂i j

)
i , j

(12.8)

where η is the viscosity, a an estimate of the hydrodynamic radius (not diameter!), and ri j
the vector between the molecules, with r̂i j = ri j/ri j as usual. �is tensor has the property



Brownian dynamics, molecular dynamics, and Monte Carlo 387

that ∇ · D = 0, so this term may be dropped from eqn (12.6). �e standard approach
to generating the random displacements is to factorize D by the Cholesky square root
method (Press et al., 2007), that is, determine the (unique) lower triangular real matrix L
such that D = L · LT (where LT is the transpose of L). �en, given independently sampled
normal (unit-variance) variables G,

R =
√

2∆t L · G (12.9)

will be the desired set of correlated Gaussian displacements (Ermak and McCammon,
1978) (see also Appendix E). However, the decomposition is only valid for positive de�nite
matrices, and the Oseen tensor does not always ful�l this condition.

For this reason, the Oseen tensor is commonly replaced by the Rotne–Prager–Yamakawa
tensor (Rotne and Prager, 1969; Yamakawa, 1970), which has the identical form for i = j,
but which for di�erent particles i , j is

Di j =




(
kBT

8πηri j

) 

(
1 + r̂i j r̂i j

)
+

2a2

r 2
i j

(
1
31 − r̂i j r̂i j

)
for ri j ≥ 2a,(

kBT

6πηa

) [(
1 − 9

32
ri j

a

)
1 +

3
32

ri j

a
r̂i j r̂i j

]
for ri j < 2a.

(12.10)

�is also has the property of zero divergence, and is positive de�nite for all ri j . We
should bear in mind that all these tensors are only leading approximations (Felderhof,
1977; Schmitz and Felderhof, 1982), and what is more they assume pairwise additivity
in what is really a many-body problem in hydrodynamics (Mazur, 1982; Mazur and van
Saarloos, 1982; van Saarloos and Mazur, 1983).

�e solution of these equations of motion may be speeded up by a variety of techniques.
�e Cholesky method has computational cost O (N 3) which rapidly becomes expensive
for large N . Fixman (1986) has proposed a method for improving this to O (N 2.25), using
an expansion in Chebyshev polynomials. Beenakker (1986) has suggested handling the
long-range hydrodynamic interactions by Ewald sum; there are some subtleties associated
with this (Smith, 1987; Smith et al., 1987). Banchio and Brady (2003) apply a fast Fourier
transform method to compute many-body long-range hydrodynamic interactions, and
divide the Brownian forces into near-�eld and far-�eld components, resulting in a method
that is O (N 1.5 logN ) for su�ciently large N . Jain et al. (2012) have optimized both the
Chebyshev and Ewald elements of the calculation, for semidilute polymer solutions,
giving an overall cost O (N 1.8). More recently, a method called the truncated expansion
approximation (Geyer and Winter, 2009) was proposed to calculate the correlated random
displacements more rapidly, and a technique using Krylov subspaces (Ando et al., 2012)
seems very promising.

12.3 Brownian dynamics, molecular dynamics, and Monte Carlo
�e bd method may be related to md, and mc, techniques (Rossky et al., 1978; Horowitz,
1991; Akhmatskaya et al., 2009; Allen and �igley, 2013). Starting with eqn (12.5), and
making the change of variables

D =
kBT

2m δt
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we obtain

r(t + δt ) = r(t ) + 1
2

(
δt2/m

)
f (t ) +

√
kBT

m
δt G. (12.11)

�is is recognizable as the velocity Verlet md algorithm, with all the initial velocities v(t )
selected randomly from the Maxwell–Boltzmann distribution, as per the thermostat of
Andersen (1980). �is link suggests that the timescales of md (inertial dynamics) and bd
(di�usional dynamics) simulations may be related, e�ectively replacing the inverse mass
by the di�usion coe�cient, and that neither technique is, in principle, preferable to the
other, in terms of the choice of timestep for a given force �eld.

Suppose that we wish to sample con�gurations r from the canonical ensemble. �en,
as discussed in Chapter 9, the acceptance probability for proposed moves rm → rn may
be wri�en

min
(
1, exp

(
−βδVnm

) αnm
αmn

)
(12.12)

for n , m, where αmn measures the probability of a�empting the move, αnm that of
the reverse move, and δVnm is the potential-energy change (Metropolis et al., 1953;
Hastings, 1970). Even if the calculation of dynamical properties is not of interest, it may be
convenient to introduce the conjugate momenta p, to assist in the con�gurational sampling.
Rossky et al. (1978) noted that bd is equivalent to the smc method of Chapter 9, where
N -particle moves are proposed with displacements chosen from a Gaussian distribution,
biased in the direction of the forces. If the momentum part of the velocity Verlet scheme is
included with the position update of eqn (12.11), then the move selection may be wri�en

pm =
√
mkBT G

rn = rm + 1
2

(
δt2/m

)
fm + pm (δt/m)

pn = pm +
1
2δt

(
fm + fn

)
.

�e new momenta pn are not needed for the next step, because they are randomly
resampled, but they greatly simplify the smc move acceptance probability, which becomes

min
[
1, exp

(
−βδVnm

)
exp

(
−βδKnm

)]
= min

[
1, exp

(
−βδHnm

)]
(12.13)

where δKnm = Kn − Km is the change in kinetic energy, calculated from old and new
momenta. �is same conclusion was reached by Duane et al. (1987), and they termed the
algorithm hybrid Monte Carlo (hmc). �e acceptance probability is not unity, because
the velocity Verlet algorithm does not exactly conserve the Hamiltonian. However, as
Duane et al. (1987) made clear, the symplectic property of the algorithm, in particular the
conservation of phase space volume, is crucial. �is is because the ratio of move selec-
tion probabilities appearing in eqn (12.12) includes, as well as the factor exp(−βδKnm )
appearing in eqn (12.13), the ratio of phase space volumes drdp for the initial and �nal
states. �is ratio will be unity for a symplectic algorithm. A sample program is given in
Code 12.2.

Viewed as a Monte Carlo method which happens to use a particular way of selecting
the new con�guration, hmc has plenty of �exibility. �e dynamical step may employ
a di�erent Hamiltonian (perhaps a cheaper one to evaluate) from the one used in the
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Code 12.2 Smart Monte Carlo simulation
�ese �les are provided online. �e programme smc_nvt_lj.f90, combined with
smc_lj_module.f90 for the energies and forces, and the utility modules of Appendix A,
carries out smc, using a notation similar to that of bd and hmc, as described in the
text. �e user may select the number of particles to move.

! smc_nvt_lj.f90
! Smart Monte Carlo , NVT ensemble
PROGRAM smc_nvt_lj

! smc_lj_module.f90
! Energy , force , and move routines for SMC , LJ potential
MODULE smc_module

acceptance–rejection criterion. Of course, the acceptance ratio for moves will be low if
the two Hamiltonians do not give similar results for most con�gurations. In principle, the
acceptance rate may be increased arbitrarily by reducing the timestep, and eventually
a purely dynamical scheme with no move rejection will be recovered. An a�raction of
the method is the ability to increase the timestep, and correct for the discretization error
through the acceptance criterion. Unfortunately, since the energy is an extensive quantity,
as system size increases, the acceptance rate will decrease if the other parameters are
held constant.

Viewed as a molecular dynamics method with thermosta�ing and (occasional) move
rejections, this approach is also quite �exible. �ere is a tendency, in md, to increase the
timestep to as large a value as possible without introducing noticeable errors. �e danger
is that systematic errors may still occur, due to an over-large timestep, even if they are
not noticed! �e approach of ‘Metropolizing’ an md simulation, by accepting or rejecting
steps on the basis of eqn (12.13), should guarantee that the correct equilibrium ensemble
is sampled, at the expense of perturbing any measured dynamical properties. Just as in the
original Andersen thermostat, one can devise schemes which randomize only a fraction
of the momenta at the start of the step, preserving the others as is usually done in md
(Akhmatskaya and Reich, 2008; Akhmatskaya et al., 2009).

It is perhaps also useful to point out that a distance-dependent di�usion tensor in bd,
such as eqn (12.10), translates into a distance-dependent mass tensor in md. Adjusting the
masses, to improve the e�ciency of md, is an idea that goes back to Benne� (1975), and
there has been a recent revival of interest in this approach in the biomolecular simulation
community (Lin and Tuckerman, 2010; Kunz et al., 2011; Michielssens et al., 2012; Wright
and Walsh, 2013). A reversible, symplectic, algorithm for solving the equations of motion
derived from the corresponding Hamiltonian has been given (Akhmatskaya and Reich,
2008). �e correct sampling of correlated momenta in the Andersen thermosta�ing step
is non-trivial, in general, but can be tackled in the same way as the random displacement
in Brownian dynamics with hydrodynamic interactions.
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12.4 Dissipative particle dynamics
An alternative kind of stochastic dynamics, which incorporates hydrodynamic e�ects
directly in the �uid simulation is dpd (Hoogerbrugge and Koelman, 1992). �e method has
been reviewed recently (Liu et al., 2014). �e dpd equations formally resemble eqn (12.1)

ṙ = v = p/m (12.14a)
ṗ = f (r) − ξV(r, p) + σẆ(r, p). (12.14b)

As before, ξ is a friction coe�cient, σ =
√

2ξkBT , and f are forces acting between the
particles, which are derived from a potential-energy function (o�en called ‘conserva-
tive’ forces). ξV(r, p) and σẆ(r, p) are respectively dissipative (frictional) forces and
random forces, but V and Ẇ are more complicated functions than their Langevin equation
counterparts.

�e particles themselves represent regions of �uid, not individual atoms or molecules.
�e potential from which the conservative forces are derived is not an a�empt to represent
realistic interparticle interactions, except in the most approximate fashion. Roughly
speaking, it is ��ed to the liquid compressibility (see later). �e force usually takes the
form of a linear function of separation, characterized by a single ‘repulsion parameter’ a
in the following way:

f i j = aφi j (ri j/rc)r̂i j , r̂i j = ri j/ri j (12.15)

where typically φ (x ) = 1 − x for x < 1, φ (x ) = 0 for x > 1. �is is much so�er than, say,
the Lennard-Jones force, and, in turn, means that much longer timesteps (e.g. of order
10ps) may be used than in conventional molecular dynamics simulations. �is is the main
a�raction of the method.

�e dissipative and random terms are also pairwise additive:

Vi =
∑
j,i

Vi j , Ẇi =
∑
j,i

Ẇi j (12.16)

where
Vi j = φ (ri j/rc)

(
vi j · r̂i j

)
r̂i j , Ẇi j =

√
φ (ri j/rc) ẇi j r̂i j . (12.17)

Here, vi j = vi − vj is the relative velocity of the pair, while the wi j (t ) = wji (t ) are
independent Wiener processes. �e weight functions are chosen to satisfy the �uctuation–
dissipation theorem, as shown by Español and Warren (1995). �ere is no fundamental
reason for using the same functionφ (x ) in eqn (12.17) as in eqn (12.15), but it is convenient
and usual. �e key feature of these de�nitions is that the dissipative and random terms,
like the forces f i j , conserve momentum. �is gives rise to hydrodynamic �ow. Another
way of stating the same thing is that the dynamics is Galilean-invariant. �is is not true of
the Langevin equation, eqn (12.1), since the frictional term is proportional to the particle
velocity in a �xed reference frame.

Dpd resembles a particle-based method, initially developed for solving �uid dynamics
problems in astrophysics, smoothed particle hydrodynamics (sph) (Gingold and Mon-
aghan, 1977; Lucy, 1977), as well as a general technique for continuum mechanics prob-
lems, smoothed particle applied mechanics (spam) (Hoover and Hoover, 2001). �e pa-
rameters in the equations of motion should be chosen to reproduce the desired properties
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of the �uid. A very useful paper (Groot and Warren, 1997) sets out a way of choosing
these parameters. By taking the cuto� distance to de�ne the unit of length, matching
the compressibility to that of water under ambient conditions, and adjusting the friction
coe�cient to give the desired viscosity, Groot and Warren arrived at a consistent set of
values: number density ρ = 3, stochastic force strength σ = 3, and temperature kBT = 1.

In so� ma�er, the dpd method has been used very successfully to model amphiphilic
systems: for example, to study microphase separation of block copolymers (Groot et al.,
1999), �ow e�ects on polymer brushes (Goujon et al., 2004; 2005), and also in modelling
lipid bilayers (Kranenburg et al., 2003; Kranenburg and Smit, 2004; Venturoli et al., 2005;
2006; Shillcock and Lipowsky, 2006), and membrane fusion processes (Grafmüller et al.,
2007). �is kind of application uses di�erent dpd beads for water, and for the hydrophilic
and hydrophobic parts of the relevant molecules. �e species are distinguished by the
pairwise repulsion parameters acting between them (a in eqn (12.15)). �e beads are taken
to represent many atoms, in a highly coarse-grained fashion. �e connections between
the beads in a lipid are usually taken to be simple harmonic spring potentials.

�e implementation of an accurate algorithm for dpd is not as straightforward as for
Langevin dynamics, because the frictional forces depend on both separation and relative
velocity. Various schemes have been put forward (Pagonabarraga et al., 1998; Besold et al.,
2000; den O�er and Clarke, 2001; Va�ulainen et al., 2002; Nikunen et al., 2003; Peters,
2004) many of them based on modifying the velocity Verlet approach. Groot and Warren
(1997) recommended a timestep 0.04 ≤ ∆t ≤ 0.06 (for water simulations using the typical
parameters and units just mentioned) based on requiring the simulation temperature to lie
within 3 % of the value provided as an input parameter. However, it soon became apparent
that a dri� in temperature would occur even in the absence of conservative forces (Marsh
and Yeomans, 1997). On top of this, the thermosta�ing implicit in the method tended to
obscure the consequences of using timesteps that were too long for compatibility with
the conservative forces (something which could be tested separately by standard md), and
various artefacts were reported (Hafskjold et al., 2004; Jakobsen et al., 2005; Allen, 2006b).
Some of these problems may be alleviated by a multiple timestep approach similar to that
described in Section 3.5 (Jakobsen et al., 2006). Algorithms derived by an operator-spli�ing
approach similar to that used for standard md have been proposed by Shardlow (2003),
and the consensus seems to be that these are the ones which perform best (Lisal et al.,
2011). An example dpd program is given in Code 12.3.

An alternative approach is to implement an md method, employing so� conservative
dpd potentials and a momentum-conserving thermostat. A ‘pairwise’ stochastic thermo-
stat constructed in the spirit of Andersen (1980), was proposed by Lowe (1999), and is
usually referred to as the Lowe–Andersen thermostat (see Section 3.8.1). No frictional
forces are used: instead, a standard md integrator is applied to the conservative forces,
and at intervals the thermostat is applied, or not, with a prede�ned probability, to the
pairs which lie in range. �e range over which the thermostat acts, and the frequency of
randomization, are parameters of the method. In addition, the randomization probability
may be a constant, or it may include a weight function based on pair separation (similar
to the one used in dpd). An example of this thermostat is also given in Code 12.3.

Leimkuhler and Shang (2015) have reviewed several dpd algorithms and proposed a
further one which performs very well at low friction: a version of the pairwise Nosé–
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Code 12.3 Dissipative particle dynamics
�ese �les are provided online. �e dpd programme dpd.f90, combined with a
small module in the �le dpd_module.f90 and the utility modules of Appendix A,
carries out dynamics of beads interacting through the so� dpd potential using the
operator-spli�ing algorithm of Shardlow (2003) or, as an alternative, the pairwise
Lowe–Andersen thermostat (Lowe, 1999).

! dpd.f90
! Dissipative particle dynamics
PROGRAM dpd

! dpd_module.f90
! Dissipative particle dynamics module
MODULE dpd_module

Hoover thermostat of Allen and Schmid (2007), with an additional Langevin equation
acting on the dynamical friction coe�cient. However, it is not possible to tune the
viscosity over a wide range using this method alone: combination with the Lowe–Andersen
approach, or something similar, would be required for this.

12.5 Multiparticle collision dynamics
Now we turn to methods in which the solvent is modelled explicitly, albeit approximately.
�e idea is to conserve momentum, and be able to prescribe (at least) the solvent viscosity,
but avoid the expense of a microscopically realistic representation of the solvent particles.
�is is then combined with a suitable model for solvent–solute interactions. Most of our
interest is then likely to focus on the motion of the solute particles. First, we consider the
solvent model alone.

�e multiparticle collision dynamics (mpcd) method, originally termed the stochastic
rotation method, was proposed by Malevanets and Kapral (1999). �e solvent particles do
not interact with each other through a potential, so there are no systematic forces, and the
solvent obeys an ideal gas equation of state. In the absence of solute, the solvent particles
undergo free �ight in between discrete collisions, which occur at regular intervals δt :

r(t + δt ) = r(t ) + v(t ) δt .

�e collisions act to redistribute momenta between particles, and one can imagine several
ways of doing this in a physically reasonable manner: momentum and energy should
be conserved, and the e�ects should be ‘local’ in the sense of having a restricted spatial
range. �e Lowe–Andersen thermostat discussed in the previous section is constructed
with similar constraints in mind. �e usual approach is to divide the simulation box into
cuboidal cells, of a speci�ed side length a, and rede�ne the momenta of all the particles
within each cell, independently of the other cells. Taking all the particle masses to be
equal for simplicity, this is accomplished by:
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1. calculating the centre-of-mass velocity of particles in each cell;
2. subtracting this from the velocities of all the particles in that cell;
3. rotating all particle velocities by a random amount about a random axis;
4. adding back the cell centre-of-mass velocity.

Denoting the times before a collision by t−, and a�er by t+, this may be expressed as

vi (t+) = vcm + A ·
(
vi (t−) − vcm

)
∀i ∈ cell

vcm =
1

Ncell

∑
i ∈cell

vi (t−) =
1

Ncell

∑
i ∈cell

vi (t+)

where Ncell is the number of particles in the cell. �e matrix A is a 3 × 3 rotation matrix
of the kind seen in Chapter 3: it is de�ned by a unit vector, randomly chosen on the unit
sphere, which speci�es the axis of rotation, and an angle of rotation ϕ.

Evidently this algorithm conserves both momentum and kinetic energy, as can be seen
most simply in the centre-of-mass frame. It does not locally conserve angular momentum,
in the manner of the hard-sphere collisions discussed in Chapter 3, which act along the
line of centres between atomic pairs, but this is not generally considered to be a serious
de�ciency. However, the use of a cubic grid of cells to de�ne the collisions violates the
Galilean invariance (including the rotational isotropy) of a �uid. To avoid this, the absolute
position of the grid is changed randomly before the collisions are implemented (Ihle and
Kroll, 2001; 2003a). In practice, this may be implemented by shi�ing all the particles by a
common, randomly selected, vector before the collisions, including any e�ects of periodic
boundary conditions, and applying the reverse transformation a�erwards.

�e time δt between collisions, the size a of the cells, the magnitude of rotation ϕ, and
the �uid particle density, are the key parameters determining the transport properties of
the �uid. In fact, so simple is the kinetic scheme, that these can be exactly calculated (Ihle
and Kroll, 2003b; Tüzel et al., 2003; Kikuchi et al., 2003; Pooley and Yeomans, 2005).

Padding and Louis (2006) have given a useful summary of the mpcd method, together
with a discussion of how to match up the parameters with the desired properties of the
�uid, such as the Reynolds, Peclet, and Schmidt numbers.

When solute molecules or particles are added to the system, the dynamical scheme just
described needs to be modi�ed. �ere are two typical ways of modelling the interaction
between solute and solvent. �e simplest approach, from the technical point of view, is to
include the solute particles in the collision step. A standard md algorithm, such as velocity
Verlet, is used to advance the positions and velocities of the solute particles between
collisions, while the solvent undergoes free �ight. Of course, there is no particular need
for the solute and solvent timesteps to be made equal: the md timestep will naturally
re�ect the intermolecular interactions (between the particles in a colloidal suspension or
the monomers in a polymer solution, for instance). �e interval between collisions may be
some multiple of this. �is method has been used to study the in�uence of hydrodynamics
on polymer collapse (Kikuchi et al., 2005). A slightly unrealistic feature is that it allows
the solvent to penetrate freely into the solute particles: there is no ‘excluded volume’
e�ect.

In the second approach, there is an explicit potential of interaction between solute
and solvent particles (Malevanets and Kapral, 2000), giving rise to forces in the velocity
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Verlet algorithm, which applies to all the particles. �erefore, the solvent particles may be
excluded from the regions of space occupied by the solute. �e solvent motion between
collisions is no longer ‘free �ight’, but is still quite inexpensive since there are no solvent–
solvent interactions. �is method has been used to study sedimenting colloids (Hecht
et al., 2005; Padding and Louis, 2006), and these two papers also include many technical
details and alternative choices in the implementation. Batôt et al. (2013) have compared
both the solvent–solute interaction schemes, described earlier, with Brownian dynamics.

�e mpcd method has been reviewed by Gompper et al. (2009), and Winkler et al.
(2013) have illustrated its application to a range of particle suspensions. An interesting
example of bothmpcd and dpd in action is the modelling of blood �ow, and this is discussed
in Example 12.1.

It is important to realize that the particles of the solvent do not truly represent clusters
of molecules in a real system. �e mpcd scheme aims to solve the Navier–Stokes equation,
including some e�ects of �uctuations: nothing more. In the next section we shall discuss
an even more idealized approach to the same problem.

12.6 �e lattice-Boltzmann method
We only give a brief summary of the la�ice-Boltzmann (lb) method here; more compre-
hensive treatments may be found in several review articles (Benzi et al., 1992; Chen and
Doolen, 1998; Raabe, 2004; Dünweg and Ladd, 2009; Aidun and Clausen, 2010) and books
(Wolf-Gladrow, 2000; Succi, 2013). In common with the multiparticle collision dynamics
method described in Section 12.5, an lb simulation code proceeds in an alternating se-
quence of ‘streaming’ steps and ‘collision’ steps, and space is subdivided into a la�ice
of cells. However, the �uid model is further simpli�ed, in that the particle velocities are
restricted to values which, over the course of one timestep, would take each particle
precisely along a la�ice vector between nearby cells. As a consequence, it is only neces-
sary to keep track of the numbers of particles having each allowed velocity, and in fact
the lb method simulates the time evolution of the probability distribution function of
velocities in each cell: it is a numerical method to solve the so-called Boltzmann equation.
�is equation is essentially a molecular-scale analogue of the continuum Navier–Stokes
equation of hydrodynamics.

Let us denote the velocities by ci where i simply labels the allowed values. �e
single-particle, time-dependent, probability distribution function f (r, ci , t ) is abbreviated
fi (r, t ), where the positions r lie on a la�ice. A shorthand is used to identify di�erent lb
geometries, based on the dimensionality and the number of velocities considered (Qian
et al., 1992). d2q9, for instance, corresponds to a two-dimensional square la�ice, in which
the velocities may take a particle to any of the four adjacent squares, any of the four
diagonal neighbours, or remain stationary. d3q19 would be a three-dimensional cubic
la�ice, in which any of the 27 cells in the 3× 3× 3 surrounding cube are accessible, except
for the eight that lie in the directions (±1,±1,±1). �ese two examples are illustrated in
Fig. 12.1. �e choice of allowed velocities a�ects the isotropy of the resultant �ows. �e
combined collision and streaming step is then simply

fi (r + ciδt , t + δt ) = f †i (r, t ) = fi (r, t ) + Ωi
(
{ fi (r, t )}

)
,
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Example 12.1 Blood �ow

Modelling the �ow of blood is a high-pro�le example of the application of mesoscale
simulation techniques. �e �uid contains a high concentration of red blood cells, each
of which is a so�, deformable, body. �e distortion of these cells is an intrinsic part
of the problem; some diseases change their sti�ness and hence may a�ect the �ow.
O�en, one is interested in how the blood �ows in the highly con�ned environment
of capillaries. �e coupling between �ow and cell deformation is a critical issue. For
all these reasons, a method that includes both hydrodynamics and a particle-based
description is highly desirable. �e �eld has been reviewed by Fedosov et al. (2013).
An early example (Noguchi and Gompper, 2005) used multiparticle collision dynamics
to represent the hydrodynamics of the solvent. �e blood cell membrane consisted
of a set of beads, having mass and interacting via a repulsive potential to give them
an e�ective excluded volume. In addition, bonding or tethering potentials were
used to triangulate the assembly of beads into a closed surface, and the curvature
elasticity was reproduced through a discretized version of the Helfrich free energy,
eqn (2.190). �e �uidity of the membrane was facilitated by allowing tethers to �ip,
at intervals, between the two possible diagonals of adjacent triangles. Finally, two
global potential-energy terms were added to control the enclosed volume and surface
area. By a suitable choice of parameters, the equilibrium shape of each cell could
be made to reproduce that seen in real life: a disk-like form, with the two opposite
faces deformed inward (biconcave). �is approach allowed Noguchi and Gompper
(2005) to study capillary �ow at low Reynolds number. As the �ow rate increased, cell
deformation into an elongated shape, and a parachute shape, were observed. Both
transitions reduced the �ow resistance.
In subsequent papers, the aggregation of red blood cells into stacks, known as
‘rouleaux’, has been studied using a di�erent mesoscale model, based on dpd (Fedosov
et al., 2011). �e triangulation of the cell network was also �xed, rather than changing
dynamically; the network spring parameters were precalculated so as to minimize
stress, and the springs included some dissipative e�ects to mimic the internal vis-
cosity (Fedosov et al., 2010). �e a�ractive forces responsible for aggregation were
represented with a Morse potential. Highly non-Newtonian behaviour resulted from
the interplay of shear �ow, aggregation, cell deformation, and reorientation, and the
predictive power of such simulations in the medical sphere was considered.

that is, the population fi of each velocity in each cell r is subjected to the e�ects of a
collision operator Ωi , which produces the post-collisional value f †i (r, t ), and this is then
translated by the appropriate amount to a nearby cell.

�e collision operator represents the averaged e�ect of particle interactions on the
velocity distribution, and is, of necessity, an approximation. Even making the assumption
that it is a local e�ect, in principle it depends on all the velocity component populations
fi , as indicated in the previous equation, and it may, in general, be a nonlinear function
of the fi . It must, of course, satisfy the laws of conservation of mass and momentum.
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Fig. 12.1 Velocities in the d2q9 and d3q19 la�ice-Boltzmann models.

�e simplest version, the so-called bgk approximation (Bhatnagar et al., 1954; Qian et al.,
1992), is a linear equation

Ωi
(
{ fi (r, t )}

)
= −Λ

(
fi (r, t ) − f

eq
i (r, t )

)
, where Λ =

δt

τ
.

�is corresponds to a single relaxation time τ , for each velocity component i independently,
towards its equilibrium distribution f

eq
i . In practice, a more general (but still linear)

collision operator, which mixes up the di�erent velocity component distributions, is
usually adopted:

Ωi
(
{ fi (r, t )}

)
= −

∑
j

Λi j
(
fj (r, t ) − f

eq
j (r, t )

)
.

�e eigenvalues of the collision matrix Λi j represent inverse relaxation times, and this
is generally called a multiple relaxation time model (d’Humières et al., 2002). As well as
being a more stable numerical method, the �exibility of this approach (in being able to
adjust the eigenvalues) allows it to be applied to a wider range of �ow problems.

Actually, these equations are be�er termed quasi-linear, because the equilibrium
distribution function f

eq
i (r, t ) depends on position and time through the local �uid density

ρ and local �uid velocity u, which are themselves de�ned via

ρ (r, t ) =
∑
i

fi (r, t )

ρ (r, t )u(r, t ) =
∑
i

fi (r, t )ci

and the form of f eq
i may be obtained by considering a moment expansion.

�e lb equations just described are completely deterministic. Although they may
reproduce hydrodynamics at large length and time scales, they do not incorporate the
�uctuations that characterize behaviour at the mesoscale: the number of particles within
a cell, for instance, would be expected to �uctuate signi�cantly, unless the cells become
macroscopically large. To account for this, a stochastic term is typically added to the
collision operator, giving an equation resembling the Langevin equation of Section 12.2.
�is approach was pioneered by Ladd (1994a,b) (see also Ladd and Verberg, 2001) in a
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way that reproduced the appropriate �uctuation–dissipation relation at long wavelength,
and then improved by Adhikari et al. (2005) so as to treat �uctuations correctly at all
wavelengths. �ermal �uctuations a�ect the relaxation of the stress tensor, and also the
other (non-conserved) modes.

�e boundary conditions used in molecular dynamics to simulate shear �ow (Lees
and Edwards, 1972) can be introduced into lb simulations (Wagner and Yeomans, 1999;
Wagner and Pagonabarraga, 2002). If it is desired to model �uids in the vicinity of solid
surfaces, some physical boundary conditions need to be introduced. �e simplest is
the no-slip or bounce-back condition, which may be applied along the links between
neighbouring cells: the corresponding component fi is re�ected back to the originating
node, and the velocity reversed. �is leads in turn to the modelling of particles embedded
in a la�ice-Boltzmann �uid: if the particles are allowed to move, one needs a consistent
way of transferring momentum from the �uid to the particles and vice versa. Ahlrichs and
Dünweg (1999) have shown how to combine lb and md methods to simulate a polymer
chain in solution; the application to particle–�uid suspensions has been reviewed by
Ladd and Verberg (2001). Both types of system are addressed in Dünweg and Ladd (2009),
together with examples such as colloid sedimentation and polymer migration in a con�ned
geometry.

Amongst several methods for modelling multiphase systems, and phase separation, we
shall concentrate on the approach of Swi� et al. (1995), Orlandini et al. (1995), and Swi� et
al. (1996). Here, in the spirit of the Cahn and Hilliard (1958) approach to nonequilibrium
dynamics, a non-ideal, equilibrium, free-energy term is introduced in the form of a
functional of the particle density: for example, a squared-gradient van der Waals form.
�e pressure tensor derived from this functional then enters into the lb equations. �e
approach may be extended to encompass multi-component �uids, and, through the
introduction of a free energy depending on a tensor order parameter, liquid crystals
(Denniston et al., 2000; 2001; Henrich et al., 2010).

A key practical issue in applying the la�ice-Boltzmann approach to a physical system
is the matching of the parameters of the model to the physical �uid of interest. �e basic
units of lb are the cell size, the timestep, and the �uid density. �ese may be used to de�ne
dimensionless quantities (times, distances, velocities) in terms of which the numbers that
characterize �uid �ow (especially the Reynolds number) may be calculated. Comparison
with the physical system may then be made via these numbers.

Lb simulations are intrinsically well-suited to implementation on a parallel computer,
since the cell structure of the system is regular, constant in time, and involves only local
transfer of information. �e scalability of lb calculations has been discussed (Stratford
and Pagonabarraga, 2008; Bernaschi et al., 2009; Clausen et al., 2010).

12.7 Developing coarse-grained potentials
All of the approaches described earlier in this chapter make some dramatic approxima-
tions regarding the interactions between the molecules, and how to replace them with
interactions between larger units. �e development of systematic ways of doing this
is a long-standing, but still very active, area of research. Several reviews are available
(Saunders and Voth, 2013; Chu et al., 2006; 2007).
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Fig. 12.2 Schematic illustration of coarse graining of (a) an amino acid within a peptide or protein,
and (b) a polymer chain.

Super�cially, the process of ‘coarse graining’ consists of replacing groups of atoms by
single beads, as illustrated schematically in Fig. 12.2. �e coarse-grained (cg) model of
an amino acid, shown in Fig. 12.2(a), has been proposed by Bereau and Deserno (2009) to
represent protein or peptide chains. Four beads are used per monomer: three to represent
the −NH−CH−CO− groups of the backbone, and one to represent the side chain (the
example in the �gure is CH3 corresponding to the amino acid alanine). In Fig. 12.2(b) we
represent a more generic coarse graining of a polymer, in which several monomers are
replaced by a single cg bead.

For simplicity, we shall assume that all the atoms j in the original model, at positions
rj , are divided into NCG mutually exclusive groups which we label J . Moreover, we will
represent each group by a position vector RJ , given by some function RJ = CJ ({rj }j ∈J )
of the coordinates of the atoms belonging to it. Typically, RJ will be the centre of mass of
the atoms comprising J , in which case this is a linear function

RJ =
∑
j ∈J

C J jrj , where C J j =mj
/ ∑
j′∈J

mj′,

or, for short, R = C · r. Here C is a 3NCG × 3N matrix. �is amounts to replacing each
group of atoms J by a single spherical bead. Including the internal coordinates of J , or
orientational degrees of freedom, would be possible, but we do not consider this here.
�ese beads are the particles in the cg model.

However, a geometrical mapping between the two descriptions is by no means the
end of the story: the interactions must be chosen in such a way as to make simulation
averages of selected properties of the two systems match as closely as possible. Having
done that, further questions present themselves. Is there a unique way of doing this, or at
least an optimal one? If the properties match at one state point, how well will they match
at another? Is it possible to relate the dynamics of the cg system to those of the original
one? �e answer to most of these questions, unfortunately, is in the negative. Here we
consider two common approaches.

12.7.1 Force matching

Originally based on a method to extract classical e�ective forces from ab initio simulations
(Ercolessi and Adams, 1994), the force-matching approach (Izvekov and Voth, 2005a,b;
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Noid et al., 2008a) aims to make the forces acting on the beads, derived from a cg interac-
tion potential, as close as possible to the ensemble-averaged forces, acting on the same
entities, in a fully atomistic simulation. Again, for simplicity, let us consider the statistical
mechanics of the two models in the canonical ensemble. �e probability distribution
function for R, determined by a simulation of the fully atomistic model, will be given by

P (R) =
〈
δ
(
R − C · r

)〉
∝

∫
drδ

(
R − C · r

)
exp

(
−βV (r)

)
.

�e same distribution, and hence the same ensemble-averaged functions of R, may be
generated by a canonical ensemble simulation using the potentialVCG (R) de�ned by

P (R) ∝ exp
(
−βVCG (R)

)
(12.18a)

⇒ VCG (R) = −kBT ln
[∫

drδ
(
R − C · r

)
exp

(
−βV (r)

)]
+ constant (12.18b)

where an arbitrary constant has been introduced. �is is the same as the de�nition of the
Landau free energy, eqn (2.172). Many degrees of freedom have been ‘integrated out’ of
the problem; it is important to remember that this makes the resultingVCG (R) depend
on density, temperature, and other factors determining the state point such as solvent
composition or, in general, the concentrations of other species. It is, therefore, not a
‘potential energy’ in the usual sense. Assuming that the cg beads have been de�ned in
the way described earlier, and neglecting complicating issues such as constraints acting
between the atoms on di�erent beads, it is possible to derive from this the relation

FCG
J = −∇RJV

CG (R) =

∫
dr

(∑
j ∈J f j

)
δ
(
R − C · r

)
exp

(
−βV (r)

)
∫

drδ
(
R − C · r

)
exp

(
−βV (r)

) =

〈∑
j ∈J

f j

〉
R
,

with the total force acting on all the atoms belonging to bead J appearing, and being
averaged, on the right. �e form of this equation leads to the terminology ‘potential of
mean force’ forVCG (R). However, this simple result does depend on the aforementioned
assumptions, and the formal derivation leading to a more general formula in the case
where some of those assumptions are relaxed may be found in Noid et al. (2008a). �e
angle brackets 〈· · · 〉R denote an ensemble average over the atomic coordinates r, subject
to the constraint C · r = R. One might imagine accumulating multidimensional histograms
of these forces, on each bead J , as functions of all the coarse-grained coordinates RJ ,
during a standard md or mc simulation; alternatively, one could apply constraints on the
RJ in md, at systematically chosen values, in which case account should be taken of the
metric tensor discussed in Section 2.10.

�e original implementation of Izvekov and Voth (2005a,b) involves variationally
minimizing the quantity

χ 2 =

〈
1

3NCG

NCG∑
J=1

����

(∑
j ∈J

f j (r)
)
− FCG

J (C · r)
����
2〉
. (12.19)

�e angle brackets represent a simulation average of the atomistic system, each snapshot
of which consists of a set of coordinates r. �ere is considerable �exibility in the way
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in which the functions FCG
J (R) are parameterized. Early applications used a pairwise

decomposition of the non-bonded interactions between cg sites, with each interaction
represented as a set of splines. More generally, the cg forces may be derived from a linear
combination of force functions, which act as an incomplete basis set in the vector space of
all possible such forces. �e coe�cients are varied so as to minimize χ 2 in eqn (12.19), and
the fact that they appear linearly makes it possible to use e�cient, standard, algorithms
for the minimization, even when the number of parameters is quite large. Further details,
and discussions that go beyond the simple case presented here, may be found elsewhere
(Noid et al., 2008a,b).

Even though the true potential VCG (R) is unlikely to be a simple sum of pairwise
functions of the cg coordinates RJ , this approach has been quite successful in modelling
biomolecules (Izvekov and Voth, 2005a; Shi et al., 2006) and ionic liquids (Wang et al.,
2006). An extension to incorporate three-body cg interactions (Larini et al., 2010) has
been shown to improve the modelling of water.

12.7.2 Structure matching

A slightly di�erent approach to deriving a cg model is based on reproducing structural
information, such as a set of pair distribution functions. �ese might be calculated in
an atomistic simulation, or indeed determined by X-ray or neutron di�raction, and so
these methods have a direct application to the interpretation of experimental results.
Underpinning these methods is a theorem due to Henderson (1974), establishing the
uniqueness of a pair potential which gives rise to a given pair distribution function
(including, if relevant, angular variables). �is has been extended to more general forms
of the potential (Rudzinski and Noid, 2011). It has also been put in the context of density
functional theory (Chayes et al., 1984; Chayes and Chayes, 1984), and shown to be related
to the relative entropy of atomistic and coarse-grained systems (Shell, 2008).

�is is not the same as eqn (12.18), which does not imply that any speci�ed pair
correlation functions will be reproduced. �ere is no formal proof of existence of such
a cg potential; nonetheless, its uniqueness (if it exists) encourages the development of
methods to optimize approximations to it.

An early scheme, based on the work of the experimental community (Schommers,
1983; Soper, 1996), called iterative Boltzmann inversion (ibi), proceeds as follows (Reith et
al., 2003). Consider a cg model similar to the one de�ned before: a set of beads (molecules)
centred at RJ , each of which consists of atoms whose coordinates are rj . Suppose that
the pair distribution function д(R) = д( |RJ − RK |) has been calculated from an atomistic
simulation. �en, we expect

v0 (R) = −kBT lnд(R) (12.20)

to be a ‘zeroth’ approximation to the cg pair potential. For anything other than an
extremely dilute system, performing a simulation with this pair potential will produce
a pair distribution function д0 (R) which di�ers from д(R). �is is used as the start of an
iterative scheme, based on successive simulations of the cg system, and re�nements of
the cg potential, according to the equation

vκ+1 (R) = vκ (R) − kBT ln
(
д(R)

дκ (R)

)
. (12.21)
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When дκ (R) > д(R), the correction term will be positive, increasing the pair potential
at that separation in the next iteration, and (hopefully) making дκ+1 (R) < дκ (R). When
дκ (R) < д(R), the opposite e�ect should be seen. O�en the method is applied to polymeric
systems, for which a cg version of some intramolecular degrees of freedom may be
needed. A simple approach is to make the approximation that the separate distribution
functions (of intramolecular bond-stretching coordinates, or bend and twist angles) are
independent of each other, and that the cg potential may be represented as a sum of
independent contributions. One might hope to apply a formula similar to eqn (12.21)
separately to each part. In fact, early a�empts to model polymers (Tschöp et al., 1998) used
direct Boltzmann inversion formulae resembling eqn (12.20), without further re�nement,
to obtain the intramolecular potentials from the corresponding distribution functions.
For example for a torsion angle, v(ϕ) ≈ −kBT ln P (ϕ), and for a bend angle v(θ ) ≈
−kBT ln P (θ )/ sinθ , where we highlight the typical (Jacobian) scaling factor needed to
convert a raw histogram of probabilities into a probability density. Non-bonded e�ective
interactions are typically treated in a more sophisticated way. However, in practice, the
assumption of independent probability distributions is o�en found to be inaccurate, so
cross-correlations may invalidate, or reduce the e�ciency of, the approach.

�e so-called inverse Monte Carlo (imc) or inverse Newton methods were proposed
by Lyubartsev and Laaksonen (1995) and Lyubartsev et al. (2010). In the imc method, the
cg potential is expressed as a linear combination of terms

V (R) =
∑
k

CkV
(k ) (R) (12.22)

where theV (k ) (R) constitute a basis set in the space of potentials, and the coe�cientsCk
determine a particular choice of potential. As in the previous section, we may regard the
R as a subset of the full set of atomic coordinates, or as a suitable linear combination such
as molecular centres of mass. �e idea, as in ibi, is to match structural quantities which
are functions of the R, as measured in atomistic and cg simulations. To assist this process,
averages of theV (k ) terms are calculated, together with derivatives of these quantities
with respect to the coe�cients {Ck }. Near a particular set of values {Ck }, the change in
an average 〈V (k )〉 resulting from changes {∆Ck } is given by

∆〈V (k )〉 = 〈V (k )〉R − 〈V
(k )〉 =

∑
`

∂〈V (k )〉

∂C`
∆C` + higher-order terms (12.23a)

with the standard �uctuation expression for the derivative

∂〈V (k )〉

∂C`
= −β

(
〈V (k )V (`)〉R − 〈V

(k )〉R〈V
(`)〉R

)
. (12.23b)

Using an initial guess {Ck }, a cg simulation is carried out, measuring the values of
〈V (k )〉R and 〈V (k )V (`)〉R. �e di�erences between the values calculated in the cg sim-
ulations, 〈V (k )〉R, and those obtained in the atomistic simulations, 〈V (k )〉, are used in
eqn (12.23a) to calculate ∆〈V (k )〉. Given the measured �uctuations, and hence the deriva-
tives ∂〈V (k )〉/∂C` , this equation may be solved for the changes ∆C` which should, to
lowest order, bring the cg measurements into line with the atomistic ones. A new cg



402 Mesoscale methods

simulation is carried out with the new coe�cients, and the process continued to conver-
gence. �e method is similar to the solution of a system of algebraic equations by the
Newton–Raphson method. Lyubartsev and Laaksonen (1995) point out that a tabulated cg
potential can be regarded as a particular case of eqn (12.22), in which case the quantities
being matched are essentially the pair distribution functions. In a later paper, Lyubartsev
et al. (2010) generalize these equations to the case when the properties to be matched are
not the same as the terms in the potential energy, and they call this the inverse Newton
method.

12.7.3 Top-down methods

�e coarse-graining methods discussed in the previous sections adopt a ‘bo�om-up’
strategy: the interaction potential is essentially based on a microscopic model, then a
computer simulation is used to predict the equation of state, and other macroscopic
properties. �is information can then be used to re�ne the potential, in an iterative
way. In the chemical engineering community, an alternative approach has been gaining
popularity: the potential parameters are deduced directly from the equation of state,
which has been ��ed to available experimental data. �is is, in practice, much faster than
the bo�om-up method, and may produce force �elds that apply over a wide range of state
points. �e approach relies on an accurate theory connecting the equation of state with
the potential, valid for particular kinds of molecular model. A very widespread theory of
this kind originates in a series of papers due to Wertheim (1984a,b; 1986a,b) for �uids of
atoms having a repulsive core plus one or more short-range a�ractive sites giving rise to
directional ordering. �is theory was re-expressed in a form more suitable for engineering
applications by Jackson et al. (1988) and Chapman et al. (1988; 1989; 1990), resulting in
the general approach known as statistical associating �uid theory (saft).

Typically, each molecule is taken to be built from monomeric units, for example
hard spheres. �e starting point is an expression for the excess Helmholtz free energy
of the monomer system, Amono, representing the excluded volume and any dispersion
e�ects: the Carnahan and Starling (1969) equation would be suitable for hard spheres, and
perturbation expressions based on it would apply to other potentials (see e.g. Hansen and
McDonald, 2013). Association into chains, through bonding between in�nitely strongly
a�ractive sites on the surface of the monomers, is handled by the �rst-order perturbation
approach of Wertheim: this results in an additive termAchain which depends on an estimate
of the cavity distribution function ymono (`) between monomers at bond length `. An
essential feature is that the a�raction sites only act between pairs of monomers, and
this restricts their interaction range. �e same theory is applied to any association sites
on the monomers, acting between chains: these a�ractions are not in�nitely strong,
and can be thought of as short-range square-well potentials; they must, again, only act
between pairs. �e resulting free energy Aassoc depends on the fraction of these sites that
are bonded. All the aforementioned free energy terms add together and can lead to an
accurate equation of state for liquids and liquid mixtures consisting of small molecules,
or chains, formed from tangent spheres, which may optionally associate together. �is
simple approach is less successful when the monomers overlap with each other (i.e. ` is
signi�cantly smaller than the diameter), and no account is taken of bond bending potentials
or intramolecular a�raction within the chains. �e reviews of Müller and Gubbins (2001),
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Economou (2002), and McCabe and Galindo (2010) give many details of the method, and
some of the measures that may be taken to address these shortcomings. �e monomers
need not be hard spheres: they may be modelled using, for example, Lennard-Jones
potentials, square wells of variable range, or Yukawa potentials. �e aforementioned
reviews describe the application of saft to polar and nonpolar liquids, ionic liquids,
inhomogeneous systems, and even liquid crystals and solid phases.

Müller and Jackson (2014) describe the rationale behind using this theoretical frame-
work to construct a coarse-grained force �eld, already ��ed to the experimental equation
of state, for use in simulations. �ey concentrate in particular on a version of the theory
based on the Mie n–m potential, eqn (1.34), for the monomers. �is conveniently allows
the adjustment of the potential so�ness and range (through the exponents n andm) as
well as the core diameter σ and well depth ϵ . Performing simulations with this potential
allows one to predict structural and dynamical properties, and interfacial properties, that
are not directly accessible through saft itself. In Section 1.3.4 we already mentioned a
cg single-bead model of water using the Mie 8–6 potential, which is quite successful in
the modelling of aqueous mixtures. When it comes to modelling hydrocarbon chains,
several CH2 units may be represented as a single monomer. Müller and Jackson (2014)
point out that it may be necessary to add an intramolecular bond-bending potential to
the saft-derived model, to ensure a physically reasonable chain rigidity, as this feature is
missing from the theory. �e parameters in this part of the force �eld must be derived
by conventional methods. Lobanova et al. (2016) give an example involving alkane–H2O–
CO2 ternary mixtures. An encouraging feature of the saft approach is that the parameters
describing di�erent groups in a molecule are, to �rst order at least, transferable. �erefore,
large molecules may be built up from monomers representing di�erent functional groups,
whose parameters have been determined from the equations of state of smaller molecules.
Further details may be found in Müller and Jackson (2014).

12.7.4 Comments

As will be clear from the foregoing sections, there are strong incentives to coarse grain
the interactions in molecular simulation, both from the viewpoint of improving e�ciency,
and also to obtain some insight into the basic scienti�c phenomena, by simplifying the
description and dropping the (hopefully less important) details. Although coarse graining
is not completely routine, various packages have been provided to help. Several coarse-
graining schemes have been incorporated into the votca suite (Rühle et al., 2009). �e
ibi method has been implemented in the so�ware package ibisco (Karimi-Varzaneh et al.,
2011). Both the ibi and imc methods have been combined in the so�ware package magic
(Mirzoev and Lyubartsev, 2013).

A key drawback of coarse graining is the impossibility of reproducing all the properties
of a system at once. From the earliest force-matching studies it was recognized that the
cg simulation pressure could not be made to match the cg value (or, as a consequence,
the system density would be incorrect) due to missing intramolecular terms in the virial
expression. �is problem would typically be tackled by adding a constraint. Actually, this
problem comes in two �avours: representability (lack of self-consistency in properties for
a given system and state point) and transferability (inability to use the same cg model in
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CG switching parameter

0

1

Fig. 12.3 Schematic illustration of adress (Praprotnik et al., 2005; 2008). In the interaction region
(centre), a parameter smoothly switches the interactions between an atomistic model (on the le�)
and a coarse-grained model (on the right).

di�erent circumstances or at di�erent state points). �is has been illustrated for a range
of exemplary systems (Louis, 2002; Johnson et al., 2007).

When it comes to dynamical properties, a cg model may be highly inaccurate. �e
so�er, smoother, interaction potentials that result from coarse graining may result in faster
dynamics (higher di�usion coe�cients, and lower viscosities) than in the atomistic case.
�is is actually bene�cial, in that the exploration of con�guration space is accelerated.
However, the prediction of dynamical properties is problematic. One approach is to
establish a rough scaling factor for the timescales by comparing di�usion coe�cients,
and then assume that other properties scale in a similar way. Another is to add frictional
and random forces in the way described in Section 12.2, adjusting their strength so as to
match some of the transport coe�cients.

Finally, we should mention the a�empts that have been made to simulate systems
with di�erent degrees of coarse graining, in contact with each other through an interface.
�e motivation here is to concentrate the most detailed simulation e�ort on the important
regions, perhaps the active area of a biomolecule with its surrounding water molecules,
while treating the surroundings, such as the more remote solvent, in an approximate way.
Such ideas have been commonplace in speci�c contexts for many years. �e quantum
mechanics/molecular mechanics (qm/mm) approach (Warshel and Levi�, 1976) treats part
of the system using quantum mechanics, and the rest by classical molecular mechanics
(see Section 13.3); a celebrated simulation of crack propagation combined a continuum
description of the solid far from the crack with an atomistic model (Broughton et al., 1999).
Also, we mentioned in Section 12.6 the combination of a la�ice-Boltzmann solvent with
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a particle description of a solute. �e implementation of schemes like this is simpli�ed
when there is li�le transfer of ma�er between the di�erent length scales. Liquid state
systems, however, require some consideration of the �uxes of density, momentum, and
energy, across the respective boundaries. Matching these �uxes, as well as the bulk
thermodynamic properties of the di�erent components, is an almost insoluble problem.

�e adaptive resolution scheme (adress) (Praprotnik et al., 2005; 2008) compromises
by switching smoothly (as a function of position) between the di�erent force �elds (atom-
istic and cg) across an interaction region, and applying an additional ‘thermodynamic’
force (Poblete et al., 2010; Fritsch et al., 2012) which is determined iteratively. �is is
illustrated schematically in Fig. 12.3. A disadvantage is that the method lacks a prop-
erly de�ned Hamiltonian; therefore the equilibrium distribution function is not known
and it is not possible, for example, to construct a Monte Carlo algorithm for the same
system. More recently the problem has been revisited by constructing a global Hamilto-
nian which includes a switching function (Potestio et al., 2013a); the resulting h-adress
method conserves energy, and permits a Monte Carlo scheme to be used (Potestio et al.,
2013b). However, the introduction of an extra term, to compensate for the di�erence in
thermodynamic properties between the two sub-systems, is unavoidable.



13
�antum simulations

13.1 Introduction
�e dynamics of a quantum system is described by the time-dependent Schrödinger
equation

i~∂Φ(r
(n),R(N ) ; t )
∂t

= HΦ(r(n),R(N ) ; t ) (13.1)

where Φ is the complete wave function for the nuclei and the electrons. In this chapter,
we use the notation r(n) for the complete set of positions of all of the n electrons, and
R(N ) for the positions of the N nuclei, to avoid any confusion with the position r in space.
�e Hamiltonian for the system is

H = −

N∑
I=1

~2

2MI
∇2
I −

n∑
i=1

~2

2me
∇2
i +Vn-e

(
r(n),R(N )

)
= −

∑
I

~2

2MI
∇2
I +He

(
r(n),R(N )

)
(13.2)

whereVn-e is the sum of all the Coulombic interactions (nuclei–nuclei, electrons–electrons,
and nuclei–electrons). me is the mass of the electron, MI the mass of nucleus I , andHe is
the Hamiltonian for the electronic sub-system.

In Section 13.2, we consider approximations to the solution of eqn (13.1) using the ab

initio molecular dynamics method. In this case the total wave function, Φ, is factored into
a part depending on the electronic degrees of freedom, Ψ, and a part corresponding to the
nuclei, χ . Ψ is calculated for the clamped positions of the nuclei using a static electronic
structure calculation. �e corresponding forces on the nuclei from the electrons can be
calculated and the equations of motion of the nuclei are then solved classically. In this
case it is the electrons associated with the classical nuclei that are being treated quantum
mechanically.

In Section 13.3, we introduce the qm/mm approach. In these methods, a small part of
the system must be studied using a quantum mechanical technique (e.g. ab initio molecular
dynamics) while the remainder of the system can be adequately simulated using a classical
approach (e.g. classical molecular dynamics). �e interesting problem is how to couple
these two regions consistently.
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An alternative approach to quantum mechanical systems is through the non-normalized
quantum-mechanical density operator

ϱ = exp(−βH ) = 1 − βH + β2

2 H H + . . . (13.3)

which satis�es the Bloch equation

∂ϱ/∂β = −Hϱ . (13.4)

In the coordinate representation of quantum mechanics, we may de�ne the density matrix
as

ϱ
(
R(N ),R′(N ) ; β

)
=

〈
R(N ) ��� ϱ

���R
′(N )

〉
=

〈
R(N ) ��� exp(−βH ) ���R

′(N )
〉

(13.5)

=
∑
s

χs (R(N ) ) ϱ χ ∗s (R
′(N ) )

where s is a quantum state of the system with a nuclear wave function, χs , and we assume
the electrons associated with each nucleus remain in their ground state.

A formal solution of the Schrödinger equation, eqn (13.1), suggests that, for time-
independent Hamiltonians, the quantum-mechanical propagator from time 0 to time t
is

U (t ) = exp(H t/i~). (13.6)
�is propagator converts Φ(0) to Φ(t ). �us we see an analogy between the propagator
of eqn (13.6) and the de�nition of ϱ, eqn (13.3), or similarly between eqn (13.1) and the
Bloch equation (13.4). �is isomorphism is achieved with the transformation β → it/~.
Some of the techniques discussed in this chapter use high-temperature or short-time
approximations to the quantum-mechanical density matrix or propagator. Nonetheless,
these techniques are o�en useful in low-temperature simulations where the ~2-expansions
might fail.

One successful approach treating the nuclei quantum mechanically has been to use the
path-integral formulation of quantum mechanics (Feynman and Hibbs, 1965). By taking
the trace of ϱ (R(N ),R′(N ) ; β ), that is, by se�ing R(N ) = R′(N ) and then integrating over
R(N ) , we obtain the quantum partition function.

QNVT =

∫
dR(N )

〈
R(N ) ��� exp(−βH ) ���R

(N )
〉
=

∫
dR(N )ϱ

(
R(N ),R(N ) ; β

)
. (13.7)

Using this relationship, thermodynamic properties, static structural properties, and
dynamic properties may, in some circumstances, be estimated by the temperature–time
analogy already discussed. In Section 13.4 we describe a simulation algorithm which
has arisen directly out of this formalism. �is approach is o�en used as a semiclassical
�nite-temperature technique, which will provide a measure of improvement over quantum-
corrected classical results (e.g. for liquid neon). In this section, we concentrate on the
application of path-integral methods to the nuclei.

Path-integral techniques can also be applied in the strongly quantum-mechanical
low-temperature limit (e.g. for liquid helium, Morales et al., 2014), but special techniques
have also been developed for these problems. As an example we consider a random-walk
estimation of the electronic ground state in Section 13.5.
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13.2 Ab-initio molecular dynamics
13.2.1 Approximate quantum dynamics

We consider the time evolution of a quantum mechanical systems of nuclei and electrons.
At a particular time t , the eigenfunctions of the electrons can be obtained from the solution
of the time-independent electronic Schrödinger equation

He
(
r(n),R(N )

)
Ψk

(
r(n),R(N )

)
= Ek

(
R(N )

)
Ψk

(
r(n),R(N )

)
(13.8)

for a �xed con�guration R(N ) of the nuclei.He is de�ned in eqn (13.2) and the eigenfunc-
tions Ψk are orthonormal. �e eigenvalues Ek are the energies of the electronic sub-system
in the �xed �eld of the nuclei (the so-called adiabatic energies).

Using the Born–Huang ansatz (Kutzelnigg, 1997), we can expand the total wave
function

Φ
(
r(n),R(N ) ; t

)
=

∞∑
`=0

Ψ`

(
r(n),R(N )

)
χ`

(
R(N ) ; t

)
, (13.9)

where the functions χ` are time-dependent coe�cients in the expansion. Substitution
of eqn (13.9) into eqn (13.1), followed by an integration over r(n) and a neglect of the
non-adiabatic coupling operators leads to the Born–Oppenheimer (bo) approximation

[
−

∑
I

~2

2MI
∇2
I + Ek

(
R(N )

)]
χk

(
R(N ) ; t

)
= i~
∂χk

(
R(N ) ; t

)
∂t

, (13.10)

where we can now identify χ as the set of nuclear wave functions for a selected electronic
state k . Eqn (13.10) is the quantum-mechanical equation of motion of the nuclei in the bo
approximation. �e corresponding equation for the electronic degrees of freedom is

HeΨ
(
r(n),R(N ) ; t

)
= i~
∂Ψ

(
r(n),R(N ) ; t

)
∂t

, (13.11)

where Ψ, the electronic wave function, can be expressed in the basis of the electronic
states

Ψ
(
r(n),R(N ) ; t

)
=

∞∑
`=0

c` (t )Ψ`

(
r(n),R(N ) ; t

)
, (13.12)

and the coe�cients, c` (t ) are the occupation numbers of the states.
Equations (13.10) and (13.11) can be solved, in principle, to give the quantum dynamics

of the nuclei and electrons each moving in a time-dependent e�ective potential de�ned by
the other part of the system. However, even for modest-sized condensed phase problems,
this is not a pragmatic approach, and there are three di�erent ways in which the problem
can be simpli�ed to make it more tractable. All of these can be termed ab initio molecular
dynamics (aimd). �e �rst of these, Ehrenfest dynamics (Marx and Hu�er, 2012), solves
the quantum mechanical motion of the electrons at every step using eqn (13.11) and then



Ab-initio molecular dynamics 409

uses the wave function to compute the force on each nucleus I , propagating the nuclei
forward in time using classical mechanics:

MI R̈I = −∇I

∫
dr(n) Ψ∗HeΨ = −∇I 〈He〉. (13.13)

Ehrenfest dynamics is a mean-�eld approach that includes non-adiabatic transitions
between Ψk and Ψ` . One particular advantage of the Ehrenfest approach is that during
the motion the wave functions, Ψk , remain normalized and orthogonal to one another
and this orthonormality does not need to be imposed in the dynamics using constraints.

In the second approach, known as Born–Oppenheimer (bo) dynamics, the electronic
wave function Ψ is restricted to the ground-state adiabatic wave function, Ψ0 at all times,
corresponding to a single term in eqn (13.12). �e equations of motion are

MI R̈I (t ) = −∇I min
Ψ0

{〈
Ψ0

���He
���Ψ0

〉}
E0Ψ0 = HeΨ0, (13.14)

where the nuclei move classically on the bo potential-energy surface and E0 is obtained
from the solution of the time-independent Schrödinger equation for the ground state. In
contrast to Ehrenfest dynamics, the ground state has to be established at each step in the
dynamics by diagonalizing the Hamiltonian,He.

In the third approach, developed by Car and Parrinello (1985), 〈Ψ0 |He |Ψ0〉 is considered
to be a functional of the set of orbitals, {ψi }, that form the basis of the wave function.
It is now possible to construct a Lagrangian in which the functional derivative with
respect to these orbitals leads to the force that will drive the orbitals forward in time. �is
Lagrangian can be represented as

L =
∑
I

1
2MI Ṙ

2
I +

∑
i

µ
〈
ψ̇i |ψ̇i

〉
−

〈
Ψ0

���He
���Ψ0

〉
+ {constraints}, (13.15)

where µ is a �ctitious mass controlling the dynamics of the orbitals and we have included
a set of constraints in the Lagrangian that will keep the underlying orbitals orthogonal
and normalized during the dynamics. �e equations of motion resulting from L are

MI R̈I (t ) = −∇I
〈
Ψ0

���He
���Ψ0

〉
+ ∇I {constraints},

µψ̈i (t ) = −
δ〈Ψ0 |He |Ψ0〉

δψ ∗i
+

δ

δψ ∗i
{constraints}, (13.16)

whereδ/δψ ∗i indicates a functional derivative. (Note that in taking the functional derivative
of the orbital kinetic energy, ψ̇ ∗i and ψ̇i are treated as independent functions.) For both bo
and cp dynamics the force on the nuclei can, in many cases, be evaluated e�ciently using
the Hellmann–Feynman theorem

−∇I
〈
Ψ0

���He
���Ψ0

〉
≈ −

〈
Ψ0

���∇IHe
���Ψ0

〉
. (13.17)

In these equations of motion there is a real temperature associated with the kinetic
energy of the nuclei and a �ctitious temperature associated with the electronic degrees
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of freedom arising from the kinetic energy, ∑i µ〈ψ̇i |ψ̇i 〉. If this electronic temperature is
kept low, with a suitable choice of µ then the electronic degrees of freedom will evolve on
the bo surface and we should recover the Born–Oppenheimer dynamics of eqn (13.14).
We will return to the expressions for the constraint terms in eqn (13.16) when we have
considered the details of the electronic wave function.

13.2.2 Density functional theory and the Kohn–Sham method

�e use of the Born–Oppenheimer or Car–Parrinello dynamics requires a knowledge of
the electronic wave function for the ground state of the system. Since the electrons are
fermions, Ψ0 must be antisymmetric to the exchange of two electrons. �is symmetry can
be included by writing the full wave function as a Slater determinant of the individual
wave functions of each of the n electrons

Ψ0
(
r(n)

)
=

1
√
n!

�����������

ψ1 (r1) ψ2 (r1) · · · ψn (r1)
ψ1 (r2) ψ2 (r2) · · · ψn (r2)
...

...
. . .

...
ψ1 (rn ) ψ2 (rn ) · · · ψn (rn )

�����������

. (13.18)

Traditionally, Ψ0 is then obtained using the Hartree–Fock (hf) approximation (Schaefer,
1972). �is approach scales as O (n4) and more sophisticated version of the theory such
as the con�guration-interaction methods are signi�cantly more expensive, with the mp4
method scaling as O (n7).

�e breakthrough in electronic structure calculations for condensed phase systems
has been the development of density functional theory (dft) (Hohenberg and Kohn, 1964).
In dft, the expectation value

FHK[ρ0] =
〈
Ψ0[ρ0]���H

′
e

���Ψ0[ρ0]
〉

(13.19)

de�nes a functional, FHK, of the ground-state electron density, ρ0 (r), that is completely
independent of the environment of the electrons and only depends on the spatial co-
ordinate, r. (Note that the electron density, ρ, should not be confused with the density
operator, ϱ, used in other sections of this chapter.)

In eqn (13.19)
H ′e = K [ρ] +Vee[ρ] (13.20)

where K is the quantum mechanical kinetic-energy operator of the electrons andVee is
the potential energy between the electrons. �e corresponding energy functional,

E[ρ] = FHK[ρ] +
∫

drVext (r) ρ
(
r,R(N )

)
, (13.21)

depends additionally on the external �eld due to the positively charged nuclei acting
on the electrons. �e �rst Hohenberg–Kohn theorem states that the full many-particle
ground state is a unique functional of ρ (r). �e second H–K theorem states that the energy
functional, E[ρ], is a minimum when ρ = ρ0, the true ground-state density.

�e next step is to �nd the universal functional FHK. �e approach of Kohn and Sham
(1965) is to replace the system of n interacting electrons by an auxiliary system of n
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independent electrons. We denote this non-interacting system by the subscript s, with
the total energy Es = Ks +

∫
drVsρs. �ere will be a particular, local potential, Vs (r),

such that the exact ground-state density of the interacting system, ρ0, is equal to ρs. If
the ground state of the non-interacting systems is singly degenerate then

ρ0 (r) =
occ∑
i=1

fi |ψi (r) |2 (13.22)

where the sum is over the occupied orbitals, fi is the occupancy number of the orbital (0,
1, or 2), and the single-particle orbitals are obtained from the Schrödinger equation

HKSψi =

[
−
~2

2me
∇2 +Vs

]
ψi = ϵiψi . (13.23)

�us the total energy of the interacting system is

EKS[ρ0] = Ks[ρ0] +
∫

drVext (r)ρ0 (r) + 1
2

∫∫
dr dr′ ρ0 (r) ρ0 (r′)

|r − r′ |
+ Exc[ρ0]. (13.24)

�e energy contains four terms: the �rst is the kinetic energy for the non-interacting
system,

Ks[ρ0] = − ~
2

2me

occ∑
i=1

fi
〈
ψi

���∇
2���ψi

〉
; (13.25)

the second is the energy of the electrons in the static �eld of the nuclei (Vext also
includes the interaction between the nuclei themselves, ∑I> J qIq J /|RI − RJ |); the third
is the classical Coulomb energy between the electrons; and the fourth is the exchange–
correlation energy. Note that for simplicity, we continue to set 4πϵ0 = 1 in the Coulomb
terms. Exc is simply the sum of the error made in using a non-interacting kinetic energy and
the error made in treating the electron–electron interaction classically. From eqn (13.24),
the single-particle potential is given by

Vs (r) = Vext (r) +
∫

dr′ ρ0 (r′)
|r − r′ |

+
δExc
δρ (r)

. (13.26)

�is approach would be exact if we knew Exc exactly. However, this is not the case, and
to proceed we will need a reasonable approximation for the exchange–correlation energy.
In the �rst instance, it is o�en represented using the local density approximation (lda),

Exc[ρ0 (r)] ≈
∫

dr ρ0 (r)εxc[ρ0 (r)] (13.27)

where εxc[ρ0 (r)] is the exchange–correlation functional for a uniform electron gas, per
electron, at a particular density, ρ0 (r). εxc[ρ0 (r)] is the sum of an exchange term, which
is known exactly for the homogeneous electron gas, and a correlation term that can be
accurately calculated by quantum Monte Carlo (Ceperley and Alder, 1980), and readily
parameterized (Perdew and Zunger, 1981). �e lda approach is surprisingly accurate and
this is probably due to a cancellation of errors in the exchange and correlation terms
(Harrison, 2003).



412 �antum simulations

A signi�cant improvement in Exc can be obtained by using the generalized gradient
approximations (gga). �ese approximations are still local but take into account the
gradient of the density at the same coordinate (Harrison, 2003). �e typical form for a
gga functional is;

EGGA
xc [ρ0 (r)] ≈

∫
dr fxc

[
ρ0 (r),∇ρ0 (r)

]
. (13.28)

Considerable ingenuity has produced accurate, locally based functionals, fxc, such as the
pw91 functional of Perdew et al. (1992) which contains an accurate description of the
Fermi holes resulting from the exclusion principle. �ere are also a number of important
semi-empirical approaches; the most widely used of these, Becke–Lee–Yang–Parr (blyp),
uses the exchange functional of Becke (1988) combined with the correlation functional of
Lee et al. (1988). �ere is also an important class of hybrid functionals, such as Becke, 3-
parameter, Lee–Yang–Parr (b3lyp), in which the Becke exchange functional is mixed with
the energy from Hartree–Fock theory. �ese hybrid functionals have been implemented
in md calculations (Gaiduk et al., 2014), but are expensive to employ. �e development of
the simple gga-based functionals has allowed the application of dft to real problems in
chemical bonding and they are now widely used in ab initio md methods.

Now all the elements of eqn (13.26) are in place, a simple approach to calculating the
ground-state energy for a given nuclear con�guration would be as follows:

(a) starting from a guess for ρ0 (r), calculate the single particle potential,Vs (r), using
eqn (13.26);

(b) solve the single orbital Schrödinger equations, eqn (13.23), by diagonalizing the
Kohn–Sham (ks) Hamiltonian;

(c) calculate a new estimate for the ground-state density from eqn (13.22);
(d) iterate until convergence and calculate the ground-state energy from eqn (13.24).

�e time for this calculation is determined by the diagonalization step which scales as
O (n3).

Before leaving this section, we must address two further, important, considerations:
representation of the single-particle orbitals, ψi , in the ks approach, and the use of
pseudopotentials to represent the tightly bound electrons. �e single-electron orbitals are
o�en expanded in Gaussians or plane waves that �t neatly into the periodic boundary
conditions of the simulation. For plane waves

ψ
g
i (r) = exp(ig · r)

∑
k

c
g
i (k) exp(ik · r) (13.29)

where k = 2πn/L is a reciprocal la�ice of the md cell, the wavevector g is in the �rst
Brillouin zone of the reciprocal la�ice of the md cell, and the coe�cient cgi is a complex
number. For ordered systems, we need to consider wave functions corresponding to many
di�erent points in the Brillouin zone, but for disordered or liquid-like systems, in a large
md cell, it is possible to work at the zone centre, g = 0. In this case, the orbitals are simply

ψi (r) =
∑
k

ci (k) exp(ik · r) (13.30)
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and ci (−k) = c∗i (k). �e ks potential converges rapidly with increasing k and in practical
calculations it is necessary to choose a cuto� energy, Ecut such that

~2

2me

���kmax
���
2
≤ Ecut. (13.31)

�e precision of the density functional calculation is determined by the choice of Ecut.
�ere are many other orthonormal, localized functions that can be used to expand

ψi ; these include Gaussians and wavelets. At present there is considerable interest in
the use of Wannier functions, the Fourier transforms of the Bloch eigenstates, as a basis
set (Martin, 2008, Chapter 21). In principle, these alternative basis sets might be more
e�cient at describing highly inhomogeneous charge distributions. However, the plane-
wave basis is versatile and accurate and is still widely used. For example, for plane waves,
the kinetic-energy term in EKS can be wri�en simply in terms of the coe�cients, ci (k),

Ks[ρ0] = ~
2

2me

occ∑
i=1

∑
k

fi (k)
���k

���
2
ci (k)c∗i (k) (13.32)

and the Pulay force (the correction to the Hellmann–Feynman approximation) vanishes
exactly. A Gaussian basis also provides an analytical expression for K and the Coulomb
potential for an isolated system.

�e electrons around the nucleus can be divided into two types: core electrons that are
strongly bound to a particular nucleus (e.g. the 1s electrons in Cl); and the valence electrons
that are polarizable and take part in the formation of new bonds (e.g. the 2pz electron in
Cl). In aimd, it is e�cient to concentrate on the evolution of the valence electrons and to
combine the core electrons with the nucleus by de�ning a pseudopotential. �is potential,
vPP (r), is the potential acting on the valence electrons from the nucleus and the core
electrons. In our calculations, it will replace the potential of the bare nuclear charge when
constructing theVext as used in eqns (13.24) and (13.26). In the rest of this section, when
we discuss the dynamics of the ions, we mean the dynamics of the positively charged
nucleus and the core electrons.

A useful pseudopotential for a particular atom is calculated by comparing the solu-
tions of the Schrödinger equation for the all-electron system and for the corresponding
system with a trial pseudopotential. An accurate and transferable vPP (r) is designed so
that, at large distance from the nucleus (outside a core region, r > Rc), the pseudo-
wavefunction matches the all-electron wave function and that, in the core region, the
pseudo-wavefunction produces the same charge as the all-electron wave function (i.e. it is
norm-conserving). In addition, the pseudopotential is chosen to be as smooth as possible
to minimize the number of plane waves required to describe it accurately.

�e overall pseudopotential around a nucleus is o�en constructed separately for each
angular momentum component, `,m of the wave function

vPP (r) =
∞∑
`=0

+∑̀
m=−`

v`,m (r )P`,m =
∞∑
L=0

vL (r )PL, r < Rc (13.33)

where L is a combined index {`,m}, vL (r ) is the pseudopotential for a particular angular
momentum channel and PL = |L〉〈L| is the projection operator for the angular momentum
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which picks out a particular state, L. Note that vL (r ) is equal to the L-independent, all-
electron potential outside the core and vL (r ) → −qion/r as r → ∞, where qion is the net
charge on the ion. �e ionic pseudopotential can be split into a local L-independent part,
which contains all the e�ects of the long-range Coulomb potential, and a non-local part,
∆vL (r )

vPP (r) =
∞∑
L=0

vlocal (r )PL +
∞∑
L=0

[
vL (r ) − vlocal (r )

]
PL

= vlocal (r ) +
Lmax−1∑
L=0

∆vL (r )PL (13.34)

where ∆vL (r ) = 0 for r > Rc and L ≥ Lmax. Normally Lmax is set to 1 for �rst-row atoms
and 2 or 3 for heavier atoms. vlocal (r ) can be readily included in the ks energy

Elocal =

∫
dr vlocal (r)ρ (r). (13.35)

�e non-local contribution to the pseudopotential can be calculated by projecting the
operator onto a local basis set, using the Kleinman–Bylander projection (Kleinman and
Bylander, 1982). �e energies and forces associated with the non-local part of the pseu-
dopotential are readily evaluated in k-space. Using these approaches it is straightforward
to generate pseudopotentials ��ed to simple analytical forms such as a combination of
polynomials and Gaussians, and examples of such calculations are available for many
di�erent atom types (Gonze et al., 1991; Goedecker et al., 1996).

�is short introduction to pseudopotentials has allowed us to establish the vocabulary
and principles associated with their use in ab initio md. Fuller accounts of their properties
can be found in Marx and Hu�er (2012, Chapter 4) and Martin (2008, Chapter 11).

13.2.3 Car–Parrinello dynamics revisited

As we have seen in the last section, the electronic structure problem can be e�ciently
solved for a given position of the ions using dft. �e development of the Car–Parrinello
(cp) method, in 1985, was a breakthrough that avoided the explicit diagonalization of the
ks Hamiltonian. �ere are a number of excellent reviews (Remler and Madden, 1990; Galli
and Parrinello, 1991; Galli and Pasquarello, 1993) and a book (Marx and Hu�er, 2012)
covering the cp method and we provide a short reprise here.

For a plane-wave basis set, the Lagrangian, eqn (13.15) can be wri�en as

L = µ
∑
i

∑
k

ċ∗i (k)ċi (k) +
1
2

∑
I

MI Ṙ
2
I − EKS[ρ] +

∑
i j

Λi j

(∑
k

c∗i (k)c j (k) − δi j

)
(13.36)

where Λi j is the Lagrange multiplier that keeps the orbitals,ψi andψj , orthonormal. �e
resulting equations of motion are

µc̈i (k) = −
∂EKS
∂c∗i (k)

+
∑
j

Λi jc j (k) (13.37a)

MI R̈I = −∇IEKS. (13.37b)
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Equation (13.37a) describes the motion of the Fourier components of the plane-wave
expansion in time and eqn (13.37b) the motion of the ions. �ese coupled equations can
be solved using the Verlet or velocity Verlet algorithm and the constraints can be applied
using a standard technique such as shake or rattle (Tuckerman and Parrinello, 1994).
�ese algorithms are discussed in Chapter 3.

A number of parameters need to be �xed at the beginning of a Car–Parrinello md
simulation, and we use a number of studies of liquid water to illustrate some of these
choices. �e �rst consideration would be the basis set used to describe the electronic
structure. For example, Laasonen et al. (1993) and Zhang et al. (2011a) both used a plane-
wave basis with the simplicity and advantages already discussed. In contrast, Lee and
Tuckerman (2006) have employed a discrete variable representation (dvr) of the basis.
�is approach combines some of the localization of the density that would be typical of a
Gaussian basis set with the orthogonality o�ered by the plane-wave functions. �is choice
improves energy conservation for a particular Ecut and grid size, but avoids problems with
the Pulay forces and the basis set superposition errors associated with an atom-centred
basis set. Second, the exchange interaction for the calculations needs to be chosen. �e
lda is not appropriate for liquid water but Laasonen et al. (1993) used the gga method of
Becke, while Lee and Tuckerman (2006) used the blyp. Zhang et al. (2011b) have employed
the hybrid functional pbe0 with a Hartree–Fock correlation energy and a more advanced
functional designed to improve the modelling of the O–O dispersion interactions. �e time
required for the simulations increases signi�cantly as the exchange functional becomes
more complicated and accurate, so that the simulations using more advanced functionals
are o�en performed on as few as 32 H2O molecules. Water simulations are typically
performed at the zone centre, g = 0, with between 32 and 100 molecules, and take into
account explicitly the four electronic states per molecule corresponding to the valence
electrons of the oxygen atom. �e hydrogen atoms (nucleus and electron) and the oxygen
nucleus and core electrons can be represented by pseudopotentials of the type developed
by Troullier and Martins (1991) and others (Vanderbilt, 1985; Goedecker et al., 1996). For
H, the wave function corresponding to its pseudopotential is smooth, avoiding the kink at
the nuclear position (associated with the divergence of the Coulomb potential) and it can
be represented with fewer plane waves. �e accuracy of the calculation is controlled by
the choice of Ecut or the number of wavevectors representing each electronic state. Ecut
might range from 35 Ha to 150 Ha. (Note that, in much of the literature, the cuto� energy
is given in either hartree or rydberg units, where 1 Ha = 2 Ry = 4.3597 × 10−18 kJ mol−1.)
From eqn (13.31), the number of k vectors corresponding to a particular energy cuto� is
given by

NPW =

( √
2

3π2

)
V (Ecut)

3/2 (13.38)

where, in this equation, V is the volume corresponding to a single molecule of water, and
V and Ecut are in atomic units ((bohr)3 and hartrees respectively). For a cuto� of 35 Ha,
each orbital requires 1000 wavevectors for each of the electronic states associated with
each of the water molecules in the simulation. Note that this number takes into account
the symmetry in the coe�cients at the zone centre. �e density,

ρ0 (r) =
∑
i

fi
∑
k

∑
k′

c∗i (k
′)ci (k) exp(i(k − k′) · r) (13.39)



416 �antum simulations

and the corresponding single-particle potential Vs (r) vary twice as fast as the wave
function and would require 8000 wavevectors per electronic state.

In a plane-wave calculation, the real-space grid spacing is (Lee and Tuckerman, 2006)

` =

(
π2

8Ecut

)1/2
(13.40)

where ` is in bohr and Ecut in hartrees. So, for example, a single water molecule in a small
cubic box at a density of 997 kg m−3 with an orbital cuto� of 35 Ha would require (31)3
grid points (the number of grid points scales linearly with the number of water molecules
in the simulation). �e dvr basis can use a much coarser grid for the real-space density
than the plane-wave basis (Lee and Tuckerman, 2006) at the same level of accuracy as
judged by the energy conservation in the simulation.

Finally, the timestep for the cp simulation used by Lee and Tuckerman (2007) is 0.05 fs
(or 2.07 a.u.). �is is used with a �ctitious mass µ = 500 a.u. (see eqn (13.37a)). �e earlier
work of Laasonen et al. (1993) used a timestep of 0.169 fs (6.99 a.u.). In order to achieve a
separation of the ionic and electronic kinetic energies with this long timestep, they used a
�ctitious mass µ = 1100 a.u. and doubled the mass of the protons to simulate D2O rather
than water.

�e starting con�guration for the cp simulation comprises the ionic positions and
velocities and the initial values of all the ci (k) and their �rst time derivatives at t = 0. �e
choice of the ionic positions and velocities follows the ideas developed in Sections 5.6.1
and 5.6.2. �e coe�cients for the wave functions can be chosen at random. It is possible
to re�ect the importance of the di�erent plane waves by sampling from a Gaussian distri-
bution in |k|. Alternatively one can superimpose the electron densities of the underlying
atomic con�guration to produce an estimate of the overall density and diagonalize the
corresponding ks matrix in any reasonable basis to give the starting coe�cients. Marx
and Hu�er (2012) suggest using the pseudo-atom densities and the pseudo-atomic wave
functions, already used in the calculation of the pseudopotential, in this context. �e veloc-
ities of the coe�cients at t = 0 can be set consistently by moving forward and backward
one timestep, calculating the ci (k,−δt ) and ci (k,+δt ) from R(N ) (−δt ) and R(N ) (+δt ) and
using these coe�cients to estimate ċi (k, 0) (Remler and Madden, 1990).

Once the simulation parameters and the starting con�guration are established the
simulation itself proceeds like a classical md calculation. �e heart of a typical cp md code
is as follows. At t = 0 an initial guess is made forψi =

∑
k ci (k) exp(ik · r). �en, at each

subsequent timestep the following operations are carried out.
1. Calculate ρ0 (r),Vs

[
ρ0 (r)

]
, EKS

[
ρ0 (r)

]
, ∇IEKS.

2. For each electronic state i and for each plane wave k:
(a) calculate ∂EKS/∂c

∗
i (k);

(b) integrate µc̈i (k) = −∂EKS/∂c
∗
i (k).

3. Orthogonalize wave functions.
4. For each ion, integrate MI R̈I = −∇IEKS.
5. Compute averages.

At a particular timestep, the ci (k) are used to calculate ρ̂0 (k), which is transformed to
produce ρ0 (r) at every point on a real-space la�ice and hence EKS (eqn (13.24)). �e
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force on the ions is calculated from the derivatives of the energy with respect to the
ionic positions. �is force is determined by the derivatives of the local and non-local
pseudopotentials and the electrostatic energy with respect to RI ; the kinetic energy and
exchange energy make no contribution. We recall that the second and third terms in EKS,
eqn (13.24), are long-ranged and the energies and forces resulting from these electrostatic
interactions are calculated using the Ewald summation method, or one of the other
techniques described in Chapter 6.

Looping over all of the electronic states i and wavevectors k, the force on the wave
function coe�cients, −∂EKS/∂c

∗
i (k), is calculated from all the terms in eqn (13.24). For

example, for a plane-wave basis, the force from the kinetic energy,

∂K

∂c∗i (k)
=
~2 fi
2me
|k|2ci (k) (13.41)

is evaluated in k-space and the same is true of the electronic force associated with the non-
local pseudopotential. In contrast the electronic forces involving the local pseudopotential,
the Coulomb and the exchange energies are convolutions (double sums in reciprocal
space). �ey are most e�ciently evaluated by multiplying the corresponding real-space
functions and then Fourier transforming to obtain the force. For the precise pathway,
through real and reciprocal space to ∂EKS/∂c

∗
i (k), see Payne et al. (1989) and Galli and

Pasquarello (1993, Fig. 7). �e ability to move backwards and forwards between real and
reciprocal space using fast Fourier transforms is at the heart of these molecular dynamics
calculations and can o�en be achieved e�ciently using standard scienti�c libraries tuned
for a particular machine.

Once the forces on the coe�cients are calculated, the coe�cients are moved forwards
in time without constraints using, say, the velocity Verlet algorithm, and the orthogonal-
ization is applied using the rattle algorithm. Finally, the forces on the ions are used to
advance the ionic positions.

�e hallmark of a properly functioning md simulation is that the energy associated
with the Lagrangian, eqn (13.36) should be conserved. �at is

Etotal = µ
∑
i

∑
k

ċi (k)ċ∗i (k) +
1
2

∑
I

MI
���ṘI

���
2
+ Eelec, (13.42)

where Eelec is the sum of the last three terms in eqn (13.24) including the potential between
the ions. Etotal should not dri� and should remain constant to ca. ±0.000 01 Ha over the
course of the simulation. Remler and Madden (1990) have pointed out, for a well-de�ned
trajectory on the bo surface, it is

Ereal =
1
2

∑
I

MI
���ṘI

���
2
+ Eelec, (13.43)

that should be conserved, and that this can only be achieved if the �ctitious kinetic energy
is several orders of magnitude smaller than the variation in Ereal. For example, Fig. 2 of Lee
and Tuckerman (2007) shows the clear separation of the kinetic energies associated with
the ionic and electronic degrees of freedom and excellent overall conservation of energy
over the 60 ps of a simulation of water. �e separation of the characteristic frequencies
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of the ionic and electronic degrees of freedom prevents energy exchange between these
systems and is at the root of the success of the cp method.

�e cp method just described samples states in the microcanonical ensemble with
Etotal constant. It is also possible to simulate at constant NVT (Tuckerman and Parrinello,
1994) using the Nosé–Hoover chain (Martyna et al., 1992) described in Section 3.8.2, where
the heat bath is coupled to the ionic degrees of freedom. Normally, one would not apply
a separate thermostat to the electrons since this can disturb the correlation between
the electronic and ionic motion, resulting in an additional friction on the ions with a
corresponding �ow of energy from the ionic system to the electrons. When the gap
between the electronic and nuclear degrees of freedom is very small, separate heat baths
with di�erent chain lengths can be coupled to the ions and the electrons to ensure that
the system remains on the bo surface.

Cp simulations in the constant-NPT ensemble can be performed with isotropic changes
in a cubic box (Ghiringhelli and Meijer, 2005), or with varying box shape (Focher et al.,
1994). In a constant-NPT simulation the volume of the cell changes, and therefore the
plane-wave basis (2πn/L) changes. �is creates a Pulay force arising from the Hellmann–
Feynman theorem. �is problem can be avoided by imposing an e�ective energy cuto�,
Ee�

cut � Ecut (eqn (13.31)) and smoothly suppressing the contribution of all plane waves
above Ee�

cut (Marx and Hu�er, 2012, p.187).

13.2.4 Summary

�e cp method is a powerful technique in the simulation of liquids and solids. For example,
it can be used to calculate equilibrium and structural properties of water (Pan et al., 2013;
Alfe et al., 2014) and the time correlation functions and their corresponding condensed
phase spectra (Zhang et al., 2010). It can be readily extended to consider �uids in con�ned
geometries and pores (Donadio et al., 2009) and to study mixture such as ions in aqueous
solution (Kulik et al., 2012).

�e development of the cp method in 1985 was the historical breakthrough in aimd.
However, once that Rubicon had been crossed, a reexamination of bo dynamics con�rmed
the power of this direct approach, and bo dynamics is the most widely used method at
the present time. Bo dynamics, eqn (13.14), implies a full diagonalization of the ks matrix
for a �xed position of the ions. �is can be recast as a constrained minimization with
respect to the orbitals

min
{ψi }

[〈
Ψ0

���H
KS ���Ψ0

〉] ����〈ψi |ψj 〉=δi j
(13.44)

which can be e�ciently solved using a conjugate gradient method (Teter et al., 1989;
Arias et al., 1992). �e speed of these minimizations depends on the quality of the initial
guess for the orbitals for a given ionic con�guration R(N )

I and this can be improved by
e�ciently extrapolating the electronic con�guration or the density matrix forward in
time (Payne et al., 1992; VandeVondele et al., 2005).

Which of these methods is most e�cient in terms of the computer time required to
solve a particular problem? �is issue is discussed in some detail by Marx and Hu�er
(2012, section 2.6) and we simply highlight a number of observations from their discussion.
We start from the premise that the method which allows us to use the longest timestep
will allow us to calculate more accurate properties for a particular computing budget.
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Example 13.1 Ab initio ionic liquids

A number of independent simulations of the ionic liquid, dimethyl imidazolium
chloride, [DMIM]+Cl– , have been performed using ab initio molecular dynamics.

+

CH3CH3

Ha

H H

N N
Cl–

Del Popolo et al. (2005) performed bo dynamics using the siesta package, with the
electronic orbitals expanded in a non-orthogonal basis set of atom-centred functions.
Buhl et al. (2005) and Bhargava and Balasubramanian (2006) carried out cp dynamics
in the cpmd code with a plane-wave basis set. �ese simulations, although all quite
di�erent in terms of system size, run length, and exchange functional, produced a
consistent picture of the structure of the ionic liquid at 425 K.
Each imidazolium cation is surrounded by 6 Cl– anions out to a distance of 0.65 nm.
�e neutron-weighted radial distribution functions obtained from the ab initio simula-
tions are in good agreement with the corresponding experimental functions (Hardacre
et al., 2003). However, the sca�ering, from deuterated samples, is dominated by the
intramolecular contribution from the H and D atoms in the cation (Del Popolo et al.,
2007), and it is di�cult to extract information on the intermolecular structure from
these experiments. �e vibrational spectra derived from the ab initio simulations are
also in good agreement with experiment (Bhargava and Balasubramanian, 2006).
�ere are interesting di�erences between the intermolecular structures obtained
from these ab initio simulations and from classical molecular dynamics carried out
under the same conditions, using the best force �elds available for these ionic liquids
(Lopes et al., 2004). �e main di�erence occurs in the site–site radial distribution
function between the Cl– anion and the Ha atom, the unique, acidic hydrogen atom
indicated in the �gure. �e �rst maximum in дHaCl (r ) shi�s from 0.28 nm (classical)
to 0.23 nm (ab initio) indicating the formation of a hydrogen bond between Ha and
the counter ion. Additionally the classical model predicts a hole in the density of the
Cl– anions directly above and below the Ha atom. In the ab-initio simulations the
density hole is �lled. �is is again indicative of H-bond formation and is observed in
both the simulations of Del Popolo et al. (2005) and Bhargava and Balasubramanian
(2006), and inferred from the experimental neutron sca�ering results (Hardacre et al.,
2003). �e ab initio simulations suggest that it is necessary to re�ne the classical force
�elds for [DMIM]+Cl– to reproduce the hydrogen bond.

Cp dynamics can be conducted with a timestep approximately one order of magnitude
larger than that used with Ehrenfest dynamics (eqn (13.13)). �e timestep advantages of
bo dynamics over cp dynamics are more pronounced for heavier nuclei: in this case there
is an approximate order of magnitude advantage in favour of the bo approach. Model
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studies of Si employed a timestep at least �ve times larger than for the cp method with
only a small loss in the quality of the energy conservation. However, in the important
case of water, the longer timestep that can be employed in the bo dynamics is outweighed
by the number of iterations required to achieve convergence of the minimizations, and
the cp dynamics is more e�cient by a factor of between 2 and 4, at comparable levels
of energy conservation. For water, the choice of cp over bo depends on how tightly one
wants to control the energy conservation for a given expenditure of computer time. �ose
from a classical simulation background will probably feel most comfortable with the
higher level of energy conservation provided by the cp dynamics. As one would expect
both methods produce the same results within the estimated error for the static and
dynamic properties of water (Kuo et al., 2006). �e issue of the choice of timestep to
control the energy conservation is particularly important when one wants to accurately
sample in a particular ensemble or to calculate time-dependent properties. Both bo and cp
dynamics are also frequently used as simulated annealing techniques to reach a minimum
energy state particularly in the study of solids. In this case the bo approach o�ers some
clear advantages. When comparing di�erent techniques, the implementation of multiple
timestep methods may also tip the balance one way or the other (Luehr et al., 2014).

�is section has highlighted some of the complexities in developing aimd codes and
it is unlikely that a single researcher is going to create a new aimd code from scratch.
Fortunately, there are many packages available that can perform bo, cp, or Ehrenfest
dynamics, with a variety of pseudopotentials and basis sets. We have listed a number of
these in Table 13.1. �ere are web references to the so�ware in the Table which will allow
the interested reader to access the so�ware under the terms of its distribution.

�roughout this discussion, we have adopted the common ‘ab initio’ nomenclature
for this class of molecular dynamics. It is worth re�ecting on how ab initio these methods
really are. �ere is considerable freedom in choosing the exchange functional and in
choosing the combination of a particular exchange functional with a pseudopotential
and a basis set. In many recent papers one observes some ingenuity in adjusting these
combinations to give the best possible �t to a particular experimental observable. �is in
itself is no mean feat because the simulations are o�en on small system sizes for quite
short times. It is di�cult to ascribe a disagreement with experiment unambiguously to
either a limitation in the methodology or a particular choice in constructing the ks energy.
Unquestionably, these methods have opened up important new areas such as aqueous
electrochemistry, ionic liquids, and liquid metals to the power of accurate simulation, but
there is still some way to go before we have full control of the model required to study a
new system without recourse to adjustment against experiment.

Finally, we note that the techniques developed for the ab initio dynamics of quantum
systems can be applied with good e�ect to more classical systems, containing the type
of induced interactions described by eqn (1.36). In such cases (see Section 3.11), we can
perform a molecular dynamics on the ions and allow the induced dipole moments to
follow this motion on the appropriate Born–Oppenheimer surface (Salanne et al., 2012).

13.3 Combining quantum and classical force-�eld simulations
�e techniques described in Section 13.2 are computationally demanding and are normally
applied to small systems. In modelling a large system such as a solvated protein, it
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Table 13.1 A number of codes available for performing density functional calculations and aimd. �is list is not complete and is merely representative
of the range of packages available. A number of these are free for academic user in particular countries and some are also available through commercial
suppliers. �e precise terms and conditions for use are available at the referenced websites.

Code Functionality Source

abinit A dft electronic structure code, with pseudopotentials, plane
waves and wavelets; relaxation by bo dynamics, tddft.

www.abinit.org/

castep
A dft electronic structure code with pseudopotential, plane
waves, direct minimization of the ks energy functional; a wide
range of spectroscopic features.

www.castep.org/

vasp
A dft electronic structure code with bo dynamics; plane waves,
pseudopotentials, hybrid functionals plane-wave basis; robust
code for non-experts.

www.vasp.at/

siesta A dft electronic structure code, with relaxation and bo
dynamics; linear scaling; based on numerical atomic orbitals.

departments.icmab.es/leem/siesta/

cpmd aimd code with dft; cp dynamics, bo dynamics, Ehrenfest
dynamics; plane-wave basis, pimd, qm/mm.

www.cpmd.org/

cp2k aimd; a mixed Gaussian and plane-wave approach, bo
dynamics.

www.cp2k.org/

�antum
Espresso

cp dynamics, bo dynamics, plane-wave basis; quantum
transport; normal dft features.

www.quantum-espresso.org/
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MM

QM

Fig. 13.1 A qm system (dashed box) embedded in a classical molecular mechanics (mm) system.
�e atoms that are treated quantum mechanically are light grey, the classical atoms are dark grey.
�e arrowed dark atom is a capping H atom used to preserve the valence of the quantum fragment
at the quantum–classical boundary. �e nearby horizontal do�ed line indicates a monovalent
pseudopotential discussed in the text.

is possible to treat a particular region of interest using a quantum mechanical (qm)
approach and to model the environment around this region classically. An example is
the transformation of an unconjugated α-keto acid to its conjugated isomers by enzyme
catalysis in aqueous solution (Siegbahn and Himo, 2009). It is essential to model the acid
molecule and the four important residues of the enzyme, 4-oxalocrotonate tautomerase,
in a full qm way to capture the making and breaking of the bonds. However it would not
be e�cient or necessary to include other parts of the enzyme and the solvent in such
detail and these could be usefully represented by a classical force �eld.

�e idea of embedding a quantum mechanical sub-system in a larger classical system
was �rst developed for static calculations by Warshel and Levi� (1976). For this reason it
is o�en described as the qm/mm method (Groenhof, 2013). In the approach, the energy of
the qm part of the system can be calculated using post-hf methods, dft, or semi-empirical
quantum methods such as am1 and cndo. �e dynamics in the quantum region can be
explored using the bo or cp methods described in Section 13.2. �e classical region can be
treated using a standard force �eld and an md calculation. In this section, we will focus
on the use of dft methods in the quantum region. Fig. 13.1 shows a qm system embedded
in a cluster of classical atoms and molecules. �e choice of the qm sub-system is always
arbitrary and its de�nition o�en requires an initial insight into the problem at hand.
�e sub-system can be de�ned either by labelling atoms or by de�ning a geometrical
region to be treated quantum mechanically. For the moment, we will assume a �xed qm
region with no movement of molecules across the qm/mm boundary. If the molecules
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in the two regions are distinct, the forces across the boundary will normally consist of
dispersion interactions and electrostatic interactions. As is o�en the case, the boundary
cuts a covalent bond and then there are also bond stretching, bond angle, and torsional
forces between the regions.

�ere are two ways to calculate the energy of the combined system. In the simplest
subtractive scheme (Maseras and Morokuma, 1995), the energy of the whole system is
calculated using an mm force �eld, the energy of the qm system is added, and �nally the
mm energy of the qm sub-system is subtracted:

E = EQM (QM) + EMM (QM +MM) − EMM (QM). (13.45)

All the calculations are performed with a particular qm or mm method and there is no
speci�c consideration of the interface. �e interaction between the two regions is only
included at the mm level. A more accurate, additive, approach is widely used in practice
(Röthlisberger and Carloni, 2006). In this case the energy is composed of three terms

E = E (QM) + E (MM) + E (QM/MM) (13.46)

where E (QM) is the qm energy in the qm region, E (MM) is the mm energy in the mm
region, and the interaction energy between the regions is (Ippoliti et al., 2012)

E (QM/MM) =
MM∑
I ′=1

[ ∫
dr qI ′ρ (r)
|RI ′ − r|

+

QM∑
I=1

qI ′qI
|RI ′ − RI |

]

+
∑

non-bonded
pairs

(
AI I ′

R12
I I ′
−
BI I ′

R6
I I ′

)
+

∑
bonds

kr (RI I ′ − r0)
2

+
∑

angles
kθ (θ − θ0)

2 +
∑

torsions

∑
n

kϕ,n[cos(nϕ + δn ) + 1]. (13.47)

�e index I labels nuclei (or cores) in the qm region, while I ′ labels the mm atoms. �e �rst
two terms represent the interaction between the total charge density (due to electrons
and cores) in the qm region and the classical charges in the mm region. �e third term
represents the dispersion interactions across the qm/mm boundary, and the fourth term
consists of all the covalent bond stretching potentials that cross this boundary. �e �nal
two terms account for the energy across the boundary due to covalent bond angle bending
and torsional potentials; here it is understood that at least one of the atoms involved in
the angles θ and ϕ is a qm atom, with the others being mm atoms.

�e terms E (MM) + E (QM/MM) are included in EKS in the Lagrangian, eqn (13.36),
and a plane-wave basis set is used to solve the cp equations of motion for the qm system.
�e equations of motion of the mm charges are solved using a standard md technique
including all the classical forces and the forces from the qm region calculated from the
gradient of eqn (13.47).

For a system of 106 grid points for the electron density in the qm region and 104 mm
atoms, the full evaluation of the charge–charge term in E (QM/MM), eqn (13.47), remains
prohibitively expensive. �is problem can be mitigated by apportioning the mm charges
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into three concentric spheres around the qm region. In the innermost sphere, the classical
mm charges interact with the qm density as described by eqn (13.47).

�e mm charges in the next, intermediate, region interact with a set of constructed
charges in the qm region. �ese constructed charges are associated with each of the
qm nuclei and are calculated using the resp approach, to mimic the electron density,
ρ (r), as described in Section 1.4.2. �is dynamical-resp approach allows the �uctuating
charges on the qm nuclei to be calculated on-the-�y during the course of the simulation.
It also includes a restraining term to prevent these charges from �uctuating too strongly
away from the underlying values of the Hirshfeld charges (Laio et al., 2002b). (Note: the
Hirshfeld charges are calculated by sharing the molecular charge density at each point
between the atoms, in proportion to their free-atom densities at the distances from the
nuclei (Hirshfeld, 1977).)

In the third, outermost region, the classical charges interact with the multipole
moments of the quantum charge distribution (Laio et al., 2004). �e calculation of the
charge–charge interaction using di�erent, successively more approximate, methods in
the three shells enables a very signi�cant reduction in computational cost without a
signi�cant loss of accuracy (Laio et al., 2004). Finally, the behaviour of the dynamical-resp
charges provides a useful method for monitoring the chemical state of the qm atoms (Laio
et al., 2002b).

When the qm–mm boundary intersects a covalent bond, an arti�cial dangling bond is
created in the qm system. �is is known as the link-atom problem and it can be tackled
by capping the unsaturated valence with an H or F atom (Field et al., 1990). (�is capping
atom, which belongs to the qm region, is indicated by an arrow in Fig. 13.1.) �is is not
a perfect solution, since new, unphysical atoms are introduced into the qm region and
considerable care has to be taken to remove the interactions between these capping atoms
and the real mm atoms; this is particularly important for any charge–charge interaction
(Laio et al., 2004). A more sophisticated approach compensates for the dangling bond by
the addition of a localized orbital centred on the terminal qm atom before the boundary
(Assfeld and Rivail, 1996). �ese localized orbitals have to be determined by calculations
on small fragments of the real system and they remain frozen throughout the simulation
without responding to changes in the electronic structure of the qm system. �e most
�exible approach is to introduce a monovalent pseudopotential at the �rstmm atom beyond
the boundary; this is along the do�ed line in Fig. 13.1. �is is constructed so that the
electrons in the qm region are sca�ered correctly by the classical region (von Lilienfeld
et al., 2005). Analytic, non-local pseudopotentials (Hartwigsen et al., 1998) have been
employed to good e�ect in this approach. �ey do not introduce additional interactions
or degrees of freedom into the qm systems and they are su�ciently �exible to change as
the qm region evolves.

�ere are a number of important issues to consider when implementing the qm/mm
method. First, the method facilitates the simulation of larger systems, which include a qm
core, but the maximum timestep that is applied to the whole system is controlled by the cp
or bo dynamics. �e short timestep required would normally limit the simulation to a few
picoseconds, unless the classical dynamics is included using a multiple-timestep method
as described by Nam (2014). Second, the method does not include the Pauli repulsion
between the electrons in the qm region and the electrons associated with the classical
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atoms in the mm region. �e result is that electrons from the qm region can be strongly
and incorrectly associated with positively charged atoms close to the boundary in the mm
region. �is problem, known as electron spill-out, can be avoided by replacing the mm
atoms and any corresponding point charges in the region close to the boundary by ionic
pseudopotentials with screened electrostatic interactions (Laio et al., 2002a).

Finally, it is useful to be able to li� the restriction that all the atoms that start in the qm
region remain in that region throughout the simulation. �is is particularly important for
liquid-like environments where solvent atoms (water) might di�use around the active site
of a protein. One possibility is to label atoms as either qm or mm at the start and to stick
with these labels throughout. Unfortunately, in this case, solvent atoms that are explicitly
involved in the reaction could be treated as mm atoms while solvent atoms which have
moved far away from the reaction could be treated as qm atoms. An improvement is to
de�ne the qm region geometrically, as (say) a sphere of radius RQM, and to change the
nature of the atoms that cross the sphere from qm to mm and vice-versa. �is will lead
to signi�cant discontinuities in the energy as atoms change their type, which can create
instabilities in the dynamics and dri�s in the temperature (Bulo et al., 2009). �is problem
has been addressed by de�ning an additional transition region between the qm and mm
regions. �e outer boundary of the transition region is set to RMM > RQM. �e N adaptive
atoms in the transition region, at any point in time, can be either qm or mm atoms. For
example, if N = 3, there are 2N = 8 partitions between the two types: {qm, qm, qm}, {qm,
qm, mm} . . . {mm, mm, mm}. �e potential energy and force from the adaptive atoms is
given by a weighted sum over all the possible partitions, p:

Vad =
2N∑
p=1

wpVp
(
R(N )

)
(13.48)

where wp is a weight andVp
(
R(N )

)
is the potential energy of a particular partition. Each

of the N atoms is given a λ-value which determines its degree of mm character:

λ(R) =




0 R < RQM
(R − RQM)2 (3RMM − RQM − 2R)

(RMM − RQM)3
RQM ≤ R ≤ RMM

1 R > RMM.

(13.49)

λ depends on the distance R of an atom from the centre of the qm region. In a particular
partition, the set of qm atoms has λ values denoted by {λ}QM

p while the set of mm atoms is
described by {λ}MM

p . �e weight given to a particular partition is

wp = max
[
min

(
{λ}MM

p

)
−max

(
{λ}

QM
p

)
, 0

]
. (13.50)

A detailed rationalization of this particular choice of wp is provided by Bulo et al. (2009).
�is approach produces a smooth force that changes from pure qm to pure mm across
the transition region. �e computational overhead for the calculation of Vad and its
derivatives appears to scale as 2N . However, using eqn (13.50), any partition in which an
mm atom is closer to the qm region than any of the qm atoms in the transition region,
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has a weight of zero. �ere are only N + 1 contributing partitions and this makes the
calculation of the adaptive potential e�cient enough for many applications (Park et al.,
2012).

�e qm/mm method can be used in the cpmd program, see Table 13.1. �e cpmd-qm
option in this code requires the de�nition of the topology and coordinates of the protein
and solvent, the classical force �eld to be used (either amber or gromos), and the three
radii required to de�ne the charge–charge interaction in the calculation of E (QM/MM).

13.4 Path-integral simulations
In this section, we consider �uids where the nuclei of the atoms are modelled quantum
mechanically. In Section 2.9 we described the way in which �rst-order quantum corrections
can be applied to classical simulations. �e corrections to the thermodynamic properties
arise from the Wigner–Kirkwood expansion of the phase-space distribution function
(Green, 1951; Oppenheim and Ross, 1957) which may in turn be treated as an extra term
in the Hamiltonian (Singer and Singer, 1984)

Hqu = Hcl +
~2β

24m

[
−
β

m

(∑
I

PI · ∇I
)2
Vcl + 3

∑
I

∇2
IV

cl − β
∑
I

���∇IV
cl���

2
]
. (13.51)

Here ∇I is short for the gradient ∇RI with respect to the position RI of the atom or,
more precisely, the nucleus, and PI is the momentum of the nucleus. Of course, as an
alternative, the quantum potential can be obtained by integrating over the momenta

Vqu = Vcl +
~2β

24m

[
2
∑
I

∇2
IV

cl − β
∑
I

���∇IV
cl���

2
]
. (13.52)

�is potential may be used in a conventional Monte Carlo simulation to generate quantum-
corrected con�gurational properties. It is the treatment of this additional term by thermo-
dynamic perturbation theory that gives rise to the quantum corrections mentioned in
Section 2.9. Alternatively, a molecular dynamics simulation, based on the Hamiltonian of
eqn (13.51), can be employed (Singer and Singer, 1984). Apart from measures to cope with
numerical instabilities resulting from derivatives of the repulsive part of the potential,
the technique is quite standard. In this section, we consider techniques that go beyond
the expansion in ~2 typi�ed by eqn (13.51).

One of the most straightforward of these simulation techniques is that based on a
discretization of the path-integral form of the density matrix (Feynman and Hibbs, 1965),
because the method essentially reduces to performing a classical simulation. Since the
early simulation work (Fosdick and Jordan, 1966; Jordan and Fosdick, 1968) and the work
of Barker (1979), the technique has become popular, in part because the full implications
of the quantum–classical isomorphism have become clear (Chandler and Wolynes, 1981;
Schweizer et al., 1981). �is type of approach is particularly useful when we wish to
consider the nucleus as a quantum particle to capture phenomena such as quantum
tunnelling and zero-point motion. Consider a single neon atom, which remains in its
ground electronic state and whose position is described by R1. Starting with eqn (13.7) we
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can use the Tro�er factorization (Tuckerman, 2010, Appendix C) to divide the exponential
into P equal parts

Q1VT (β ) =

∫
dR1

〈
R1

���e
−βH /P . . . e−βH /P . . . e−βH /P ���R1

〉
(13.53)

and inserting unity in the form

1 =
∫

dR ���R
〉〈
R��� (13.54)

between each pair of exponentials gives

Q1VT (β ) =

∫
dR1dR2 . . . dRP

〈
R1

���e
−βH /P ���R2

〉〈
R2

���e
−βH /P ���R3

〉
. . .

〈
RP−1

���e
−βH /P ���RP

〉〈
RP

���e
−βH /P ���R1

〉
=

∫
dR1dR2 . . . dRP ϱ (R1,R2; β/P )ϱ (R2,R3; β/P ) . . . ϱ (RP ,R1; β/P ). (13.55)

We seem to have complicated the problem; instead of one integral over diagonal elements
of ϱ, we now have many integrals involving o�-diagonal elements. However, each term
involves, e�ectively, a higher temperature (or a weaker Hamiltonian) than the original.
At su�ciently large values of P , the following approximation becomes applicable:

ϱ (Ra ,Rb ; β/P ) ≈ ϱfree (Ra ,Rb ; β/P ) exp
(
−(β/2P )

[
Vcl (Ra ) +Vcl (Rb )

])
(13.56)

where Vcl (Ra ) is the classical potential energy as a function of the con�gurational
coordinates, and where the free-particle density matrix is known exactly. For a single
molecule, of massm, it is

ϱfree (Ra ,Rb ; β/P ) =
(

Pm

2πβ~2

)3/2
exp

(
−

Pm

2β~2 R
2
ab

)
(13.57)

where R2
ab =

���Ra − Rb
���
2
. Now the expression for Q is

Q1VT =
( Pm

2πβ~2

)3P/2 ∫
dR1 . . . dRP exp

(
−

Pm

2β~2

(
R2

12 + R
2
23 + . . . + R

2
P1

))
× exp

(
−(β/P )

[
Vcl (R1) +V

cl (R2) + . . . +V
cl (RP )

])
. (13.58)

�ese formulae are almost unchanged when we generalize to a many-molecule system.
For N atoms,

QNVT =
1
N !

( Pm

2πβ~2

)3PN /2 ∫
dR(N )

1 . . . dR(N )
P

exp
(
−

Pm

2β~2

[���R
(N )
12

���
2
+

���R
(N )
23

���
2
+ . . . +

���R
(N )
P1

���
2])

× exp
(
−(β/P )

[
Vcl

(
R(N )

1
)
+Vcl

(
R(N )

2
)
+ . . . +Vcl

(
R(N )
P

)])
. (13.59)



428 �antum simulations

1

2

3

45

1

2

3

4

5

Fig. 13.2 Two ring-polymer ‘molecules’ (P = 5) representing the interaction between two atoms
in a path-integral simulation. �e straight dashed lines are the intermolecular potential interactions,
the wavy lines represent the intramolecular spring potentials.

We must consider carefully what eqn (13.59) represents. Each vector R(N )
a represents a

complete set of 3N coordinates, de�ning a system like our N -atom quantum system of
interest. �e functionVcl (R(N )

a ) is the potential-energy function for each one of these
systems, calculated in the usual way. Imagine a total of P such systems, which are more
or less superimposed on each other. Each atom in system a is quite close to (but not
exactly on top of) the corresponding atom in systems b, c, . . . etc. Each contributes a
termVcl (R(N )

a ) to the Boltzmann factors in eqn (13.59), but the total is divided by P to
obtain, in a sense, an averaged potential. �e systems interact with each other through
the �rst exponential term in the integrand of eqn (13.59). Each vector R(N )

ab (R(N )
12 , R(N )

23 ,
etc.) represents the complete set of N separations between corresponding atoms of the
two systems a and b. Speci�cally the squared terms appearing in eqn (13.59) are

���R
(N )
ab

���
2
=

���R
(N )
a − R(N )

b
���
2
=

N∑
i=1

���Ria − Rib
���
2

(13.60)

where Ria is the position of atom i in system a. �ese interactions are of a harmonic form,
that is, the systems are coupled by springs.

�ere is an alternative and very fruitful way of picturing our system of NP atoms
(Chandler and Wolynes, 1981). It can be regarded as set of N molecules, each consisting
of P atoms which are joined together by springs to form a classical ring polymer. �is
is illustrated in Fig. 13.2. We write the integral in eqn (13.59) in the form of a classical
con�gurational integral

ZNVT =

∫
exp

(
−βV (R(NP ) )

)
dR11 . . . dRia . . . dRNP (13.61)

where R(NP ) is the complete set of NP atomic coordinates, Ria corresponding to atom a
on molecule i , with the con�gurational energy consisting of two parts

V (R(NP ) ) = Vcl (R(NP ) ) +Vqu (R(NP ) ). (13.62)
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�e classical part is

Vcl =
1
P

[
Vcl (R(N )

1 ) +Vcl (R(N )
2 ) . . . +Vcl (R(N )

P )
]

=
1
P

P∑
a=1

N∑
i<j

v
cl
(���Ria − Rja

���
)
=

1
P

P∑
a=1

N∑
i<j

v
cl (Riaja ). (13.63)

We have assumed pairwise additivity here and in Fig. 13.2 for simplicity, although this is
not essential. �e quantum part of the potential is

Vqu =

(
Pm

2β2~2

) (���R
(N )
12

���
2
+

���R
(N )
23

���
2
. . . +

���R
(N )
P1

���
2)

=

(
Pm

2β2~2

) P∑
a=1

N∑
i=1

���Ria − Ria+1
���
2
=

∑
i

∑
a

v
qu (Riaia+1) (13.64)

where we take a + 1 to equal 1 when a = P . Note how the interactions between molecules
only involve correspondingly numbered atoms a (i.e. atom 1 on molecule i only sees
atom 1 on molecules j,k , etc.), while the interactions within molecules just involve atoms
with adjacent labels. �e system is formally a set of polymer molecules, but an unusual
one: the molecules cannot become entangled, because of the form of eqn (13.63), and the
equilibrium atom–atom bond lengths in each molecule, according to eqn (13.64), are zero.

�e term outside the integral of eqn (13.59) may be regarded as the kinetic contribution
to the partition function, if the mass of the atoms in our system is chosen appropriately.
Actually, this choice is not critical, if the con�gurational averaging is the key problem
to solve. Nonetheless it proves convenient (as we shall see shortly) to use an md-based
simulation method, and De Raedt et al. (1984) recommend making each atom of mass
Pm = M . �en the kinetic energy of the system becomes

K = 1
2

∑
ia

(Pm) |via |2 = 1
2

∑
ia

|pia |
2/(Pm) = 1

2

∑
ia

|pia |
2/M (13.65)

and the integration over momenta, in the usual quasi-classical way, yields

QNVT (β ) =
1

(NP )!

(
M

2πβ~2

)3NP/2 ∫
dR(NP ) exp

[
−β (Vcl +Vqu)

]
. (13.66)

Apart from the indistinguishability factors, which may usually be ignored as far as the
calculation of averages is concerned, this is the approximate quantum partition function
eqn (13.59) for our N -particle system.

�us a Monte Carlo simulation of the classical ring polymer system with potential
energyV given by eqn (13.62) may be used to generate averages in an ensemble whose
con�gurational distribution function approximates that of a quantum system. Examples
appear in Code 13.1.
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Code 13.1 Path-integral Monte Carlo
�ese �les are provided online. Two separate programs are supplied. qmc_pi_sho.f90
is a simple path-integral mc program to simulate a harmonic oscillator, for which the
average energy may be compared with the exact result (see Fig. 13.3). qmc_pi_lj.f90
is a program to simulate a liquid of N Lennard-Jones atoms represented by P × N
beads. �is code is combined with qmc_pi_lj_module.f90, to de�ne the interactions,
and both programs use the utility modules of Appendix A.

! qmc_pi_sho.f90
! Quantum Monte Carlo , path -integral , harmonic oscillator
PROGRAM qmc_pi_sho

! qmc_pi_lj.f90
! Quantum Monte Carlo , path -integral method
PROGRAM qmc_pi_lj

! qmc_pi_lj_module.f90
! Energy and move routines for PIMC simulation , LJ potential
MODULE qmc_module

Equally, an md simulation with Hamiltonian

H = 1
2

∑
ia

|pia |
2/M +Vcl (R(NP ) ) +Vqu (R(NP ) ) (13.67a)

or indeed
H = 1

2

∑
ia

|pia |
2/m +Vcl (R(NP ) ) +Vqu (R(NP ) ) (13.67b)

will achieve the same result. We have explicitly wri�en down two versions of the Hamil-
tonian to remind ourselves that we are completely free to choose the �ctitious mass M
corresponding to the momenta whereas the m appearing inVqu is not adjustable. �e
use of md techniques to generate equilibrium states in this way is o�en referred to as
path-integral molecular dynamics (pimd).

�ese approaches can be readily extended to the simulation of an isolated quantum
atom in a classical solvent bath, where the classical atoms behave like polymers contracted
to a point. �e method has also been used to study the behaviour of an excess electron in a
classical �uid (Miller, 2008), the transfer of an electron between ions in water (Menzeleev
et al., 2011), and to shed light on the long-standing problem of the anomalous mobility of
the proton (Marx et al., 1999) and the hydroxyl ion (Tuckerman et al., 2002) in water. �e
extension of pimd to molecular systems is possible and desirable when, in a case such
as water, translational motion may be regarded as classical while rotation is quantum-
mechanical (Kuharski and Rossky, 1984). �ere are additional complications in the case
of asymmetric tops (Noya et al., 2011). �ese simulations of water have been extended to
consider models such as spc/e (Berendsen et al., 1987), which comprise a Lennard-Jones
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Fig. 13.3 �e average energy of the path-integral approximation to the quantum harmonic os-
cillator of frequency ω as a function of temperature. We give the results for various values of P ,
the number of ‘atoms’ in the ring polymer. P = 1 is the classical result, and P → ∞ is the quantum
mechanical limit.

site on the oxygen atom and partial charges on the hydrogen and oxygen atoms. Each
polymer bead in the pimd simulation is a replica of this sca�old and a technique such
as shake is used to constrain the internal structure of these beads during the dynamics
(Miller and Manolopoulos, 2005).

As the number of particles P in our ring polymer grows we obtain a be�er approxima-
tion to the quantum partition function; these equations become formally exact as P → ∞,
going over to the Feynman path-integral representation (Feynman and Hibbs, 1965). How
well do we expect to do at �nite P? Some idea of what we may expect can be obtained by
studying the quantum harmonic oscillator for which exact solutions are available in the
classical P = 1 case, in the quantum-mechanical limit P → ∞, and for all intermediate P
(Schweizer et al., 1981). �e computed average energy is plo�ed in Fig. 13.3. It can be seen
that the �nite-P energy curves deviate from the true result as the temperature decreases,
leaving the zero-point level ( 1

2~ω) and dropping to the classical value at T = 0, 〈E〉 = 0.
�e region of agreement may be extended to lower temperatures by increasing P .

Now to the practical ma�ers. �e classical polymer model is easily simulated by
standard techniques, such as constant-NVT mc or md. In principle, a be�er approximation
to the quantum system will be obtained by making P as large as possible. A P-bead system
is expected to be roughly P times more expensive than the classical one. Markland and
Manolopoulos (2008b,a) have shown that if the interaction potentials can be separated into
short- and long-ranged contributions, including electrostatics, the la�er can be evaluated
more economically by constructing a contracted ring polymer with fewer beads. �erefore,
some of the expense associated with increasing P may be o�set. �ere are, however, some
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additional technical problems to be expected as P increases. According to eqn (13.64)
the internal spring constant increases with P as well as with temperature, while the
external forces felt by each individual atom decrease as P increases. In an mc simulation
this might mean that separate a�ention would have to be given to moves which altered
intramolecular distances and those involving the molecule as a whole. In some cases,
a normal mode analysis of the polymer may help in choosing mc step sizes (Herman
et al., 1982). More directly, one can abandon intramolecular Metropolis moves and build
the polymer from scratch, by sampling from the internal, free-molecule, distribution
(Jacucci and Omerti, 1983). In pimd simulations there is the corresponding danger that
the time-scale separation of the internal and external motions may become acute at high
P and this will necessitate a shorter timestep. A sensible choice of the dynamic mass
M helps to overcome this problem: with the choice of eqn (13.65) the sti�est internal
modes of the polymer will be characterized by a frequency kBT /~; alternative choices of
M may be made so as to match the internal frequencies with the external time scales (De
Raedt et al., 1984). Nonetheless, the danger of slow energy exchange between internal
and external modes, leading to non-ergodic behaviour, is a real concern. One of a number
of approaches to this problem (Berne, 1986) is to use the freedom we have in changing the
individual masses of the polymer beads. A judicious choice of these masses will ensure
that all wavelength modes of the ring polymer are optimally sampled in the dynamics.
�is can be achieved by linearly transforming the internal degrees of freedom of the ring
polymer

uia =
P∑

a′=1
Ui
aa′ Ria′ (13.68)

into normal modes {uia } so as to diagonalize the harmonic quantum potential

Vqu (Ri1 . . . RiP ) = Vqu (ui2 . . . uiP ) = 1
2

P∑
a=2

(
Pm̄ia

β2~2

)
���uia

���
2
. (13.69)

Ui is a matrix of unit determinant describing the transformation for each polymer i , and
{m̄ia } are the transformed masses of the beads. �e �rst normal mode a = 1 corresponds
to the translational motion of the centroid of the ring polymer, and does not contribute to
Vqu.

�ere are two common choices for U used in path-integral simulations. �e traditional
normal-mode transformation uses a simple Fourier transform. �e alternative ‘staging’
transformation breaks up the path-integral chain to achieve a separation of the long- and
short-wavelength modes of the system. (Staging was originally developed as a method for
improving sampling in path-integral Monte Carlo by creating a primary chain with the
correct thermal wavelength, but composed of only a few particles, and then adding the
secondary chains with adjacent particles in the primary chain as the end points (Sprik
et al., 1985).) �e precise form of U for both these transformations is described in detail
in Martyna et al. (1999, Appendix A).

Comparing with eqn (13.67b), the Hamiltonian for the transformed variables is

H ′ =

N∑
i=1

P∑
a=1

���pia
���
2

2m̃ia
+

Pm̄ia

2β2~2
���uia

���
2
+

1
P

P∑
a=1

∑
i>j

v
cl
(���Ria ({ui }) − Rja ({uj })

���
)

(13.70)
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where, in the case of the normal mode transformation, the m̄ia are proportional to the
normal mode eigenvalues. �ere remains the freedom to choose a set of new masses,
{m̃ia }, associated with the �ctitious momenta. For the normal mode transformation, all
modes can be placed on the same time scale, with m̃i1 =mi = M/P and m̃ia ∝ m̄ia , for
a = 2, . . . P . �e dynamics associated with eqn (13.70) can then be performed to follow
the development of the normal modes with time. �e u coordinates and associated forces
can be e�ciently calculated using ffts. Similar relationships can be established for the
‘staging’ transformation (Tuckerman et al., 1993).

In addition to the transformations, the sampling of the phase space of the sti� ring
polymers can be enhanced by coupling a Nosé–Hoover chain thermostat to each of the
3NP degrees of freedom of the system (Martyna et al., 1999). �e optimal sampling of
phase space is achieved for a thermostat ‘mass’ of Qia = β~

2/P . Alternatively, a specially
designed stochastic thermostat may be applied (Cerio�i et al., 2010). Finally, multiple-
timestep methods of the type described in Section 3.5 can also be applied to improve the
e�ciency. A short timestep can be applied to the harmonic bonds while the classical force
from the external degrees of freedom can be evaluated using a signi�cantly longer step
(Tuckerman et al., 1993).

�ere are some subtleties in the way a path-integral simulation is used to estimate
ensemble averages. Averages that are only a function of the position variables, such as
the spatial distribution of atoms, can be calculated using the diagonal elements of the
density matrix. Averages that are only a function of the momentum operators, such as the
momentum distribution, require both diagonal and o�-diagonal elements of the density
matrix, and in a path-integral representation this requires the evaluation of paths that
are not cyclic. In the canonical ensemble, the partition function is accessible through the
evaluation of cyclic paths, and properties that depend on both position and momentum
can be evaluated through the normal thermodynamic relationships (Tuckerman, 2010).
For example, the energy is obtained in the usual way by forming −Q−1

NVT (∂QNVT /∂β );
however, the ‘quantum spring’ potential is temperature-dependent, and the result is

〈E〉 = 〈Vcl〉 + 3
2NPkBT − 〈V

qu〉 = 〈Vcl〉 + 〈K 〉 − 〈Vqu〉. (13.71)

Note the sign of the Vqu term. �is might cause some confusion in an md simulation,
where the total energy Vcl +Vqu + K is the conserved variable (between stochastic
collisions if these are applied). �is quantity is not the correct estimator for the quantum
energy. �ere is yet a further wrinkle. �e ‘quantum kinetic energy’ part of eqn (13.71) is
the di�erence between two quantities, 3

2NPkBT and 〈Vqu〉, both of which increase with P .
�is gives rise to loss of statistical precision: in fact the relative variance in this quantity
increases linearly with P , making the estimate worse as the simulation becomes more
accurate (Herman et al., 1982). �e solution to this is to use the virial theorem for the
harmonic potentials to replace eqn (13.71) by the following

〈E〉 =

〈
1
P

∑
a

∑
i<j

v
cl (Riaja )

〉
+

3
2NkBT +

1
2

〈
1
P

∑
a

∑
i<j

Riaja · ∇Riaja v
cl (Riaja )

〉
. (13.72)

Actually, it is not clear that this will give a signi�cant improvement. Jacucci (1984) has
pointed out that the statistical ine�ciency (see Section 8.4.1) may be worse for the quantity



434 �antum simulations

in eqn (13.72) than for that in eqn (13.71), due to the persistence of correlations, thus wiping
out the advantage. Other con�gurational properties are estimated in a straightforward way.
For example, the pressure may be obtained from the volume derivative of Q . �e method
is particularly well-suited to estimating the free-energy di�erences needed to calculate
isotope e�ects (Cerio�i and Markland, 2013). �e pair distribution function becomes
essentially a site–site д(r ) for atoms with the same atom label (Chandler and Wolynes,
1981). It is accumulated in the normal way. �e ‘size’ of each quantum molecule is also of
interest (De Raedt et al., 1984; Parrinello and Rahman, 1984). �is may be measured by
the radius of gyration Ri of polymer i ,

R2
i =

1
P

P∑
a=1

���Ria − Ri
���
2

(13.73)

where Ri = (1/P )∑P
a=1 Ria is the centre of mass of the polymer.

Having described a set of developments that enable accurate pimd to be performed, it is
tempting to use the time evolution in these systems to measure the quantum correlations
and spectra in the �uid phase, or perhaps to follow the motion of a proton or electron
in a liquid. Unfortunately, Hamiltonians of the form eqn (13.67a) or eqn (13.67b) do not
result in a dynamics with any physical meaning.

An indirect approach, based on the time–temperature analogy, has been advanced
by �irumalai and Berne (1983; 1984). �is involves measuring the internal ‘spatial’ cor-
relation functions of the polymer chain. More recently, Craig and Manolopoulos (2004;
2005a,b) have developed a ring polymer molecular dynamics (rpmd) method, in an a�empt
to study the dynamics of quantum systems (for a review see Habershon et al., 2013). In
this method a system is prepared using a pimd calculation with the full panoply of trans-
formation, thermosta�ing and multiple timesteps to ensure a number of well-equilibrated
starting con�gurations. All of this is then switched o� and, following a suggestion by
Parrinello and Rahman (1984), the �ctitious mass associated with the momenta is set tom.
�e system exhibits a classical equilibrium density corresponding to a �uid with 3NP de-
grees of freedom at a temperature of PT . Although the trajectories developed by rpmd are
not those of the quantum dynamical operator exp(iH t/~), Craig and Manolopoulos (2004)
show that ‘classical correlation’ functions of the system exhibit some properties of the full
quantum time correlation function. For two operators A and B, the Kubo-transformed
real-time correlation function (Kubo, 1957) is

C̃AB (t ) =
1

βQNVT

∫ β

0
dλ Tr

[
e−(β−λ)H A e−λH eiH t/~ B e−iH t/~

]
. (13.74)

For these correlation functions

C̃AB (t ) = C̃BA (−t ), C̃AB (t ) = C̃AB (t )
∗, C̃AB (t ) = C̃AB (−t )

∗. (13.75)

�e standard correlation functions of the rpmd obey these symmetries for all P . One
can also show that the rpmd produces the exact result for C̃AB (t ), at all times, for a
harmonic potential, when A and B are linear operators. In the case of weak anharmonic
oscillators, rpmd agrees well, but not exactly, with the full quantum results. rpmd is exact
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in the high-temperature limit and in the short-time limit. It evolves the system so that it
preserves the exact quantum distribution of states. Also, a classical molecular dynamics
result such as

1
2

d
dt

〈���Rc (t ) − Rc (0)���
2〉

RP
=

∫ t

0
dt

〈
vc (t ) · vc (0)

〉
RP
, (13.76)

where Rc is the centroid and vc (t ) is the bead-averaged or centroid velocity of a particular
ring polymer, is obeyed.

Signi�cant indirect evidence has been gathered to assess the performance of rpmd in
describing quantum dynamics. For example, calculations indicate that rpmd can also be
used to probe the ‘deep-tunnelling’ regime at low temperatures where the barrier is not
parabolic. Richardson and Althorpe (2009) have rationalized this observation by estab-
lishing a connection between rpmd and semi-classical instanton theory (an established
tool for calculating tunnelling rates). In studying the dynamics of an excess electron in
a �uid of helium atoms, Miller (2008) calculated the exact mean-squared displacements,
〈|Ria (s ) − Ria (0) |2〉, in imaginary time, s , for the polymer beads as a function of solvent
density. �e mean-squared displacement can also be constructed indirectly from the
analytic continuation of the velocity auto-correlation function for the solvated electron
calculated by rpmd. A comparison of these two approaches shows that the rpmd becomes
more accurate with increasing solvent density in the regime where the electron ra�les in
the solvent cage.

�ese results might encourage one to use rpmd to look at correlation functions and
even to move beyond this formalism and the linear response regime to model processes far
from equilibrium; for example, the dynamics of electron transfer between mixed-valence
transition metal ions in water (Menzeleev et al., 2011) or the prediction of quantum
reaction rates for bimolecular gas-phase reactions (Stecher and Althorpe, 2012).

However, great care is required with this approach; the rpmd description of the dynam-
ics is not exact, and it is known to fail in a number of speci�c instances. Rpmd methods
overestimate the tunnelling of electrons in electron transfer reactions, particularly in the
inverted regime. Rpmd fails to describe the dynamics in a number of strongly coherent
quantum systems (Craig and Manolopoulos, 2004). Wi� et al. (2009) have used rpmd to
calculate vibrational spectra of the diatomic and polyatomic molecules OH, H2O and
CH4, using between 16 and 64 polymer beads on each atom and averages accumulated
over 50 independent runs. �e spectra are calculated from the Fourier transform of the
quantum dipole autocorrelation function. In these simulations the intrinsic dynamics of
the ring polymers can interfere with the physical frequencies of the molecules. Spurious
arti�cial peaks can grow at the ring polymer frequencies and physical peaks can split due
to resonant coupling. Similar artefacts are observed in the simulation of the far infrared
spectrum of water (Habershon et al., 2008).

Progress in rpmd edges forward by comparison with more exact quantum simulation
results, where possible, and by detailed comparison with experiment. It is early in its
development for a widespread and general application of the method. �is situation
will improve as e�orts continue to develop a real justi�cation of rpmd starting from the
quantum Liouville equation (Jang et al., 2014).

An important alternative approach to quantum time correlation has been the develop-
ment and application of centroid molecular dynamics (cmd) (Voth, 1996), following the
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path centroid ideas developed by Feynman and Hibbs (1965). �e equations of motion of
the centroid of the ring polymer are

Ṙc = pc/m, ṗc = −∇RcVc = fc (13.77)

where pc is the momentum of the centroid andVc is the centroid potential of mean force,
corresponding to the density ϱc (Rc) = exp[−βVc (Rc)] (Cao and Voth, 1994). �e force on
the centroid is

fc (Rc) = −
1
P

〈 P∑
a=1
∇RaV

cl (Ra ) δ
(

1
P

P∑
a=1

(Ra − Rc)

)〉
(13.78)

where the gradient describes the total force on a bead, a, in one ring polymer from the
corresponding bead a in the other ring polymers and the delta function extracts those
con�gurations of the ring polymer where the centroid is at Rc.

�e direct use of eqn (13.78) is problematic. At �rst glance, the constraint of including
only con�gurations corresponding to the centroid at Rc means that a full pimd has to be
run to sample the whole con�guration space and the constraint applied retrospectively.
However, the centroid force can be evaluated at each step by switching to the normal mode
description of the ring polymer. �e �rst normal mode, with associated mass m̃1 = m,
corresponds to the translation of the centroid. Solving the equations of motion of the
other P − 1 normal modes automatically imposes the constraint in eqn (13.78).

In an alternative formulation of the problem, ‘adiabatic’ cmd, the masses associated
with non-centroid modes are decreased (Cao and Martyna, 1996):

m̃a = λaγ
2m 2 ≤ a ≤ P , (13.79)

where λa are the eigenvalues of the normal-mode transformation and 0 < γ < 1 is the
adiabaticity parameter. As γ decreases, the timestep required to solve accurately the
dynamics of the P − 1 non-centroid modes can be reduced. A multiple-timestep approach
can then be applied where the dynamics of the non-centroid modes are followed over a
series of short timesteps, calculating the force on the centroid at each step. At each of the
longer timesteps, the average force on the centroid is calculated from the preceding short
timesteps and is used to update the position of the centroid (Pavese et al., 2000).

�is ‘adiabatic’ cmd has been widely applied to calculate time correlation functions
of liquids (Voth, 1996). �ere have been extensive comparisons between cmd and rpmd.
Perez et al. (2009a) have shown that for para-H2 at 14 K, the Kubo-transformed velocity
autocorrelation function from both methods is essentially the same. However in the calcu-
lation of vibrational and far infrared spectra in liquids (Wi� et al., 2009), the unphysical
resonances that appear in the rpmd spectra do not appear in cmd. In other cases, cmd
exhibits broadening and shi�ing of peak positions as compared with experiment. �e
assumptions in both the cmd and rpmd methods have been analysed in detail (Jang et al.,
2014).

�e path-integral method described in this section is o�en termed the ‘primitive
algorithm’; it uses the most crude approximation to the density matrix. Other improved
approximations have been advocated (Schweizer et al., 1981) with the aim of reducing
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the number of polymer units required and possibly improving the convergence. One
important improvement (Takahashi and Imada, 1984) is

ϱ (Ra ,Rb ; β/P ) ≈

ϱfree (Ra ,Rb ; β/P ) exp
[
−
β

P

(
Vcl (Ra ) +

~2

24m

(
β

P

)2���∇RaV
cl (Ra )

���
2
)]

(13.80)

where the second term in the exponential of eqn (13.80) arises from the double commutator
[[V,K ],V] in the expansion of exp(−βH ) (Brualla et al., 2004). �is density matrix is
fourth order in the action and has been used in mc simulations of liquid He and Ne at
low temperatures (Brualla et al., 2004). Zillich et al. (2010) have developed a new class
of propagators for path-integral Monte Carlo that are fourth, sixth and eighth order in
the action, and that do not require higher-order derivatives of the potential, by using an
extrapolation of the primitive second-order propagator.

13.5 �antum random walk simulations
�e methods discussed in Section 13.4 are suitable for the simulation of liquid neon, liquid
water and gas-phase infrared spectra of CH4, CH +

5 . �ese are systems where the quantum
e�ects are signi�cant but not dominant. However, where the behaviour is essentially
quantum mechanical, as in liquid helium, we need to consider other techniques such as
di�usion Monte Carlo, where the many-body Schrödinger equation is solved by generating
a random walk in imaginary time. �ese simulations are normally used to calculate the
ground-state wave function and the corresponding energy for systems of bosons and
fermions. �ey are zero-temperature methods.

�e adoption of an imaginary time evolution converts the Schrödinger equation into
one of a di�usional kind.

−
∂Ψ(r, s )
∂s

=
(
−D∇2

r +V (r) − ET
)
Ψ(r, s ) (13.81)

where s = it/~,V is the potential and ET is an arbitrary zero of the energy which is useful
in this problem. In this section, for notational simplicity, Ψ(r, s ) is the wave function for all
the n particles in the �uid and r rather than r(n) is used to represent their 3n coordinates.
�e ‘di�usion coe�cient’ is de�ned to be

D = ~2/2m. (13.82)

�e simulation of this equation to solve the quantum many-body problem is a very old idea,
possibly dating back to Fermi (Metropolis and Ulam, 1949), but it is the implementation
of Anderson (1975; 1976) that interests us here.

If we interpret Ψ(r, s ) (note: not |Ψ|2!) as a probability density, then eqn (13.81) is
essentially the Schmoluchowski equation for the con�gurational distribution (Doi and
Edwards, 1988),

∂

∂t
ρ (r, t ) +

D

kBT
∇r ·

(
f ρ (r, t )

)
= D∇2

rρ (r, t ) (13.83)

with the systematic force, f , set to 0 and kBT = 1. �e di�usive part of the Schmoluchowski
equation can be simulated by using the Brownian dynamics algorithm of eqn (12.5). �e
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additional complication is that the (V (r) − ET)Ψ term in eqn (13.81) acts as a birth
and death process (or a chemical reaction) which changes the weighting (probability)
of con�gurations with time. To incorporate this in a simulation means allowing the
creation and destruction of whole systems of molecules. �ese copies of the systems are
o�en referred to as walkers. Simulations of many individual systems are run in parallel
with one another. Although this sounds cumbersome, in practice it is a feasible route to
the properties of the quantum liquid. �at such a simulation may yield a ground-state
stationary solution of the Schrödinger equation may be seen by the following argument.
Any time-dependent wave function can be expanded in a set of stationary states Ψn (r),
when the time evolution becomes

Ψ(r, s ) =
∑
n

cn exp
[
−s (En − ET)

]
Ψn (r),where s = it/~, (13.84)

and the cn are the initial condition coe�cients. In the imaginary time formalism, the
state with the lowest energy becomes the dominant term at long times. If we have chosen
ET < E0, then the ground-state exponential decays the least rapidly with time, while if
ET > E0, the ground-state function grows faster than any other. If we are lucky enough
to choose ET = E0, then the function Ψ(r, s ) tends to Ψ0 (r) at long times while the other
state contributions decay away. For Ψ(r, s ) to be properly treated as a probability density,
it must be everywhere positive (or negative) and this will be true for the ground state of a
liquid of bosons.

�e reaction part of the ‘reaction-di�usion’ equation is treated as usual, by integrating
over a short timestep δs . Formally

Ψ(s + δs ) = Ψ(s ) exp
[
−(V (r) − ET)δs

]
. (13.85)

�is enters into the simplest quantum Monte Carlo algorithm as follows. Begin with a
large number (100–1000) of replicas of the N -body system of interest. �en:
(a) Perform a Brownian dynamics step using eqn (12.5), with f (t ) = 0 and with D given

by eqn (13.82), on each system. (Note that the temperature does not enter into the
random walk algorithm since there are no systematic forces.)

(b) For each system, evaluateV (r), compute exp[−(V (r) − ET)δs] = K and replace the
system by K identical copies (clones) of itself.

(c) Return to step (a).
Step (b), the cloning step, requires a li�le more explanation, since in general K will be a
positive real number. �e system is replaced by bKc replicas of itself (bKc is the largest
integer less than K , as given by the Fortran FLOOR function) and a further copy is added
with a probability K − bKc using a random number ζ generated uniformly on the range
(0, 1). If K < 1, this is equivalent to deleting the current system from the simulation with
probability (1 − K ), and retaining it (a single copy) with probability K . A li�le thought
reveals that the number of copies can always be expressed as bK + ζ c. If new copies are
generated, they evolve independently of each other therea�er.

�e simple example of a particle in a one-dimensional quadratic potential is shown in
Fig. 13.4, and in Code 13.2. �e seven walkers are lined up at the start with an arbitrary
distribution in the x-coordinate. As the simulation progresses, walkers that stray into
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V (x )

x

Ψ0 (x )

tim
e

Fig. 13.4 An impression of a quantum Monte Carlo simulation of a particle in a one-dimensional
quadratic potential V (x ), a�er Foulkes et al. (2001). In the long-time limit, the distribution of
walkers should approach the form of the ground-state wave function Ψ0 (x ) (dashed).

Code 13.2 �antum Monte Carlo using a di�usion equation
�is �le is provided online. qmc_walk_sho.f90 is a simulation of the ground state of
a particle in a quadratic potential using a di�usion simulation with birth and death
events to model the Schrödinger equation. Gaussian random numbers are generated
by a utility routine (see Appendix A). Several of the parameters in this program, and
the scheme for updating ET, are taken from a useful tutorial introduction (Kosztin
et al., 1996). �e time evolution of this very simple implementation is quite noisy and
can be sensitive to the initial value of ET.

! qmc_walk_sho.f90
! Quantum MC, random walk , simple harmonic oscillator
PROGRAM qmc_walk_sho

regions of high potential are likely to be annihilated, while those that sample the region of
low potential (high probability) are likely to proceed to the �nish line, and occasionally to
be cloned. �e distribution of walkers on the �nishing line, in the limit of long simulation
time and a large number of walkers, will be the Gaussian distribution corresponding to
the ground-state wave function of the particle.

�is scheme is fairly crude. Clearly, depending on ET, the number of systems still
under consideration may grow or fall dramatically, and the value of this parameter is
continually adjusted during the simulation to keep the current number approximately
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constant (Anderson, 1975). Hopefully in the course of a run conducted in this way ET → E0.
�e �uctuation in the number of systems is substantial and this makes the estimate of
ET subject to a large statistical error. A number of ways around this di�culty have been
proposed (Anderson, 1980; Mentch and Anderson, 1981) and we shall concentrate on
one approach (Kalos et al., 1974; Reynolds et al., 1982) which uses importance sampling.
Suppose we multiply Ψ(r, s ) by a speci�ed trial wave function ΨT (r, s ) and use the result

ϒ(r, s ) = Ψ(r, s )ΨT (r, s ) (13.86)

in the Schrödinger equation. �en we obtain

−
∂ϒ

∂s
= −D∇2

rϒ +
(
ET (r) − ET

)
ϒ + D∇r ·

(
ϒ∇r ln |ΨT (r) |2

)
= −D∇2

rϒ +
(
ET (r) − ET

)
ϒ + D∇r ·

(
ϒFqu

)
, (13.87)

where the local energy is de�ned by

ET (r) = Ψ−1
T HΨT, (13.88)

and should not be confused with ET. We have also de�ned the quantum force Fqu, which
is derived from the pseudopotential vPP (ri j ) if ΨT is given (as is common) by

ΨT (r) = exp
[
− 1

2

∑
i

∑
j>i

vPP (ri j )
]
=

∏
j>i

exp
[
− 1

2 vPP (ri j )
]
. (13.89)

Eqn (13.87), o�en described as the ‘importance-sampled’ Schrödinger equation (Gillan and
Towler, 2011), resembles the Schmoluchowski equation, eqn (13.83), with the force term
retained and with kBT = 1 throughout. It can be solved using eqn (12.5) with f (t ) replaced
by Fqu. All the techniques described in this section are now applied to the function ϒ rather
than to Ψ. �e procedure for duplicating or deleting systems now depends on (ET (r)−ET),
where ET (r) is evaluated for each system. �is process is controlled more easily by a
sensible choice of ΨT (r) as discussed by Reynolds et al. (1982). �e quantum force appears
in these simulations just as the classical force appears in the smart mc method described
in Chapter 9, or the Brownian dynamics of Chapter 12. �is force guides the system in
its search for low ‘energy’, that is, high Ψ2

T. If ΨT is a good approximation to the ground
state Ψ0, then the energy ET (r) tends to E0 independently of r, and so is subject to li�le
uncertainty. If ET is adjusted so as to maintain the steady-state population of systems, then
this will also tend to E0. As Reynolds et al. (1982) point out, the average 〈ET (r)〉 obtained
without any system creation/destruction a�empts would correspond to a variational
estimate based on ΨT. Identical variational estimates can also be calculated using the
Monte Carlo method (McMillan, 1965; Schmidt and Kalos, 1984; Morales et al., 2014). In
the random walk techniques, the mc simulation is replaced by Brownian dynamics. �e
inclusion of destruction and creation allows Ψ(r) to di�er from ΨT and the simulation
probes the improved Ψ(r). Of course making ΨT more complicated and hence more
complete, adds to the computational expense.

�e particular problems of fermion systems are discussed by Reynolds et al. (1982). �e
essential point is that the ground-state fermion wave function must contain multidimen-
sional nodal surfaces. Each region of con�guration space bounded by these ‘hypersurfaces’
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within which ΨT may be taken to have one sign throughout, may be treated separately by
the random walk technique. �e nodal positions themselves are essentially �xed by the
predetermined form of ΨT (r). �is introduces a further variational element into the calcu-
lation. �e �xed-node approximation, and alternative approaches for fermion systems,
are described in detail by Reynolds et al. (1982).

�e work of Booth et al. (2009) represents an important advance in the solution of
the fermion problem. �is approach switches the focus from the wave function in terms
of the particle position, Ψ(r), to the space of Slater determinants, |Di 〉. �e structure of
the Hartree–Fock Slater determinant is given in eqn (13.18). For a general problem of N
electrons chosen from 2M spin-orbitals there are approximately

(
M
N /2

)2
such determinants,

a number which grows factorially with both M and N . �e full con�guration interaction
(fci) wave function for the ground state can be represented as

ΨFCI
0 =

∑
i

ci
���Di

〉
(13.90)

where ci are the coe�cients of the expansion with the appropriate sign. �e beauty of
this representation is that the structure of |Di 〉 ensures the overall antisymmetry of the
fermionic wave function. �e vector {sgn(ci )} is composed of a set of ±1’s and 0’s. Any
useful trial wave function must have the same sign vector as the true wave function, and
this vector cannot be determined without a full knowledge of Ψ0; this is a restatement
of the familiar sign problem in the Slater determinant space. We note that this space,
consisting of many excitations from the ground state, can be very large with i ranging
from 106 to 1014 for calculations on small molecular species. Two determinants in this
space are said to be connected or coupled if 〈Di | H |D j 〉 , 0.

Substituting eqn (13.90) into the imaginary-time Schrödinger equation gives a set of
coupled equations for the coe�cients

−
∂ci
∂s
= (Kii − ET)ci +

∑
j,i

Ki jc j , (13.91)

where ET is the familiar shi� energy used to control the population size in any stochastic
solution of the equation and

Ki j =
〈
Di

���H
���D j

〉
− EHFδi j , (13.92)

where EHF is the Hartree–Fock energy of the uncorrelated problem. In the long-time limit
ET → Ecorr, where Ecorr is the correlation energy, and in the steady state, the coe�cients
{ci } represent the ground state, which is the exact wave function for the basis set under
consideration.

Eqn (13.91) can be solved by the type of di�usion Monte Carlo algorithm already
described in this section. �e full con�guration interaction quantum Monte Carlo (fciqmc)
method considers only the birth and death of the community of walkers; there are no
di�usive moves in this approach. �ere are three processes at each step:
(a) For each walker α on |Di 〉, a coupled determinant |D j 〉 is chosen with a �xed probabil-

ity, and an a�empt is made to spawn one or more new walkers at j with a probability
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proportional to |Kiα j | δs , where δs is the imaginary timestep in the simulation. �e
spawned walker has the same sign as its parent if Kiα j < 0 or the opposite sign to
the parent otherwise (Booth et al., 2009).

(b) A particular walker α at |Di 〉 is cloned or dies at i with a probability given by
(Kiα iα − ET)δs . Walkers that die disappear from the space immediately.

(c) Finally, at each determinant, i , the signs of all of the spawned, cloned and surviving
walkers are considered, and pairs of the opposite sign are annihilated, reducing the
number of walkers by two in each case.

In the steady state each walker, α , on a particular determinant iα will have a sign sα = ±1.
�e resulting coe�cient or amplitude is

ci ∝ Ni =

Nw∑
α=1

sαδiα i (13.93)

where Nw =
∑

i |Ni |. Values of δs = 10−4–10−3 a.u. have been used in the simulations
and the important details of the techniques can be found in the original literature (Booth
et al., 2009).

�e method has been successfully used to calculate the ground-state energy of species
such as C2, H2O, N2, O2, and NaH (Booth et al., 2009). �e results are as accurate as the
fci quantum calculations which require the diagonalization in the full space of Slater
determinants. �e fciqmc method requires less storage and scales more e�ciently than
the brute-force diagonalization. Steps such as the spawning and the death of walkers
only require information at a particular determinant so that the algorithm is eminently
parallelizable (Gillan and Towler, 2011). �e method has also been used to model the
homogeneous electron gas (Shepherd et al., 2012) to obtain a �nite-basis energy, which is
signi�cantly and variationally lower than any previously published work. �e fciqmc
method has been extended to complex wave functions and used to study rare gas, ionic,
and covalent solids (Booth et al., 2013). In fciqmc we have a direct approach to solving
the many-body fermion problem and a con�uence of stochastic simulation methods and
traditional quantum chemistry. It remains to be seen if these methods can be applied more
widely to disordered systems and systems with very strong quantum correlations. At
the very least, fciqmc will provide detailed information on the force �elds and exchange
energies of classical and ab initio md.

13.6 Over our horizon
We conclude our short introduction to quantum simulations by pointing to some of the
many important techniques that lie beyond the scope of this book.

In considering ground-state or zero-temperature methods, Section 13.5, we have
concentrated on the di�usion Monte Carlo algorithm. �e simplest and most widely used
approach to the problem is the variational Monte Carlo method. �e total energy and
its variance are calculated through a Monte Carlo evaluation of their expectation values
using a trial wave function. �e trial wave function is adjusted so that the energy and
the variance are minimized at the ground state (Ceperley et al., 1977; Morales et al., 2014).
�ere are a whole class of projector methods, Green’s function Monte Carlo, that a�empt
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to extract the ground-state wave function for many-body problems using stochastic
algorithms (Kalos and Whitlock, 2008). �e Schrödinger equation in imaginary time has
an associated Green’s function, G (s ), which drives the wave function forward in ‘time’
towards its ground state. Eqn (13.85) can be wri�en as

Ψ(s + δs ) = G (δs )Ψ(s ), where G (s ) = exp
[
(H − ET)s

]
. (13.94)

�e imaginary time Green’s function Monte Carlo method (Schmidt et al., 2005) uses a
random walk technique with importance sampling to determine an accurate G (s ) from
an initial guess. One important development in this area has been to treat segments of
the Langevin trajectories produced in stochastic simulations as ‘polymers’. Well-known
Monte Carlo polymer algorithms, such as reptation (see Section 4.8.2), are used to develop
these trajectories to produce accurate expectation values of local observables, and their
static and dynamic response functions in imaginary time (Baroni and Moroni, 1999).

At non-zero temperatures, the path-integral methods, described for semi-classical
systems in Section 13.4, can be readily extended to more strongly quantum systems by
increasing the number of beads in the ring polymer and by using more accurate forms of
the density matrix (Morales et al., 2014). Indeed path-integral approaches can be applied
to electrons and other fermions by restricting paths to those that are node avoiding, as
exempli�ed by recent simulations of the electron gas (Brown et al., 2013). Simulations of
nuclei and electrons have been performed using the coupled electron–ion Monte Carlo
method. In this method, classical or path-integral Monte Carlo simulations of the nuclei
are conducted with the bo energy of the ground-state electrons determined by a separate
variational or di�usion Monte Carlo simulation (Pierleoni and Ceperley, 2006).

So far in this chapter, we have focused on ground-state simulations. It is possible to use
the aimd methods described in Section 13.4 to tackle problems involving many-electron
excited states. Ehrenfest dynamics, eqn (13.13), produces strong adiabatic coupling which
mixes the excited states in the dynamics (Tully, 1998) and is therefore unsuitable for
following trajectories that split onto di�erent and distinct potential surfaces. �is problem
can be addressed using surface-hopping molecular dynamics (Tully, 1990). Typically, the
equations of motion for the atoms are solved on the energy surface

Vkk (R(N ) ) =
〈
Ψk (r(n),R(N ) )���He

���Ψk (r
(n),R(N ) )

〉
where the integration is over the electronic degrees of freedom at �xed nuclear posi-
tion. �e density matrix elements, describing the electronic degrees of freedom, can be
integrated along this surface

∂ϱkk
∂t
=

∑
`,k

bk` (13.95)

with
bk` = 2~−1 Im(ϱ∗k`Vk` ) − 2 Re(ϱ∗k`R

(N ) · dk` ) (13.96)

where Vk` is the matrix element of the electronic Hamiltonian and dk` = 〈Ψk |∇RΨ`〉

is the non-adiabatic coupling vector (Tully, 1990). At a particular integration step, the
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switching probabilities, дk j , from state k to all other states j , are computed in terms of the
density matrix element ϱkk and the matrix bk`

дk j =
∆t bjk

ϱkk
. (13.97)

�e switch to a state j is made with a probability дk j . If the switch is successful, the
velocity of the particles has to be adjusted and the motion proceeds on the potential
surfaceVj j . �is technique is o�en described as the ‘fewest switches’ algorithm, since
it makes the minimum number of changes of state required to maintain the correct
statistical distribution among the possible states. For example, the technique has been
used successfully to study tunnelling and electronic excitation (Müller and Stock, 1997).

More generally, the dft method described in Section 13.4 can be extended to excited
states using the time-dependent density functional theory (tddft) or Runge–Gross theory
(Marques and Gross, 2004; Ullrich, 2011). In the dynamical cases, the quantum mechanical
action

S[Ψ] =
∫ t�nal

tinitial

dt
〈
Ψ(t )

�����
∂

∂t
−He

�����
Ψ(t )

〉
(13.98)

has to be stationary to produce the time-dependent Schrödinger equation and S[ρ] is
stationary at the exact time-dependent density. �is stationarity gives rise to the tddft
equations of motion, which, in a similar spirit to equilibrium density functional theory,
require an approximation for the time-dependent exchange correlation potential. It is
possible to propagate the ks orbitals directly in real time using a number of mean-�eld
approaches (Watanabe and Tsukada, 2002; Marx and Hu�er, 2012) and excursions to
excited electronic states can be achieved by imposing an external perturbation such
as a strong laser �eld. Alternatively a version of tddft can be combined directly with
surface-hopping to explore excited states (Craig et al., 2005).

Finally, we brie�y mention methods that move us towards the real quantum dynamics
of systems. One approach starts from the von Neumann equation for the time-dependent
density matrix

∂ϱ (t )

∂t
= −

i
~

[
H , ϱ (t )

]
, (13.99)

where [A,B] is the normal commutator. �e density matrix can be transformed to
the Wigner distribution function (Singer and Smith, 1990), which is the solution to the
Wigner–Liouville equation (the quantum mechanical equivalent of the Liouville equation
for movement in phase space). In this representation it may be possible to split the system
into a small quantum sub-system surrounded by a bath of particles. �e mass of the bath
particles is increased so that they can be treated classically (Kapral and Cicco�i, 1999).
Propagation of the Wigner–Liouville equation for this type of mixed quantum–classical
system is a useful route to the accurate calculation of the time correlation functions of
the quantum sub-system (Egorov et al., 1999; Shi and Geva, 2004).

�ere have been important developments in the application of path-integral methods
to study dynamics of strongly quantum systems. Hernandez et al. (1995) have developed
a Feynman path centroid density that o�ers an alternative perspective to the Wigner
prescription for the evaluation of equilibrium and dynamical properties. Poulsen et al.
(2004) have applied the Feynman–Kleinert linearized path-integral approximation to study
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quantum di�usion in liquid para-hydrogen. Coker and Bonella (2006) have also developed
a new approach to calculating time correlation functions for mixed systems. �e evolution
of the highly quantum mechanical part of the system, the electronic sub-system, is mapped
onto the evolution of a set of �ctitious harmonic oscillators. At the same time the bath is
treated using a path-integral representation of the nuclear part of the problem, which
is approximated using a linearization of the path integrals. �e linearization makes this
approach tractable and it has been used to study the di�usion of an excess electron in a
dilute metal–molten salt solution.



14
Inhomogeneous �uids

In this chapter we consider various aspects of the simulation of systems that contain
gas–liquid, liquid–liquid, or solid–liquid interfaces. O�en, we are interested in the surface
properties themselves: the surface tension, the structure within the interfacial region, or
any we�ing/drying or layering transitions. Inhomogeneous systems require particular
care in their preparation, and in the tests that are performed to ensure that they are at
equilibrium, before any property measurements can take place. Additionally, there may
be pitfalls in properly de�ning the quantities to be averaged. Long-range forces can be
particularly problematic; coexistence properties of even the simple Lennard-Jones system
are known to vary dramatically with the chosen pair potential cuto� (Trokhymchuk and
Alejandre, 1999). �e following sections aim to discuss some of these issues. For a recent
review of simulations of interfacial phenomena in so� ma�er, see Binder (2014). Usually
it is necessary to determine, ahead of time, the state point(s) and properties of the two
bulk phases that are at equilibrium with each other. Vega et al. (2008) have reviewed the
whole area of determination of phase diagrams by simulation, including a discussion of
the modelling of coexisting phases.

14.1 �e planar gas–liquid interface
14.1.1 �e starting con�guration

In simulating a planar gas–liquid interface of, say, the Lennard-Jones �uid, it is possible
to perform an mc or md simulation in a three-dimensional periodic system based on a
slab geometry (Chapela et al., 1975; Rao and Levesque, 1976).

For reasonably low temperatures (closer to the triple point than the critical point) it is
possible to prepare the system starting from a simulation of the bulk liquid using normal
cubic periodic boundary conditions. A density slightly above the required coexisting
liquid density, and at the required coexisting temperature, is chosen. Once the liquid has
equilibrated, the central box is separated from its periodic images, and extended in the z
direction by adding a number of empty boxes to each of the opposite faces. �ese boxes
have the same dimensions as the original box. �is extended system is now periodically
reproduced throughout space to create slabs of the liquid in the xy plane surrounded by
vacuum. �e precise dimensions will depend on the system and properties of interest.
For example, detailed studies of the dependence of surface tension, γ , on box size, for the
Lennard-Jones potential (Chen, 1995; Orea et al., 2005; Biscay et al., 2009), show signi�cant
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artefacts (speci�cally oscillations) for small values of Lx , Ly , but indicate that γ reaches a
limiting value for boxes of size 11σ × 11σ × 60σ . Other interfacial properties may be less
sensitive to this choice, depending upon the interaction potential, but this at least suggests
that we might surround the original box by two empty boxes on each side to create an
extended system of size {L,L, 5L} with L ≈ 11σ . �is would correspond to N ≈ 1100
Lennard-Jones atoms close to the triple point of the liquid.

For temperatures closer to the critical point, the vapour-phase coexisting density
is much closer to that of the liquid, and �uctuations are more important. Typically,
much larger systems are required. Watanabe et al. (2012) used box shapes {L,L, 2L}, and
system sizes up to L = 128σ , corresponding to N ≈ 1.5 × 106. �ey prepared the initial
con�guration by placing particles in both the high-density and low-density regions before
equilibrating. As we shall see later, in this regime, some coexistence properties may be
studied without explicitly simulating in slab geometry.

From this starting con�guration, simulations of the slab can be performed in the
canonical (NVT ) or microcanonical (NVE) ensembles. �e densities (and in the la�er case,
temperatures) of the two phases will adjust themselves automatically to maintain the
coexistence condition, resulting in uniform pressure and chemical potential throughout.
It is best to avoid simulating at constant-NPT (or µVT ) because, unless the system is
simulated at the exact coexistence value of P (or µ) for the model, one of the two phases
will grow at the expense of the other, resulting eventually in a single phase. (As we shall
see in Section 14.4.1, it may be possible to avoid this by dynamically controlling P .) During
the equilibration, if the ‘vapour’ boxes are initially empty, atoms will migrate into them
from the bulk liquid until a coexisting vapour is formed. In early simulations, the centre
of mass of the liquid slab was observed to move by ca. 0.1σ . �is e�ect, which is small for
larger system sizes, can be minimized by carefully removing any net momentum during
equilibration of an md calculation and, if necessary, re-centering the liquid slab at the
centre of the box.

14.1.2 Establishing equilibrium

A�er the initial preparation, we must equilibrate the coexisting-phase slab system: it is
important to establish thermal, mechanical and chemical equilibrium. �ermal equilibrium
is established by monitoring the temperature across the simulation cell in a direction
normal to the surface. We de�ne a series of slabs of thickness ∆z, parallel to the xy plane.
We will calculate properties at values of z corresponding to the centres of these slabs.
�en, in an md simulation of N atoms,

T (z) =
1

3kB

〈∑N
i=1 H (zi − z,∆z)mi

���vi
���
2∑N

i=1 H (zi − z,∆z)

〉
(14.1)

wheremi is the mass of atom i , vi its velocity and H is the top-hat function

H (zi − z,∆z) =



1 z − 1
2∆z < zi < z + 1

2∆z

0 otherwise.
(14.2)

�e way this translates into practice is illustrated in Code 14.1, where the �nal pro�le is
stored in temp(k). At equilibrium T (z) should be constant as a function of z across the
whole system.
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Code 14.1 Calculating the temperature and density pro�les
�e number of slabs is nk: larger values give thinner slabs and be�er resolution, but
poorer statistics in each slab. �e histograms h1(nk), ht(nk), and the normalization
factor norm, should be declared and set to zero at the start; dz holds the value of ∆z
and box(3) contains the box length Lz . Particle coordinates and velocities are in the
arrays r(3,n) and v(3,n); we assume that the z-coordinates satisfy |zi | ≤ ±Lz/2. For
simplicity kB and all masses are taken to be unity. �en at intervals, the following
loop is executed.

dz = box(3) / REAL ( nk )
DO i = 1, n

k = 1 + FLOOR ( ( r(3,i) + box (3)/2.0 ) / dz )
k = MAX(1,k) ! guard against roundoff
k = MIN(nk,k) ! guard against roundoff
h1(k) = h1(k) + 1.0
ht(k) = ht(k) + SUM ( v(:,i)**2 ) / 3.0

END DO
norm = norm + 1.0

At the end of the block or run, the temperature and density pro�les can be calculated.

area = box (1)* box(2)
DO k = 1, nk

IF ( h1(k) > 0.5 ) THEN
temp(k) = ht(k) / h1(k)
rho(k) = h1(k) / ( norm * area * dz )
rhot(k) = ht(k) / ( norm * area * dz )

ELSE
temp(k) = 0.0
rho(k) = 0.0
rhot(k) = 0.0

END IF
END DO

Position k in the array corresponds to z = − 1
2Lz + (k − 1

2 )∆z, at the centre of the slab.

To establish mechanical equilibrium it is necessary to evaluate the pressure tensor.
Using eqn (2.182) of Chapter 2, we can write the Irving–Kirkwood (ik) de�nition of the
pressure in a form convenient for evaluation in a simulation (Walton et al., 1983):

Pα β (z) = ρ (z)kBT δα β +
1
A

〈 N−1∑
i=1

N∑
j>i

(ri j )α (f i j )β
1
|zi j |

Θ

(
zi − z

zi j

)
Θ

(
z − zj

zi j

) 〉
, (14.3)

where α and β are Cartesian components, zi j = zi − zj , and Θ is the unit step function.
�e �rst, ideal-gas, term has been wri�en for a constant-T ensemble, and requires the

evaluation of the single-particle density pro�le ρ (z). �is is formally de�ned in eqn (2.175)
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Fig. 14.1 �e evaluation of the Irving–Kirkwood pressure between two particles i and j in a
simulation. Successive slabs are labelled 1–6; the interparticle vector has a z component which
completely spans four of the slabs, plus end contributions a and b.

and can be calculated via

ρ (z) =
1
A∆z

〈 N∑
i=1

H (z − zi ,∆z)

〉
(14.4)

whereA is the area of the interface, andH and∆z have the same meanings as in eqns (14.1),
(14.2). �e way this works in practice is also illustrated in Code 14.1, giving the result
rho(k), which may be multiplied by kBT to give the diagonal components of the ideal-
gas contribution. In a constant-NVE md simulation, the term should strictly be wri�en
ρ (z)kBT (z)δα β (i.e. allowing for temperature variation in di�erent slabs) and this is also
given in Code 14.1 as rhot(k).

�e second, excess, contribution to eqn (14.3) is evaluated as shown in Fig. 14.1. �e
product of Θ-functions is 1 when z lies between zi and zj , and 0 otherwise. �e force
between i and j contributes to slabs between the atoms (labelled 1 to 6, for example, in
Fig. 14.1). For those slabs completely contained in the range zi . . . zj (slabs 2, 3, 4, and 5
in the �gure), the value of (ri j )α (f i j )β/|zi j | is added to the corresponding histogram bin.
�is value is multiplied by a/∆z and b/∆z for the end slabs (where a and b are shown
in Fig. 14.1). In the event that zi and zj lie in the same slab, (ri j )α (f i j )β/∆z is added to
the corresponding bin. �e histogram is averaged over a run, divided by the area A, and
added to the ideal-gas part to give the �nal pressure pro�le.

At equilibrium, the o�-diagonal elements of the tensor are zero. �e normal pressure,

PN = Pzz ,

is constant for all z as we move through the liquid–gas interface and this is a signature of
mechanical stability. �e tangential component,

PT =
Pxx + Pyy

2 ,
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changes with z in the vicinity of the interface, as discussed in Chapter 2, but should tend
to PN in the bulk regions. �ere is no unique de�nition of the tangential component of the
pressure tensor and, for example, one alternative form has been proposed by Harasima
(1958), and studied by simulation (Walton et al., 1983). Here the contour between atoms i
and j is at �rst normal to the surface and then perpendicular. In this case

PT (z) = ρ (z)kBT +
1

2A∆z

〈 N−1∑
i=1

N∑
j>i

(
xi j (f i j )x + yi j (f i j )y

)
H (z − zi ,∆z)

〉
, (14.5)

where once more H is de�ned in eqn (14.2). �e normal pressure is unchanged by the
choice of contour.

Todd et al. (1995) have presented an alternative de�nition of the pressure tensor based
on the mass and continuity equations of hydrodynamics. �is technique, known as the
method of planes (mop), was developed for the md simulation of a �uid between two walls
under shear, but is equally applicable to the situation of interest here. It provides the Pαz
components of the tensor where z is the direction perpendicular to the interface. An atom
i crosses a particular z-plane in the simulation at a set of times ti,m where m = 1, 2 . . .
indexes all the crossings in the course of the simulation. �en

Pαz (z) = lim
τ→∞

1
Aτ

N∑
i=1

∑
0<ti,m<τ

mi (vi )α (ti,m ) sgn
[
(vi )z (ti,m )

]

+
1

2A

〈 N∑
i=1

N∑
j,i

(f i j )α

[
Θ(zi − z)Θ(z − zj ) − Θ(zj − z)Θ(z − zi )

]〉
(14.6)

where

sgnx =



−1 x < 0
0 x = 0
1 x > 0.

�e sgn function of the velocity distinguishes right to le� crossings of the plane from those
that are in the opposite sense. Eqn (14.6) is formally equivalent to eqn (14.3) although
the mop is more computationally e�cient and gives rise to less oscillatory structure in
Pαz (z) than the ik approach. Note that the values of z de�ning the planes may be chosen
arbitrarily: a regular set of planes, spaced apart by a distance ∆z, may be convenient, but
is not necessary.

It is possible to calculate the local stress tensor in any volume of a �uid of arbitrary
shape using the volume averaging method (Cormier et al., 2001). In this case

Pα β (z) =
1
Ω

〈 N∑
i=1

mi (vi )α (vi )β Λi +

N−1∑
i=1

N∑
j>i

(ri j )α (f i j )β `i j

〉
(14.7)

where Ω is a volume of arbitrary shape and size which is less than or equal to the total
volume, Λi = 1 if atom i is inside Ω and is zero otherwise, and `i j is the fraction of |ri j |
which lies within Ω. Heyes et al. (2011) have shown that, for the planar interface, the
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Fig. 14.2 �eoretical density pro�les ρ (z) in the vicinity of a liquid–gas interface. (a) Equation (14.8),
hyperbolic tangent form (solid curve) and eqn (14.9), error function form (dashed curve). Parameters
are chosen such that the gradients at z = h are equal. (b) �e Gibbs dividing surface: zG is de�ned
to make the shaded areas equal.

volume averaging method is exactly equivalent to the mop and ik approaches. It has the
advantage over mop of giving all the elements of the pressure tensor. Finally we note that
eqns (14.3)–(14.7) are only applicable to �uids acting through pair additive forces.

Finally chemical equilibrium might be established by test-particle insertion using
eqn (2.185). However, in the gas phase, the statistics for the insertion will be poor, since
there are so few atoms for the test particle to interact with at a particular value of z; and
in the liquid phase, the overlaps on insertion will mean that almost all estimates of the
Boltzmann factor of the test particle energy will be zero. �is situation is most di�cult
close to the triple point of the liquid, and be�er estimates of µ (z) can be obtained for
simulations at orthobaric densities moving towards the critical point. Accurate values
of µ (z) through the particle insertion method can be obtained for so�er potentials, such
as the conservative potential in dissipative particle dynamics of planar liquid–liquid
interfaces (Goujon et al., 2004).

14.1.3 �e structure in the gas–liquid interface

For the planar interface, the single-particle density pro�le, ρ (z), de�ned in eqn (2.175),
may be calculated as discussed in the previous section. In practice ρ (z) can o�en be
accurately ��ed by a function of the form

ρ (z) = 1
2 (ρ` + ρg) −

1
2 (ρ` − ρg) tanh

(
2(z − h)/D

)
(14.8)

where h is the interface position, the limiting densities are ρ` (z � h) and ρg (z � h),
and D is a measure of the interfacial thickness (see Figs 2.4 and 14.2(a)). Eqn (14.8) can
be inverted and the two empirical parameters, h and D, can be determined directly from
ρ (z). �is is not the only possible functional form: there is simulation (Ismail et al., 2006)
and experimental (Bu et al., 2014) evidence in favour of an error function pro�le,

ρ (z) = 1
2 (ρ` + ρg) −

1
2 (ρ` − ρg) erf

(√
π(z − h)/D

)
, (14.9)
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also illustrated in Fig. 14.2(a), and in principle the vapour–liquid interface may exhibit
asymmetry (Parry et al., 2015) due to the di�erent correlation lengths in the two phases.

For many purposes, h can be taken equal to the position of the Gibbs dividing surface
zG which is formally de�ned in terms of the density pro�le, without reference to a model
function. For a single interface (see Fig. 14.2(b))∫ zG

−∞

dz
(
ρ` − ρ (z)

)
=

∫ +∞
zG

dz
(
ρ (z) − ρg

)
, (14.10)

where again we choose the liquid (gas) to lie at z < 0 (z > 0). In slab geometry, with two
interfaces, the ±∞ limits in this equation must be replaced by positions deep in the bulk
of either phase; similarly, eqn (14.8) or (14.9) should be ��ed separately to the region
around each interface. A smooth ρ (z) that is completely symmetrical around the centre
of the slab is a signature of a well-equilibrated simulation. In the calculation of ρ (z) it is
necessary to make sure that the centre of the slab is not dri�ing. �is could arti�cially
smooth any structure in the calculated ρ (z) and, at very least, arti�cially broaden the
intrinsic pro�le.

It is also useful to be able to calculate the pair distribution function in a simulation
of the planar interface. Consider two atoms at positions r and r′. Cylindrical symmetry
means that we can write ρ (2) (r, r′) as ρ (2) (z, z ′, s ), where s =

√
(x − x ′)2 + (y − y ′)2 is

their separation in the plane of the surface, or equivalently as ρ (2) (z, c, r ), where r = |r−r′ |
is their separation in 3D, c = cosθ = (z − z ′)/r , and θ is the polar angle of r − r′ with
respect to the surface normal. �e coordinates (z, c, r ) are the easiest to employ in a
system with periodic boundary conditions since everything is referenced to the position r
in the central box. Starting from eqn (2.176) we can derive a form suitable for calculation
in a simulation. �e �rst step is to manipulate the δ functions to obtain

ρ (2) (z, r − r′) =
1
A

〈 N∑
i=1

∑
j,i

δ (z − zi ) δ (r − r′ − ri j )
〉
. (14.11)

Here we have used the result
∫

dr δ (r−a)δ (r−b) = δ (a−b), and translational invariance
in the xy-plane to integrate freely over s = (x ,y ), giving

∫
ds = A. Factorizing the second

delta function into spherical co-ordinates and considering the cylindrical symmetry, we
have

ρ (2) (z, c, r ) =
1

2πr 2A

〈 N∑
i=1

∑
j,i

δ (z − zi ) δ (r − ri j ) δ (c − ci j )

〉
. (14.12)

Converting this to a formula based on a grid with spacing ∆r along the radial direction,
∆c for the polar coordinate, and ∆z for the direction normal to the interface, by replacing
the delta functions with the top-hat functions of eqn (14.2), we obtain

ρ (2) (z, c, r ) =
1

2πr 2A∆r∆c∆z
×〈 N∑

i=1

∑
j,i

H (z − zi ,∆z)H (c − ci j ,∆c )H (r − ri j ,∆r )

〉
. (14.13)
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Code 14.2 Radial distribution function in a planar interface
�is �le is provided online. grint.f90 contains a program to read in a trajectory of
atomic positions, and calculate the two-body density ρ (2) (z, c, r ), and hence the radial
distribution function д(2) (z, c, r ) for a system whose single-particle density varies in
the z direction.

! grint.f90
! g(z,c,r) in a planar interface
PROGRAM grint

Note that ρ (2) has dimensions (length)−6 as does the right-hand side. Eqn (14.13) can be
implemented in the simulation, or a�erwards, as shown in Code 14.2.

�e dimensionless radial distribution function is given by

д(2) (z1, c12, r12) =
ρ (2) (z1, c12, r12)

ρ (z1)ρ (z1 + r12c12)

and will tend to 1 at large values of r12. Once д(2) has been calculated as a function of the
three variables it can be readily transformed to another coordinate system as required:

д(2) (z1, c12, r12) r
2
12 dz1dc12dr12 = д

(2) (z1, z2, s12) s12 dz1dz2ds12

= д(2) (z1, z2, r12) r12 dz1dz2dr12. (14.14)

ρ (z) and ρ (2) (z1, z2, s12) are related through the �rst Born–Green–Yvon equation (Rowl-
inson and Widom, 1982)

kBT ln
(
ρ (z)

ρ`

)
= −2π

∫ z

−∞

dz1

∫ ∞

−∞

dz2 z12 ρ (z2)×∫ ∞

0
ds12

(
s12
r12

)
v
′(r12) д

(2) (z1, z2, s12), (14.15)

where v
′(r12) is the derivative of the intermolecular potential, z12 = z1 − z2, ρ` is the

limiting density in the liquid phase, and д(2) (z1, z2, s12) = ρ
(2) (z1, z2, s12)/ρ (z1)ρ (z2). �is

can be a useful check of the simulated distribution functions since they should satisfy
eqn (14.15) exactly.

A�er our discussion of capillary-wave �uctuations in the next section, we return
brie�y to the description of structure in the interface in Example 14.1.

14.1.4 �e surface tension

As discussed in Chapter 2, the surface tension can be obtained from the di�erence between
the normal and tangential components of the pressure (see eqn (2.183a)), and we have
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explained how to measure these in Section 14.1.2. It can also be more directly calculated
using the expression due to Bu� (1952), eqn (2.184)

γ =
1

4A

〈∑
i

∑
j>i

(
ri j −

3z2
i j

ri j

)
v
′(ri j )

〉
, (14.16)

where it is assumed that the simulation contains two planar interfaces normal to z.
�e value of the surface tension is particularly sensitive to potential truncation: the

long-range correction to eqn (14.16) can be as much as 35 % of the total value of γ , in a
simulation using, for example, a Lennard-Jones potential with a potential cuto� rc = 3.0σ .
Blokhuis et al. (1995) show that this correction can be calculated from eqn (2.184). Taking
ρ (2) (r12 > rc, z1, z2) = ρ (z1)ρ (z2), substituting eqn (14.8) for ρ (z), integrating over z1 and
introducing c12 = (z1 − z2)/r12, we obtain

γLRC =
π(ρ` − ρg)

2

2

∫ 1

0
dc12

∫ ∞

rc

dr12 coth
(

2r12c12
D

)
v
′(r12)r

4
12

(
3c3

12 − c12
)
. (14.17)

�is integral can be readily evaluated using a simple quadrature. It is normally calculated
at the end of a simulation using the values of ρ (z) corresponding to the truncated potential,
and, as such, provides a lower bound to the accurate long-range correction to γ for the
full potential.

To improve on this estimate, values of the long-range correction to the energy or force
are required at each con�guration or step of the simulation, so that they can be used to
drive the evolution of the system. �is problem was �rst tackled by Guo and Lu (1997)
and in a simpler fashion by Janec̆ek (2006).

�e method of Janec̆ek is based on the calculation of the energy of atom i with all the
atoms in a slab zk with a number density ρ (zk ). �e long-range correction to the energy
associated with atom i is

VLRC
i (zi ) =

ns∑
k=1

w

(
|zi − zk |

)
ρ (zk )∆z, (14.18)

where the sum is over all slabs in the simulation cell in the z-direction. �e contribution
w(z) is calculated by assuming a uniform distribution of atoms in the slab. For the Lennard-
Jones potential

w(z) =




4πϵσ 2
[

1
5

(
σ

rc

)10
−

1
2

(
σ

rc

)4]
z ≤ rc

4πϵσ 2
[

1
5

(
σ

z

)10
−

1
2

(
σ

z

)4]
z > rc.

(14.19)

�e total long-range correction for a particular con�guration of atoms is

VLRC = 1
2

N∑
i=1
VLRC
i (zi ). (14.20)

�is expression can be used in an mc simulation when calculating the energy change in a
trial move. Eqn (14.20) is not convenient, as wri�en, since it requires a recalculation of the
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density pro�le for each new trial con�guration. MacDowell and Blas (2009) have shown
that by substituting eqn (2.175) for the density pro�le into eqn (14.18) and replacing
the summation over slabs by an integration, the long-range correction can be wri�en
conveniently as a sum over all pairs of atoms and N self-energy terms:

VLRC =
1
A

N−1∑
i=1

∑
j>i

w

(
|zi − zj |

)
+

1
2A

N∑
i=1

w(0). (14.21)

VLRC can be evaluated at each trial move of an mc simulation and di�erentiated to give a
force that can be used in an md calculation.

�e methods of Guo and Lu, and of Janec̆ek, applied at each step of the simulation,
provide the same density pro�le corresponding to the full potential (Goujon et al., 2015).
Once the simulation is completed and the density pro�le is available, then eqn (14.17) can
be used to calculate the long-range correction to the surface tension γ . An accurate value
of γLRC can also be calculated directly at each step in the simulation without reference
to the pro�le (Goujon et al., 2015). �ese various methods of calculating the long-range
corrections have been evaluated and assessed for a number of atomic and molecular
simulations for planar interfaces (Ghou� et al., 2008; Mı́guez et al., 2013; Goujon et al.,
2015).

�e lrc for slab simulations with a dispersion interaction between atoms can be
included by applying an Ewald sum to the extended box (López-Lemus and Alejandre,
2002). �e Ewald sum for an r−6

i j potential has been discussed in Section 6.2. �e calculation
of γ is independent of the precise real-space truncation of the potential. Alejandre and
Chapela (2010) and Isele-Holder et al. (2012) have used the spme and pppm methods
to simulate the vapour–liquid interface of water treating both the dispersion and the
Coulombic interactions within the framework of the la�ice sum. �e results for the
surface tension and coexistence curves using the Ewald sum are in good agreement with
simulations conducted using spherical cuto�s for the dispersion interaction.

In the case of non-pairwise-additive potentials such as the Axilrod–Teller potential
(described in Appendix C.4) there is an additional contribution to eqn (14.16) for the
surface tension (Toxvaerd, 1972)

γAT =
3

4A

〈 ∑
i<j<k

∂V (3)

∂ri j

(
r 2
i j − 3z2

i j

ri j

)〉
, (14.22)

again, assuming two planar interfaces. �e derivative with respect to ri j is at constant
rik , r jk . Note that, for the Axilrod–Teller potential, there are three identical terms for the
derivative with respect to each variable, giving rise to the factor of 3 in the numerator. �e
long-range correction to the three-body part of γ can be estimated using the superposition
approximation as discussed in Section 2.8. It can be evaluated numerically using the
simulated radial distribution function, д(2) (z1, c12, r12) (Goujon et al., 2014).

An alternative and useful method of calculating the surface tension is the test area
(ta) method of Gloor et al. (2005). �is method uses the thermodynamic de�nition of the
surface tension as the change in the Helmholtz free energy A with area A

γ = lim
∆A→0

(
∆A

∆A

)
NVT
. (14.23)



456 Inhomogeneous �uids

A normal md or mc simulation of the gas–liquid interface is performed as a reference
system (0), and perturbations around this reference are performed making small changes
to the area A = 2LxLy (again, assuming two interfaces) at a constant overall volume. If
∆A = A1 − A0 then

γ = lim
∆A→0

−
kBT

∆A
ln

〈
exp(−β∆V )

〉
0

(14.24)

where ∆V = V1−V0 and the average is calculated over the states of the reference system.
�e perturbations are achieved by scaling the sides of the box

Lx,1 = Lx,0 (1 + ϵ )1/2, Ly,1 = Ly,0 (1 + ϵ )1/2, Lz,1 = Lz,0 (1 + ϵ )−1, (14.25)

where ϵ = ∆A/A0 � 1. �e particle coordinates are scaled in the same way; this happens
automatically if they are stored in box-scaled form, si = (xi/Lx ,yi/Ly , zi/Lz ). (See also
the box-scaling method for pressure estimation in hard-particle simulations, discussed
in Section 5.5.) �ese trial perturbations can be performed regularly throughout the
simulation, without a�ecting the underlying evolution of the reference system. ϵ needs
to be chosen to be su�ciently small that eqn (14.24) is an accurate representation of γ ,
and large enough to allow an accurate calculation of the Boltzmann factor. A value of
ϵ = 5 × 10−4 produces values of γ comparable to those from eqn (14.16) for a variety
of atomic and molecular systems (Ghou� et al., 2008). �ere is nothing unique about
a positive choice for ϵ , and one useful check is to make corresponding reductions in
the surface area throughout the reference simulation, and to check that these result in
the same value of γ . �e techniques discussed in this section for calculating the long-
range correction apply to the ta method, and the technique can be used for pair-additive,
non-pair-additive and molecular potentials. Errington and Ko�e (2007) have used the ta
method to calculate the surface tension of the square-well �uid. �eir results suggest
that in the case of discontinuous potentials, the con�guration spaces sampled by the
reference and perturbed systems di�er signi�cantly even for small ∆A and this leads
to inaccuracies in the estimates of γ . �is problem can be avoided by the application
of Benne�’s method to the calculation of the free-energy di�erence for this model (see
Section 9.2.4).

Table 14.1 shows the estimates of the liquid–vapour surface tension of methane
modelled as a single Lennard-Jones atom. �e ta and ik methods give results for γ that
agree within the statistical uncertainties of the simulation. Either method can be used
with con�dence for continuous potentials. At a cuto� rc = 2.5σ the long-range correction
for γ is 36 % of the total value reducing to 8 % at a cuto� of 8σ . �e tail correction applied
at the end of the simulation (Blokhuis et al., 1995) consistently underestimates the more
accurate correction of Janec̆ek (2006). If the full long-range correction is calculated at
every step, then a cuto� of 3σ is su�cient for an accurate estimate of γ . However, if the
correction of Blokhuis et al. is employed at the end of the simulation, then a cuto� of
rc = 4.5σ is required for the accurate calculation of ρ` in eqn (14.17) (Goujon et al., 2015).

As an alternative to the aforementioned methods, the surface tension may be obtained
by analysing the capillary-wave �uctuations. �e idea is to determine the interface position
or height h(x ,y ) and �t its Fourier coe�cients to eqn (2.187) or its mean-square deviation,
or the interface width, to eqn (2.188). A useful summary of the di�erent variants of this
approach is provided by Werner et al. (1999), and a comparison with other methods by
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Table 14.1 Simulation of the liquid–vapour surface tension γ/mJ m−2 for the Lennard-Jones
methane model at 120 K as a function of cuto� radius. Results are given for the truncated potential
without a long-range correction; with the lrc of Blokhuis et al. (1995); and with the lrc of Janec̆ek
(2006). Subscripts indicate the test area (ta) and Irving–Kirkwood (ik) methods respectively. �e
number in parentheses is the estimated error in the �nal quoted decimal place. Reprinted from
J. M. Mı́guez, M. M. Piñeiro, and F. J. Blas, J. Chem. Phys., 138, 034707 (2013) with the permission
of AIP Publishing.

No correction Blokhuis et al. (1995) Janec̆ek (2006)
rc/σ γTA γIK γTA γIK γTA γIK

2.5 8.67(7) 8.67(7) 12.66(6) 12.66(7) 13.61(7) 13.64(7)
3 10.41(7) 10.41(7) 13.55(1) 13.55(7) 13.9(1) 13.8(1)
4 11.75(9) 11.75(9) 13.66(9) 13.66(9) 13.8(1) 13.8(1)
5 12.74(9) 12.73(9) 14.02(9) 14.03(9) 13.8(1) 13.8(1)
8 12.7(1) 12.7(1) 13.4(1) 13.4(1) 13.7(1) 13.8(1)

Schrader et al. (2009). �e simplest approach, conceptually, is to �t the density pro�le
of the system in a box L × L × Lz to an equation such as eqn (14.8), for several di�erent
transverse dimensions L, and observe the increase in the apparent width of the interface,
〈D〉, with L. In the key formula, eqn (2.189),

〈D〉2 = D2
0 +

kBT

4γ ln
(L
a

)
=

[
D2

0 − (kBT /4γ ) lna
]
+ (kBT /4γ ) lnL,

it is not possible to disentangle the intrinsic width D0 and the small-scale cuto� a: both
are unknown. It is therefore essential to measure D at many values of L, con�rm the
logarithmic behaviour predicted by this equation, and extract the coe�cient of lnL.

Instead of simulating many systems with di�erent transverse dimensions L, it is
possible to perform a block analysis on a single system of large L, subdividing it into
M ×M columns of size ` × ` where M = L/` = 2, 3, etc. �is is illustrated in Fig. 14.3. For
each column, it is possible to determine the Gibbs dividing surface and set h` = zG, or to
�t the pro�le, giving h` and D` , where we indicate the dependence on column width. It is
convenient to measure the height relative to the average interface position for the whole
box (translations of the interface in the z direction do not change its surface area, and
hence are independent of the capillary waves). From these measurements, averaging over
the separate columns and over the simulation run, we can compute the average width
D` , and the probability distribution of heights h` , including the mean-squared deviation〈
δh2

`

〉
= 〈h2

`
〉 − 〈h`〉

2. �e relevant capillary-wave predictions, eqns (2.189) and (2.188) are

〈D`〉
2 = D2

0 +
kBT

4γ ln
(
`

a

)
, (14.26a)〈

δh2
`

〉
=

kBT

2πγ ln
(L
`

)
. (14.26b)

�is makes it possible to determine γ from simulations of a single system, from the
dependence of D` on the column dimension `, and we expect eqn (14.26a) to hold for
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Fig. 14.3 Re�nement of the gas–liquid interface. (a) Subdivision of the simulation box into M ×M

columns, with M = 3. �e two interfaces are shaded; the transverse box width L and column width
` = L/M are indicated. (b) Upper half of one column, containing part of one of the interfaces. �e
interface height h(x ,y ) within this column is de�ned with respect to the average for the whole
simulation box (dark-grey plane). �e density pro�le for this column may be used to calculate a
column-averaged height h` and interface width D` .

su�ciently large `. However, this does require a sizeable system, and there are still
drawbacks: for instance, Ismail et al. (2006) have reported that the results depend on the
choice of functional form used to �t the pro�les, with eqn (14.9) giving results in be�er
agreement with the stress tensor route to γ than eqn (14.8). In principle, eqn (14.26b) relies
only on determining the distribution of interface positions, which can be done without
invoking a speci�c model pro�le. �e capillary waves of wavelength λ < ` contribute
to the width D` within each column, while those for which ` < λ < L contribute to the
positional �uctuations. In practice, we expect eqn (14.26b) to give good results for large `,
except possibly for ` = L/2 when the values of h` are constrained by the (e�ectively �xed)
box-averaged interface. An essentially equivalent method involves ��ing to eqn (2.187),
having determined the Fourier components ĥ(k). �is can be achieved by the same kind of
process described here, choosing a small value of ` to determine h(x ,y ) at �ne resolution,
followed by Fourier transformation.

�is is an appropriate point to mention the ‘surface-pinned’ de�nition of the intrinsic
surface (Chacón and Tarazona, 2003). Tarazona and Chacón (2004) have developed a
method for calculating this in a simulation. For a particular con�guration, all the atoms
within the liquid slab are identi�ed. (For example, for a Lennard-Jones �uid, atoms with
less than three nearest neighbours closer than rc = 1.5σ are assigned to the gas phase
and any spurious overhangs or vapour cluster atoms are removed from the liquid phase.)
�e atoms are then assigned to M ×M columns, as shown in Fig. 14.3, choosing the most
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external ‘liquid’ atom in each column to provide the initial set of M2 pivot points. M = 3
provides an initial, coarse representation of h(x ,y ) ≡ h(s). �e initial intrinsic surface is
de�ned as the minimal-area surface going through all the pivots, obtained by minimizing
a combination of two terms. �e �rst term is a sum of squared distances of the re�ned
pivot points from the existing ones. �e second, much smaller, contribution is the sum
of Fourier terms appearing in eqn (2.187), for |k| < 2π/a, a being the short-range cuto�,
which essentially gives the extra surface area due to non-planarity. At the end of this
process we have a re�ned set of M2 pivot points. A number of new pivot points are added
by including atoms that are within a �xed, prede�ned distance of the old pivot point.
A new intrinsic surface is then computed using the extended set of pivot points, and
re-minimizing the surface area. �is procedure is repeated until there are no additions to
the list of pivot points. �e resulting h(s), or ĥ(k), may be compared with the predictions
of capillary-wave theory, and used to estimate γ using the approaches described earlier.
As we discuss in Example 14.1, the ‘intrinsic surface’ also gives us the opportunity to look
more closely at the structure within the interface.

�e methods described in this section can be applied to the calculation of γ for �uids
where the density di�erence between the gas and the liquid is signi�cant and the interface
is stable. As we approach the critical temperature of the �uid, this is not the case and
we need an alternative approach. If we are not too close to the critical point, we can
take advantage of the well-understood �nite-size scaling behaviour near the �rst-order
liquid–vapour transition (Binder and Landau, 1984; Borgs and Kotecký, 1990); see also
the reviews of Binder et al. (2011) and Binder (2014), and especially Binder et al. (2012).
�e study of probability distributions of density, or number of particles, using the method
of histogram reweighting, has been applied to the calculation of γ for the Lennard-
Jones system by Poto� and Panagiotopoulos (2000) and Block et al. (2010), and for simple
alkanes by Virnau et al. (2004). �ese simulations do not involve the simulation of a
prepared interface, but all the e�ects arise from interfacial contributions to con�gurations
involving the two phases. We describe them here to complete our discussion of γ .

We consider the grand canonical mc simulation of a system (see Chapter 4.6) in
the two-phase region of the phase diagram. Close to the critical point, the system will
�uctuate between the liquid and gas phases and the probability, ρµVT (N ), of �nding a
certain number of atoms in the simulation will take the characteristic bimodal distribution
shown in Fig. 14.4. It is assumed that µ takes the coexistence value, corresponding to
equal areas under the two peaks; histogram reweighting

ρµVT (N ) = exp
[
β (µ − µ ′)N

]
ρµ′VT (N )

may be used to convert the results of a simulation at a nearby value µ ′. �is is illustrated
schematically in Fig. 14.4(a), and the same function is plo�ed on a logarithmic scale in
Fig. 14.4(b). �is is proportional to the Landau free energy with respect to N

F (N ) = −kBT ln ρµVT (N ).

Assuming that the dominant con�gurations in the region between Ng and N` consist of a
slab of liquid surrounded by gas, this allows us to estimate the surface tension (for two
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Example 14.1 Intrinsic structure

�e capillary waves discussed in this section have the e�ect of smoothing out all
the interfacial structure. �e possibility of removing this e�ect, and measuring the
‘intrinsic’ structure, has been debated for many years. If one adopts the ‘surface-
pinned’ de�nition of the intrinsic surface h(s) (Chacón and Tarazona, 2003; Tarazona
and Chacón, 2004), de�ned for a con�guration snapshot, this may be used to calculate
the intrinsic density pro�le (compare eqn (2.175))

ρ̃ (z) =
1
A0

〈 N∑
i=1

δ
(
z − zi + h(xi ,yi )

)〉
, (14.27)

where A0 = LxLy . �e value of h at the coordinates (xi ,yi ) of any atom may be
calculated from the Fourier representation ĥ(k). �e pro�le is then averaged over
independent con�gurations. �e intrinsic structure is richer than the normal averaged
density pro�le which decays monotonically in moving from the liquid to the gas, as
in Fig. 14.2. �e intrinsic structure just inside the liquid is layered (as in the case of
liquid against a planar wall).
Mecke and Dietrich (1999) have pointed out that it would be more exact to use a
z-coordinate normal to the surface to calculate the pro�le. �is will be important if
the surface is particularly rough. �e di�culty in this approach is in the calculation
of the appropriate normalizing area. Tarazona and Chacón (2004) have described a
simple interpolation scheme to calculate the area under these circumstances.
In a recent review, Tarazona et al. (2012) have shown the application of the intrinsic
surface method to the gas–liquid interface of molten salts. �ey note the importance
of the technique in helping to develop an understanding of the wavevector-dependent
surface tension and the density of the outermost liquid layer, where there are currently
no theories. �e simulations will help to understand the di�erences between the
area-independent pro�les from density functional theory and the area-dependent
pro�le from capillary-wave theory and re�ectivity experiments (Pershan, 2009).

interfaces of area A = L2) according to

∆A = 2γA = kBT

[
ln ρmax

µVT − ln ρmin
µVT

]
(14.28)

where ρmin
µVT = ρµVT (Nmin) is the minimum between the two peaks and

ρmax
µVT =

1
2

(
ρµVT (N` ) + ρµVT (Ng)

)
(14.29)

is the average of the maxima of the liquid and gas peak heights. (�ese peak heights are,
in general, not equal because the equilibrium condition is speci�ed by equal peak areas,
while the peak widths are typically di�erent.)

However, there is some uncertainty associated with the assumption that ρmin
µVT cor-

responds to the desired slab geometry. If this is the case, the probability distribution of
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Fig. 14.4 Probability distributions and free-energy densities in the liquid–vapour coexistence
region (schematic). (a) Bimodal probability distribution ρµVT (N ) of number of atoms N in
a grand canonical simulation. (b) �e same function, on a logarithmic scale. �e indicated
di�erence β∆A should be equal to the interfacial free energy 2γA. (c) �e free-energy density
β f (ρ) = − ln ρµVT (N )/V for di�erent system sizes. Curve 1 is the same as illustrated in (b), box
length L. �e other curves represent systems of size 2L, 3L and 4L respectively.

N should have an observable �at region in between the two single-phase peaks. �is is
because the two planar interfaces should be far enough apart not to in�uence each other,
and the conversion of liquid into vapour (or vice versa) will simply change the interface
positions, at no free-energy cost. �is is more likely to be observed for larger system sizes,
and/or when the box is chosen to be somewhat elongated with Lx = Ly = L < Lz . It is
instructive to convert F (N ) into a Landau free-energy density, f = F /V and express it
as a function of number density ρ = N /V . �is is schematically illustrated in Fig. 14.4(c),
for di�erent system sizes L. As L increases, the expected plateau region develops and
becomes be�er de�ned. �is makes the de�nition of fmax, corresponding to ρmin

µVT , less
ambiguous. At the same time, the free-energy di�erence per unit volume decreases in
proportion to L−1. (In the thermodynamic limit it becomes a straight line between ρg and
ρ` .) It is arguable that one should distrust the value of γ obtained by this route, unless a
plateau region has been observed.
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In general, the two-phase density range will consist of macroscopic con�gurations
of spherical or cylindrical droplets or bubbles, as well as the slabs discussed earlier; the
precise mix will depend on system size and box geometry. It is possible to study these in
their own right (MacDowell et al., 2006; Binder et al., 2011; 2012). Recently Wilding (2016)
has introduced ways to improve the sampling by suppressing the non-slab con�gurations,
thereby extending the range of applicability of the method.

�ere is still a residual system-size dependence in the measured value of γ . For a cubic
box of side L, scaling arguments (Binder, 1982) predict

βγL = βγ∞ − s
lnL

L2 −
C

2L2 (14.30)

where s is a universal exponent and C a constant. γL can be calculated for a series of sim-
ulations of di�erent box sizes (Poto� and Panagiotopoulos, 2000; Hunter and Reinhardt,
1995); plots of βγL vs L−2 lnL are linear and, for temperatures below the critical point,
can be extrapolated to give an estimate of γ∞. Schmitz et al. (2014) discuss the origins of
these e�ects and also consider di�erent box geometries.

�e method as described will work straightforwardly forT & 0.95Tc. For temperatures
below this, the free-energy barrier between the two phases is su�ciently high that it
is necessary to employ umbrella sampling or multicanonical sampling techniques to
obtain accurate estimates of ρµVT (N ) (Errington, 2003; Virnau and Müller, 2004). For
the Lennard-Jones �uid, the �nite-size scaling methods can be used to calculate γ for
T & 0.7Tc (Poto� and Panagiotopoulos, 2000). �is method forms a useful complementary
technique to the direct simulation of the interface for calculating γ . Note, however, that
direct simulations of large-scale LJ systems near the critical point (Watanabe et al., 2012)
do not completely agree with the conclusions of Poto� and Panagiotopoulos (2000).

14.2 �e gas–liquid interface of a molecular �uid
�e ideas discussed in the last section can be readily applied to molecular �uids. �e
pressure tensor of a molecular �uid is calculated from the pair-additive force on the centre
of mass of molecule i from another molecule centred at j . In the case of an interaction site
model, the Kirkwood–Bu� equation (see eqns (2.184) and (14.16)) for the surface tension
becomes

γKB =
1

4A

〈∑
i

∑
j>i

∑
a

∑
b

(
ri j · rab − 3zi jzab

rab

)
dvab (rab )

drab

〉
(14.31)

where a and b range over the individual atoms in molecules i and j, respectively, vab is
the site–site potential, and we again assume two planar interfaces in a slab geometry.

If the �uid is composed of ions in solution or small molecules such as water, where a
number of partial charges have been used to model the dipole, then the interactions are
long-range and we need to employ techniques such as the Ewald sum in the simulation.
Since the inhomogeneous system, modelled as a slab of liquid surrounded by vapour,
is periodic, the Ewald sum can be applied in a straightforward manner to calculate the
total energy and pressure of the charged system, and this approach is discussed in detail
in Section 6.9. For now, we will simply consider the contribution of the charge–charge
interaction to the pressure tensor and the surface tension.



�e gas–liquid interface of a molecular �uid 463

Table 14.2 Simulated values of the surface tension, in mJ m−2, for three molecular �uids. γLJ is the
contribution from the repulsion–dispersion potential, γR, γK,1 and γK,2 are the contributions from
the Ewald sum, and γLRC is the contribution from the long-range part of the repulsion–dispersion
potential evaluated by the method of Guo and Lu (1997). �e water model was tip4p/2005. Reprinted
from A. Ghou�, F. Goujon, V. Lachet, and P. Malfreyt, J. Chem. Phys., 128, 154716 (2008) with the
permission of AIP Publishing.

System T /K γLJ γR γK,1 γK,2 γLRC γtot

H2O 478 −87.6 112.1 −6.4 12.0 3.5 33.6
CO2 238 6.1 2.0 −0.8 1.7 2.5 11.5
H2S 187 21.0 8.0 −1.5 2.8 8.0 38.3

For an inhomogeneous system, the components of the pressure tensor can be calculated
using an approach described by Nosé and Klein (1983, Appendix A). �us∑

γ

PαγV H−1
βγ = −

∂V

∂Hα β
(14.32)

where the matrix H = (h1, h2, h3) is composed of the column vectors hα that are the sides
of the box of volume V , and H−1 is its inverse. �en, for a cubic box,

VPα β =

〈
1
2

∑
i

∑
j,i

∑
a

∑
b

qiaqjb

(
2
√
π
κrab exp(−κ2r 2

ab ) + erfc(κrab )
)
(ri j )α · (rab )β

r 3
ab

+



2π
V

∑
k,0

Q (k )S (k)S (−k)
(
δα β −

2kαkβ
k2 −

kαkβ

2κ2

)

−

[
2π
V

∑
i

∑
a

(dia )β qia
∑
k,0

Q (k )ikα
(
S (k) exp(−ik · ria ) − S (−k) exp(ik · ria )

)]〉
.

(14.33)

In eqn (14.33) k is a reciprocal la�ice vector for the box, dia = ria − ri ,

S (k) =
∑
i

∑
a

qia exp(−ik · ria ), and Q (k ) = 4π2 exp(−k2/4κ2)/k2. (14.34)

�e elements of P are all that is required to calculate the ionic contribution to γ . Pα β (z)
can be calculated using the techniques discussed in Section 14.1.1; explicit formulae are
given in Ghou� et al. (2008, appendix A). �is ionic contribution to γ arising from the
three terms in eqn (14.33), γR,γK,1,γK,2, is added to the contribution from the repulsion–
dispersion potential, and its long-range correction, to obtain the total surface tension. �e
size of these contributions for three typical molecular �uids is shown in Table 14.2.

�e reaction �eld method has also been used to include the charge–charge interaction
in modelling the surface tension of water. From a formal point of view there is no straight-
forward extension of the reaction �eld method to inhomogeneous systems. However,
it has been used with a spherical cuto� and a surrounding medium with a dielectric
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constant corresponding to that of bulk water. Since the long-range �eld does not have
spherical symmetry, and the dielectric tensor is a function of z, this approximation cannot
be correct. Nevertheless, the calculated values of γ appear to be in good agreement with
those obtained using the full Ewald method for this system (Mı́guez et al., 2010). More
work needs to be done to examine the reaction �eld method for this geometry.

14.3 �e liquid–liquid interface
�e methods of the previous sections may be applied, almost unchanged, to the study of
liquid–liquid interfaces. Symmetrical mixtures of Lennard-Jones atoms have been used
extensively as a test-bed: the two components A and B typically have the same ϵ and
σ parameters, but the A–B cross-interactions are made unfavourable, so as to promote
phase separation (Block et al., 2010; Martı́nez-Ruiz et al., 2015). Preparing a system in a
slab geometry proceeds by �rst equilibrating the two bulk liquids (typically an A-rich
phase and a B-rich phase) at the coexistence state point, or at least a reasonable estimate
thereof. It is sometimes convenient to use the constant-NPzzT ensemble, allowing the
Lz box dimensions to vary, while keeping both cross-sectional areas A = L × L equal to
each other. �en the boxes are combined, end to end, with small gaps in between to avoid
the worst overlaps. Constant-NVT simulations then proceed, the gaps are quickly �lled,
and some time must be allowed for the interfaces to stabilize, and for thermodynamic
equilibrium to be achieved.

Simulations of oil–water or oil–water–surfactant systems have focused on interfacial
properties for many years. Zhang et al. (1995) discuss various methodological aspects;
Neyt et al. (2014) give a recent account of surface tension measurements in such systems.

Further examples, using large systems, come from the �eld of complex �uids. Vink
et al. (2005) studied capillary-wave �uctuations in the Asakura–Oosawa model of colloid–
polymer mixtures using L × L × Lz systems of size L = 60σ , Lz = 120σ , where σ is the
colloid radius. �ey used the block analysis described earlier, in which the interface is
localized within columns (see Fig. 14.3). As well as the surface tension, it proved possible to
extract a bending rigidity (cf. Sections 2.13, 14.6) (Blokhuis et al., 2008; Blokhuis, 2009). �e
nematic–isotropic interface of rod-like particles of aspect ratio `/d = 15 was studied by
Akino et al. (2001) and Wolfsheimer et al. (2006). In both cases box dimensions L = 10`,
Lz = 20` were employed (N ≈ 105 molecules) and capillary-wave �uctuations again
studied by block analysis. For this kind of system, nematic orientational ordering occurs
parallel to the plane of the interface, and it is possible to distinguish capillary �uctuations
with wavevector components parallel and perpendicular to the director. Once more, a
bending rigidity term can be identi�ed.

14.4 �e solid–liquid interface
In simulating a solid–liquid interface, the atoms of the solid can be considered as part of
the system interacting with each other and with atoms in the �uid through pair potentials,
or as a static external �eld interacting only with the atoms in the �uid. �is �eld will be
z-dependent if the solid–liquid interface in the xy plane is considered �at, or can also
depend on x and y if the interface is structured. �e full range of mc and md techniques
can be applied to either of these two models. First, we consider how to determine the
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melting point by direct simulation of solid–liquid coexistence, and second we examine
methods for calculating the surface energy. �e methods of handling long-range potentials
in this geometry have been discussed in Section 6.9.

14.4.1 Determining the melting point

Zhang and Maginn (2012) have compared various methods for determining the melting
point, or more generally the melting curve in the phase diagram. Directly heating the solid
at a given pressure P , until it melts, will give an overestimate of the melting temperature,
due to hysteresis. Similarly, lowering the temperature of the liquid until it starts to freeze
will give an underestimate, due to supercooling. Separate simulations of the two phases
may be carried out, and free energies estimated by some of the methods of Section 9.2;
thermodynamic integration may then be used to establish a point on the melting curve. �e
curve may then be traced out by the Gibbs–Duhem method of Section 9.4.2. Alternatively,
it is possible to connect the liquid and solid phases by a thermodynamic integration path
that avoids the phase transition (Grochola, 2004; 2005; Eike et al., 2005), or via gateway
states using a biased sampling scheme (Wilding and Bruce, 2000; Errington, 2004; McNeil-
Watson and Wilding, 2006).

A simpler method is direct simulation of the solid and liquid phases in coexistence.
�e system is prepared in a manner similar to the liquid–liquid case: periodic boxes of
solid and liquid, having the same x and y dimensions, with P and T reasonably close to
the melting line are equilibrated separately. �ese are brought together, generating two
interfaces in the xy-plane, and a further period of equilibration is allowed for overlaps in
the interfacial regions to relax. During the early part of this period, it may be convenient
to keep the solid particles �xed, to avoid generating internal stresses, and to use the
constant-NPzzT ensemble (Zykova-Timan et al., 2009).

�en the two-phase system is allowed to reach thermodynamic equilibrium. It is worth
considering the best ensemble for this. As discussed in Section 14.1.1, a constant-NPT
simulation will slowly evolve to give a single phase, determined by whether the state
point (P ,T ) lies above or below the melting curve. Instead, it is recommended to use the
constant-NVE (Morris, 2002; Morris and Song, 2002; Yoo et al., 2004) or constant-NPH
ensemble (Wang et al., 2005; Brorsen et al., 2015). In either case, a signi�cant two-phase
coexistence region exists, so (provided the �xed thermodynamic variables lie within this
region) the interfaces between the two phases should be preserved. Also, in either case,
the temperature will automatically adjust towards the coexistence value. If the system
is too hot, melting will occur, extracting latent heat and lowering the temperature. �e
reverse will happen if the system is too cool. �e constant-NPH ensemble is particularly
convenient, because as well as being able to specify the pressure, one may allow the
box dimensions to vary separately, so as to relieve stress in the solid phase. Naturally,
pro�les of density, pressure, and temperature should be monitored, as a lack of equilibrium,
especially near the interfaces, is an ever-present danger.

Technically, it is not correct to carry out simulations at constant pressure in the
presence of interfaces which span the simulation box (Vega et al., 2008), precisely because
of the existence of a surface-energy term (which is o�en of interest in its own right, see
Section 14.4.2). However, if the system is long in the direction normal to the interface,
the surface term may have a relatively small e�ect. A�er the melting temperature and
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box dimensions have been determined, it is possible to turn to simulations in the NPzzT
ensemble, with �xed cross-sectional area but varying box length in the z direction. If the
pressure component Pzz is not exactly at the coexistence value, the solid phase will grow
or shrink; however, very small adjustments of Pzz may be made to reduce the velocity of
the two interfaces to zero, and in this way enable the melting point (P ,T ) to be determined
accurately (Zykova-Timan et al., 2010).

14.4.2 Solid–liquid interfacial energy

�e interfacial thermodynamics in the solid–liquid case (and indeed for solid–vapour)
di�ers from the liquid–vapour case. Denoting the excess surface free energy per unit area
by γ , and the surface stress by σ , the relationship between them is (Shu�leworth, 1950;
Tiller, 1991)

σ = γ +A
dγ
dA , or, in general σα β = γδα β +

∂γ

∂εα β
,

where A is the cross-sectional area and εα β is a component of the strain tensor. In the
case of an interface between two �uids, the second term is zero, and this allows a route
to γ through the stress pro�le, as discussed in the previous sections. To determine the
solid–liquid interfacial energy, alternative methods must be used.

�e solid–liquid interfacial energy may be determined by capillary-wave oscillations,
in the same way as for the liquid–vapour interface (Karma, 1993). However, the physics
is a li�le more complicated: the �uctuations are determined by an interfacial sti�ness,
which includes a curvature term added to the surface tension, and it also depends on
the particular solid surface being examined. A convenient and practical approach to this
problem has been developed by Hoyt et al. (2001) and Morris and Song (2002) and applied
to the crystal–melt interfaces of the Lennard-Jones system (Morris and Song, 2003), hard
spheres (Davidchack et al., 2006), metals (Hoyt et al., 2001; Morris, 2002), water (Benet
et al., 2014), and ionic systems (Benet et al., 2015). �e simulation box is chosen to be
very long in the z-direction, perpendicular to the interfaces, but rather short in the y
direction. �e system is therefore quasi-two-dimensional, and the interfaces are almost
one-dimensional ‘ribbons’, as illustrated in Fig. 14.5.

With the de�nitions of Fourier components in Appendix D, eqn (2.187) gives the
mean-square amplitude of each component, except that the surface tension γ is replaced
by γ̃ , the interfacial sti�ness. In general this is wri�en in tensorial form

γ̃α β (ẑ) = γ (ẑ) +
∂2γ (n̂)
∂nα ∂nβ

�����n̂=ẑ
where ẑ is the unit vector normal to the average interface, n̂ is the local surface normal,
and α , β = x , y . Indeed, this form has been used for boxes of (nearly) square cross-
section (Härtel et al., 2012; Turci and Schilling, 2014). In the thin slab geometry under
consideration here, a simpler form applies:

γ̃ = γ +
d2γ (θ )

dθ 2

�����θ=0
(14.35)

where the angle θ is de�ned in Fig. 14.5. In fact, the interfacial free energy γ will depend
on the orientation of the crystal plane which is exposed to the liquid: this dependence is
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Fig. 14.5 �in, elongated periodic box used to study crystal–melt interface �uctuations. �e
coordinate system is chosen with z normal to the average interface plane. Fluctuations in height as
a function of transverse coordinate h(x ) also imply �uctuations in the angle θ between the local
surface normal n̂ and its average ẑ. �e resulting curvature contribution to the surface free energy
may be represented through the interfacial sti�ness, eqn (14.35).

usually wri�en as an expansion in spherical harmonic functions of the angles de�ning the
crystal plane, and a corresponding expansion for γ̃ via eqn (14.35). �e problem reduces
to the determination of the coe�cients in this expansion. �is, therefore, requires one
to conduct many simulations, measuring γ̃ for a range of crystal orientations within
the box. For this geometry, the wavevectors corresponding to height �uctuations in the
capillary-wave theory need only be considered in the x-direction.

We have not yet discussed how to determine the height h(x ) of each interface, and
hence the Fourier coe�cients. �is relies on being able to assign an order parameter
to each atom, characterizing it as belonging to the liquid or solid phase, or having an
intermediate value characteristic of the interface. �e most obvious candidates, such as
the density, or the potential energy of each atom, are generally not robust or accurate
enough for this task. Usually, some kind of bond-order parameter (based on a set of vectors
connecting a particle with its nearest neighbours) is used for this purpose (Steinhardt
et al., 1983; Hoyt et al., 2001; Morris, 2002; Lechner and Dellago, 2008). It may help the
analysis to average the coordinates over a short time period. Discretizing the height on
a grid in x , Fourier transforming, averaging the mean-squared amplitudes 〈ĥ(k )2〉, and
��ing the low-k data to eqn (2.187), gives γ̃ for a single crystal orientation.

A more direct route to the crystal–melt surface free energy was proposed by Broughton
and Gilmer (1986), and has been re�ned and extended by Davidchack and Laird (2000). It
is usually referred to as the cleaving method; it had previously been suggested for the
liquid–vapour interface (Miyazaki et al., 1976) but the capillary wave and stress pro�le
approaches are generally preferred in this case. �e idea is to compute the free energy
required to create the interface from the bulk phases, by thermodynamic integration. An
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 14.6 (a)–(d) �e successive steps in evaluating the surface free energy by the cleaving method.
Liquid and solid phases are indicated by light and dark grey, respectively. Periodic boundaries are
shown as solid lines connected by arrows. �e wavy lines represent the cleaving boundaries, or
walls, and their operation is indicated in (e) and (f). Atoms are �rst identi�ed as lying to the le�
or right of the dashed line, and are accordingly labelled with arrows. �e walls (wavy lines) are
pushed in the direction indicated by their arrows, and act only on the similarly labelled atoms.

external potential is introduced, which e�ectively creates two planar interfaces separated
by a region from which the atoms are excluded. A parameter in this potential is used to
reversibly increase the width of the exclusion region. �e free energy of creating such
an interface in both the bulk liquid and solid phases is measured, by thermodynamic
integration between states schematically illustrated in Fig. 14.6(a)→ (b). Following this,
the periodic boundaries are rearranged to give (c); for very short-range interactions, this
involves no free-energy change, and even in the presence of long-range interactions,
the free-energy change may be computed without too much trouble. E�ectively, two
separate periodic simulation boxes, each containing one bulk phase, become a single
combined box, containing two interfaces. In the �nal stage (c)→ (d), the external potential
is slowly removed, resulting in two physical interfaces between the phases, and once
again the free-energy change is measured by thermodynamic integration. Summing all
the contributions gives an estimate of the interfacial free energy, for two surfaces, each
spanning the cross-section of the periodic box.

�e operation of the cleaving potential is illustrated in Fig. 14.6(e) and (f). Initially,
the molecules are identi�ed as lying to the le� or right of a speci�ed plane. An external
potential is introduced, consisting of two terms, each acting as a kind of planar ‘wall’
interacting only with one type of molecule. To begin with, these walls are located well
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within the region of the other type of molecule, and so they have no e�ect. �is is
illustrated in Fig. 14.6(e). �e walls are then slowly pushed towards, and through, each
other, leading to the situation of Fig. 14.6(f), in which a region has been cleared of particles,
and the direct interactions across this region are dramatically reduced (to zero in the case
of short-ranged potentials). �e free-energy change during the process is calculated by
thermodynamically integrating the applied force on the walls, with respect to position.

Success depends on the cleaving process being reversible, and this turns out to be
sensitive to the form of the external potential. It is desirable to perturb the system as
li�le as possible. However, it is also necessary, when cleaving the liquid, to introduce the
kind of structure which will be a good match to that at the surface of the crystal. A �at,
planar wall is not a good choice for this; instead it is usual to construct the walls from
atoms frozen in the ideal solid la�ice positions. �is approach has been applied to hard
spheres (Davidchack and Laird, 2000), Lennard-Jones and so�-sphere potentials (Laird
and Davidchack, 2005), metallic systems (Liu et al., 2013), and silicon, using a three-body
potential (Apte and Zeng, 2008). Comparison with the capillary �uctuation method has
led to further re�nement (Davidchack, 2010), and although it seems possible to reconcile
results obtained in both ways, the cleaving method is less sensitive to the anisotropy
of the interfacial energy. �ere remain some potential hysteresis issues associated with
the thermodynamic integration route for cleaving, especially if the solid–liquid interface
dri�s during the �nal removal of the external potential. �e procedure can be adapted
(Benjamin and Horbach, 2014; 2015), or alternative thermodynamic integration routes
used (Espinosa et al., 2014; Schmitz and Virnau, 2015) to avoid these problems.

14.5 �e liquid drop
�ere are many properties of small liquid drops, such as the radial dependence of the
pressure, the sign of the Tolman length, and the size-dependence of the surface tension,
which are of fundamental interest and which are not readily available from experiment
(Malijevský and Jackson, 2012). A small drop, in equilibrium with its vapour, is an obvious
candidate for computer simulation. �is section discusses some of the technical problems
associated with the preparation and equilibration of stable systems in the two-phase
region, and highlights some of the important results that have emerged from recent
studies. �e main thrust of this work has been to explore fundamental properties of
drops rather than to make a connection with the scant experimental results. For this
reason, these simulations employ simple models such as the truncated Lennard-Jones
potential, or the Stockmayer potential. In this section we will concentrate exclusively
on the Lennard-Jones potential model and its truncated variations. �e three earliest
studies of the Lennard-Jones drop (Rusanov and Brodskaya, 1977; Powles et al., 1983a;
�ompson et al., 1984) used the md method. Unbiased mc methods can lead to bo�lenecks,
which have caused arti�cial structure in the density pro�le of a planar interface (Lee et al.,
1974). Large system sizes and long runs are required to obtain useful results for drops.
�ese early studies were limited by the size and speed of the available computers. �ey
studied N . 2000 atoms for up to 3.5 × 105 timesteps. More recent studies (van Giessen
and Blokhuis, 2009; Lee, 2012) used as many as 5 × 105 atoms for up to 5 × 107 timesteps.
Runs of this length and size are required to understand some of the subtler physics of the
drop.
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�e simulation of the drop begins by performing a normal bulk simulation of the
Lennard-Jones �uid using periodic boundary conditions. �e drop is excised from the bulk
and placed either at the centre of a new periodic system with a larger central box (Powles
et al., 1983a) or in a spherical container (Rusanov and Brodskaya, 1977; �ompson et al.,
1984). �e size of the central box or the spherical container must be large enough so that
two periodic images of the drop, or the drop and the wall of the container, do not interfere
with one another. On the other hand, if the system size is chosen to be too large, the
liquid drop will evaporate to produce a uniform gas. �e di�culty of choosing a suitable
starting density can only be resolved by trial and error (and ideally a prior knowledge of
the coexisting densities at the desired temperature). In practice, the distance between the
outside of the two periodic images of the drop should be at least a drop diameter. In the
case of a container, its radius should be two to three times larger than the radius of the
drop.

�e spherical container is best thought of as a static external �eld which con�nes
the molecules to a constant volume. �ompson et al. (1984) use the repulsive Lennard-
Jones potential vRLJ (d ) (eqn (1.10a)) to model this wall; d is the distance along a radius
vector (from the container centre) between the molecule and the wall. Lee (2012) uses
a half-harmonic potential to con�ne the atoms. Solving Newton’s equations for this
system will conserve energy and angular momentum about the sphere centre. �e drop
moves around inside the spherical container as atoms evaporate from the surface of the
liquid and subsequently rejoin the drop. In another variant of this technique, the external
�eld moves so that it is always centred on the centre of mass of the system. Solution of
Newton’s equations in a time-dependent external �eld does not conserve energy; in this
particular instance (�ompson et al., 1984) the simulation was also performed at constant
temperature using momentum scaling (see Section 3.8) and the equilibrium results were
shown to be equivalent to those obtained in the more conventional microcanonical
ensemble. More recent simulations �x the temperature using a Nosé–Hoover thermostat
for each atom in the system (van Giessen and Blokhuis, 2009; Lee, 2012).

Figure 14.7 shows a schematic snapshot of part of a drop a�er equilibration. At any
instant the drop is non-spherical, but on average the structure is spherical and the drop is
surrounded by a uniform vapour. �e radius of the drop, de�ned shortly in eqn (14.37),
should change very li�le, say 1 %, during the production phase of the run. �e temperature
pro�le through the drop should be constant.

�e principal structural property of the drop is the density pro�le, ρ (r ). It is de�ned
as the average number of atoms per unit volume a distance r from the centre of the drop.
Since the drop moves during the run, it is necessary to recalculate its centre of mass as an
origin for ρ (r ) at each step. �is is de�ned, assuming equal-mass atoms, by

r′cm (t ) =
1
N ′

N ′∑
i=1

ri (t ) (14.36)

where N ′ is the number of atoms in the drop at time t . �is has to be de�ned in some
way. Powles et al. (1983b) have implemented the nearest-neighbour distance criterion of
Stoddard (1978) for identifying atoms in the drop. �e method makes use of a clustering
algorithm. �is begins by picking an atom i . All atoms j that satisfy ri j < rcl, where rcl is
a critical atom separation, are de�ned to be in the same cluster as i . Each such atom j is
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r

ρ (r )

re

Fig. 14.7 A snapshot of a drop with its centre at the origin. For illustration, we use two dimensions
and show one quadrant only. We also show the density pro�le and the equimolar dividing surface,
re which de�nes the radius of the droplet (for details see �ompson et al., 1984).

Code 14.3 Cluster analysis
�is �le is provided online. cluster.f90 reads in a con�guration, using a utility
module routine (Appendix A) and, for a given critical separation rcl, produces a set of
circular linked lists, one for each identi�ed cluster (Stoddard, 1978).

! cluster.f90
! Identify atom clusters in a configuration
PROGRAM cluster

added to the cluster, and is subsequently used in the same way as i , to identify further
members. When this �rst cluster is complete, an atom outside the cluster is picked, and the
process repeated to generate a second cluster, and so on. �e whole procedure partitions
the complete set of atoms into mutually exclusive clusters. In the case of the liquid drop
system, the largest cluster is the drop itself and the algorithm works most e�ciently if
the �rst atom i is near the centre of the drop. �e atoms that are not in the drop cluster
are de�ned to be in the vapour. Fowler (1984) has described in detail the implementation
of the method. An e�cient clustering algorithm (Stoddard, 1978) is given in Code 14.3.
�is method, however, does not scale well as N becomes very large, and other approaches
may be preferred (Edvinsson et al., 1999).

rcl has to be chosen sensibly. Studying the dependence ofN ′ upon rcl provides guidance
in the choice of this parameter. Values of rcl between 1.3σ and 1.9σ (�ompson et al.,
1984; Powles et al., 1983b) have been used. In more recent simulations the net momentum
of the drop is set to zero at every 100 timesteps. At the same time the position of every
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atom is shi�ed so that the centre of mass of the drop is at the origin. In this case the drop
is de�ned as all atoms within a �xed distance (e.g. re + 2σ , where re is de�ned shortly) of
the origin (van Giessen and Blokhuis, 2009), although clearly this depends on the precise
system studied.

�e equimolar dividing surface, re, provides a useful measure of the size of the liquid
droplet:

r 3
e =

1
(ρg − ρ` )

∫ ∞

0

dρ (r )
dr r 3dr . (14.37)

re is de�ned so that if the limiting densities of the two phases were constant up to r = re
and changed discontinuously at r = re (D → 0 in eqn (14.8)), the system would contain
the same number of molecules. (Compare eqn (14.10) and Fig. 14.2(b) de�ning the Gibbs
dividing surface for a planar interface.) re is shown schematically in Fig. 14.7.

Studies show that the width of the surface increases rapidly with temperature, and
that drops disintegrate at temperatures below the bulk critical temperature. �e most
recent simulation results suggest that the thickness of the interface, D, decreases slightly
below that of a planar interface at the same temperature, and the liquid density increases
above the planar limit, as the drop size decreases. For example, in the usual reduced
Lennard-Jones units, at T ∗ = 0.9, van Giessen and Blokhuis (2009) obtain

r ∗e ∞ 49.132 9.033
ρ∗
`

0.664 743 0.667 495 0.678 697
�is behaviour is also consistent with the Laplace equation, valid for large drops, where
the pressure di�erence, ∆P = P` −Pg, is inversely proportional to the radius of the surface
of tension, rs

∆P = 2γs/rs (14.38)

where γs is the surface tension (the su�x reminds us that it is for a spherical drop), which
is de�ned to act at the surface of tension. For very small drops, eqn (14.38) does not apply,
the opposite trend is observed, and ρ` decreases with drop size as the a�ractive cohesive
forces decrease.

�e pressure tensor in a spherical drop can be wri�en in terms of two independent
components, normal, PN (r ), and transverse, PT (r ), de�ned as follows:

P(r ) = PN (r ) r̂r̂ + PT (r )
(
1 − r̂r̂

)
(14.39)

where r̂ is the radial unit vector from the centre of the droplet. �e condition for mechanical
equilibrium, ∇ · P = 0, relates these components through a di�erential equation:

PT (r ) = PN (r ) +
r

2
dPN (r )

dr . (14.40)

�is is in contrast to the planar interface where the components must be calculated
separately. For the drop, the calculation of PN (r ) is su�cient to describe P, and to calculate
γ , through a thermodynamic or a mechanical route.
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�e ik normal component of the pressure tensor can be calculated in a simulation by
considering the intersection of the vector ri j , describing the interaction between atoms i
and j, and the spherical surface of radius r centred on the drop (�ompson et al., 1984)

PN (r ) = ρ (r )kBT −
1

4πr 3

〈∑
i

∑
j>i

∑
intersections

|r · ri j |
1
ri j

dv(ri j )
dri j

〉
. (14.41)

Here the con�gurational term is the component of the ij force along the normal to the
surface at the points of intersection with r; this term is positive for a repulsive force
and negative for an a�ractive force. For any i and j, ri j may have zero, one, or two
intersections with the sphere, depending on the positions of the atoms. In the case of two
intersections, both contributions are equal by symmetry. Simple formulae for the number
of intersections and the dot product in eqn (14.41) are available (�ompson et al., 1984,
eqns (A11) and (A12)). �e simulations of van Giessen and Blokhuis (2009) show that
PN (r ) is �at inside the droplet with a small minimum on the vapour side of re. PT (r ) has a
strong minimum in the interfacial region, with a small maximum on the vapour side of re.
(�ese results do not agree with the simulations of Lee (2012) where PN (r ) decreases in the
liquid phase as r → 0. �ese di�erences may be due to the di�erent boundary conditions
in the simulations or the di�erent cuto� used in the potential model.) Interestingly, the
pressure of the vapour can also be obtained by the normal virial calculation, eqn (2.61), in
the case of a drop simulated using periodic boundary conditions. �e only requirement is
that the surface of the central box is always in the vapour part of the system. �e virial
equation, using the mean density of the sample, simply gives the average of the normal
pressure over the surface of the box.

�e Tolman equation, based on purely thermodynamic arguments, relates the surface
tension of a droplet of radius rs to the surface tension in the planar limit

γs
γ∞
= 1 − 2(re − rs)

rs
= 1 − 2δ

rs
(14.42)

where δ is the Tolman length, rs is the radius of tension and γ∞ is the surface tension
of the �uid in the planar limit. It is likely that there are additional small terms, that are
quadratic in 1/rs, to be added to eqn (14.42).

�e surface of tension can be calculated through the rearrangement of eqns (14.38)
and (14.42) to give

rs =
3γ∞ −

(
9γ 2
∞ − 4γ∞re∆P

)1/2

∆P
(14.43)

which can then be used in the thermodynamic expression, eqn (14.38) to calculate γs.
Since P`, Pg and re are unambiguously determined in the simulation, γs can be calculated
in terms of γ∞.

A mechanical de�nition of the surface tension can be obtained by considering the
forces on a strip cu�ing the surface of the droplet (Rowlinson and Widom, 1982):

γs,m =

∫ ∞

0
dr

(
r

rs,m

)2 (
PN (r ) − PT (r )

)
. (14.44)
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�e subscript (s,m) indicates the mechanically de�ned surface tension calculated at the
mechanically de�ned radius of tension

rs,m =

∫ ∞

0
dr r P ′N (r )

/ ∫ ∞

0
dr P ′N (r ), (14.45)

where P ′N (r ) = dPN (r )/dr . �is approach can be readily implemented in the course of a
simulation (Lee, 2012) using

γ 3
s,m = −

(∆P )2

8

∫ ∞

0
dr r 3P ′N (r ), (14.46)

which can be obtained from eqn (14.44) and the Laplace equation wri�en in terms of rs,m.
Equation (14.46) requires a knowledge of ∆P which can be determined from eqn (14.40)

∆P = 2
∫ ∞

0
dr 1

r

(
PN (r ) − PT (r )

)
(14.47)

where the integration is across the interface. Detailed simulation studies of the Lennard-
Jones droplet (ten Wolde and Frenkel, 1998; Blokhuis and Bedeaux, 1992) show that the
surfaces rs and rs,m are displaced by ca. 1σ and that the mechanical and thermodynamic
de�nitions of the surface tension acting at the respective surfaces of tension are di�erent.
�ese are also di�erent from the surface tension acting at the Gibbs dividing surface, re .
�is situation is further complicated, since the moments of the pressure tensor pro�le (e.g.
rs) can depend on the particular de�nition of the microscopic stress (e.g. Irving–Kirkwood
versus Harasima).

Recently, Lau et al. (2015) have extended the ta method (see eqn (14.24)) to a spherical
droplet to estimate the thermodynamic surface tension γs. As in the case of the planar
interface, the box containing the droplet is scaled, together with the atom coordinates,
according to eqn (14.25). (Equivalent, independent scalings can be applied in each of
the Cartesian coordinate directions due to the spherical symmetry of the droplet.) �is
conserves the total volume of the box. A positive value of ϵ in eqn (14.25) distorts the
average spherical shape into an oblate ellipsoid, whereas a negative ϵ produces a prolate
ellipsoid. Since both distortions increase the surface area, the change in free energy is of
O (ϵ2). In this case

γs =
1
c

(
〈b〉0 −

β

2 〈a
2〉0

)
(14.48)

where a =
∂∆V

∂ϵ
, b =

1
2
∂2∆V

∂2ϵ
, c =

8πr 2
e

5 ,

re is the equimolar radius of the spherical droplet, and ∆V = V1 − V0, the change in
potential energy in making the a�empted perturbation. �e terms involving a and b are
typically of the same order of magnitude as each other, and tend to cancel, to yield a
small γs. Hence an increased computational e�ort is usually required: Lau et al. (2015)
note that runs of ∼ 100 ns are required for each droplet compared to runs of ∼ 10 ns for
the application of the ta method to the planar interface.
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�e Tolman length can be extracted from measurements of ∆P as a function of drop
size, and an accurate estimate of γ∞. Expanding eqns (14.42) and (14.38) in powers of δ/re
gives

re
2 ∆P = γ∞

(
1 − δ

re
+ · · ·

)
. (14.49)

A plot of the le�-hand side against 1/re gives, in the usual reduced units, δ ∗ = −0.10±0.02
for the truncated, shi�ed Lennard-Jones potential at T ∗ = 0.9 (van Giessen and Blokhuis,
2009). �is important result, of a negative Tolman length, is supported by the work of
Block et al. (2010). Using simulations in the grand canonical ensemble and applying a
�nite-size scaling analysis, they were able to calculate γL for the droplet as a function
of system size L, using the techniques described in Section 14.1.4. Although there is
considerable sca�er in γL versus 1/L, estimates of δ ∗ = −0.11 ± 0.06 at T ∗ = 0.68 and
δ ∗ = −0.07 ± 0.04 at T ∗ = 0.78 were obtained. Finally, Homman et al. (2014) have used
a free-energy perturbation approach to calculate rs and estimate a Tolman length of
δ ∗ = −0.04 ± 0.01. �e negative sign of the Tolman length is also predicted by density
functional theory (Barre�, 2006).

�ere is still an important puzzle concerning δ . It can also be calculated from a
simulation of the planar interface using a virial-like expression

δ = −
1
γ∞

∫ ∞

−∞

dz
[
(z − zG) f1 (z) − f2 (z)

]
(14.50)

where zG is the Gibbs dividing surface, and

f1 (z) =
1

2A∆z

〈∑
i

∑
j>i

dv(ri j )
dri j

(
ri j −

3z2
i j

ri j

)
H (z − zi ,∆z)

〉

f2 (z) =
1

4A∆z

〈∑
i

∑
j>i

dv(ri j )
dri j

(
ri j −

3z2
i j

ri j

)
zi jH (z − zi ,∆z)

〉
(14.51)

with zi j = zi − zj . �is route consistently produces a positive value: δ ∗ = 0.207 ± 0.002 at
T ∗ = 0.9 (van Giessen and Blokhuis, 2009); δ ∗ = 0.16 ± 0.04 at T ∗ = 0.75 to 0.50 ± 0.12 at
T ∗ = 0.95 (Haye and Bruin, 1994). �e reason for this discrepancy is unclear. van Giessen
and Blokhuis (2009) suggest that this may be due to the capillary wave �uctuations of the
droplet which are signi�cantly greater than the Tolman length itself.

14.6 Fluid membranes
As discussed in Section 2.13, the simulation of planar �uid bilayer membranes is a very
active area, with links to biological systems. �e molecules comprising the bilayers are
usually amphiphilic: in the biological context they may be lipids, while model systems
may be formed from block copolymers. A public force-�eld parameter repository for lipids
is available (Domański et al., 2010), and many practical details are discussed by Tieleman
(2010; 2012). A review, concentrating on atomistic and coarse-grained force �elds, has
recently appeared (Pluhackova and Böckmann, 2015). Biomembrane simulation is a huge
�eld which we cannot review here; instead we pick out a few issues of technical interest.
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Example 14.2 Wetting and drying

We�ing and drying phenomena involve three phases: a simple example is when a
�uid, which may exist as liquid (`) or vapour (v), is near a solid wall (w). If the bulk
�uid is in the vapour state, and the wall is su�ciently a�ractive, it may be covered by
a thin �lm of liquid: this is complete we�ing. Alternatively, droplets of liquid may sit
on the wall, with the liquid–vapour interface approaching it at the so-called contact

angle θ . �is is partial we�ing, and macroscopically balancing the forces acting on
the three-phase contact line gives Young’s equation γwv − γw` = γv` cosθ , relating θ
to the three interfacial tensions. We�ing corresponds to θ < 90°, cosθ > 0, while the
drying regime, which is seen for walls which prefer vapour to liquid, is characterized
by θ > 90°, cosθ < 0. On changing the state point, or increasing the wall a�raction,
the contact angle may decrease, θ → 0°, cosθ → 1, giving complete we�ing: the
nature of this transition is of interest. �e corresponding drying transition occurs
as θ → 180°, cosθ → −1. Large-scale atomistic simulations of water (Giovamba�ista
et al., 2016) seem to suggest that the foregoing macroscopic description is valid down
to a few nanometres.
Direct measurement of contact angles from droplet pro�les is possible (Ingebrigtsen
and Toxvaerd, 2007; Becker et al., 2014; Svoboda et al., 2015), but there will always
be some uncertainty associated with extrapolating the pro�les very close to the
surface, particularly if the wall has some structure. Also, the line tension may give
a non-negligible contribution to the free energy (Schrader et al., 2009), and hence
the pro�les. If the we�ing or drying transition itself is of interest, a thermodynamic
route becomes preferable. Pioneering work in this direction was undertaken by
Sikkenk et al. (1988) and van Swol and Henderson (1989; 1991) using conventional
(but, at the time, quite demanding) simulation methods. Nowadays, an approach
based on distribution functions and free energies is very revealing (Grzelak and
Errington, 2010; Kumar and Errington, 2013; Evans and Wilding, 2015). �e la�er
authors studied spc/e water near �at walls of variable a�ractive strength, using
gcmc. A variety of smart sampling techniques (see Chapter 9) were used to make
this possible at liquid densities. By studying the density distribution, and using
eqn (14.28), Evans and Wilding (2015) were able to determine both γv` (in a fully
periodic system) and γwv − γw` (in slit geometry with two planar walls), assuming,
as usual, that con�gurations with planar interfaces were dominant. Modest system
sizes of a few hundred molecules were used. �eir results provided evidence that
the we�ing transition is a �rst-order surface phase transition, at least for long-range
surface a�raction, but that drying is a continuous, critical, phase transition. �is in
turn sheds light on the nature of the very large density �uctuations seen in water
near hydrophobic surfaces, as being due to the proximity of a surface critical point,
giving rise to a long-ranged density correlation function parallel to the surface, and a
dramatically enhanced local compressibility. �ese conclusions were supported by a
more detailed study of the Lennard-Jones system, for which critical point exponents
could be determined (Evans et al., 2016).
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Fig. 14.8 Schematic illustration of the geometry of a bilayer membrane simulation. �e head-group
positions are indicated by surfaces, and a few amphiphilic molecules are shown explicitly, with
spheres indicating the hydrophilic head groups and wavy lines denoting the hydrophobic tails.

�e typical geometry involves a bilayer spanning the xy-dimensions of the periodic
simulation box, as illustrated in Fig. 14.8. �e box length in the z direction should be
long enough to minimize interactions between periodic images (recall that the head
groups are typically charged or polar): 30–40 water molecules per amphiphile seems quite
typical (Ding et al., 2015). �is arrangement is similar to that used to study interfaces,
Sections 14.1 and 14.4, but there are some important di�erences. For practical purposes,
the number of amphiphiles in the bilayer is �xed. Because of this, the cross-sectional
area (or the corresponding transverse pressure) is a relevant thermodynamic variable
in its own right, even though the bilayer is �uid in nature. As the area increases, the
membrane comes under tension, while a decrease in area results in compression, and
possible crumpling.

Specifying the surface tension requires some care. As emphasized in Section 2.13,
a zero-tension ensemble should be adopted, to match the usual real-life situation, par-
ticularly if membrane �uctuations are to be dominated by curvature elasticity terms
(eqn (2.190)), rather than surface tension terms, in the free energy. �is may be achieved
by measuring the tension via the stress pro�le of eqn (2.183a), as a function of cross-
sectional area A, and then choosing the value of A for which it vanishes (Goetz and
Lipowsky, 1998). Alternatively, the simulation may be conducted in a constant-NPTγ
or constant-NPTPNT ensemble (Zhang et al., 1995; Venturoli and Smit, 1999; Venturoli
et al., 2006; Rodgers and Smit, 2012). Ideally, the x and y box lengths should be scaled
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together, keeping a �xed, roughly square, cross-sectional shape; if they are allowed to vary
independently, the cross-section may become very long and thin. �erefore, the situation
is intermediate between the kind of isotropic box scaling typically used in liquid-state
NPT simulations, and the fully anisotropic ensemble sometimes used in the solid state.

A complication, however, is that general-purpose force �elds o�en fail to reproduce
the experimentally observed area per lipid, and other membrane properties, under these
conditions. To �x this, an arti�cial tension is sometimes applied to the membrane, but
this will certainly a�ect some of the other properties. A more satisfactory alternative
approach is to reparameterize the force �eld (Slingsby et al., 2015), in an e�ort to generate
a full set of results consistent with experiment.

Within a zero-tension state, membrane height �uctuations, as a function of transverse
wavevector, may be used to obtain the bending modulus κ using eqn (2.191) (Goetz et al.,
1999; Lindahl and Edholm, 2000; Brandt et al., 2011). �e method su�ers from the need to
simulate a system with a large cross-sectional area, to carry out the low-k extrapolation,
and from the very slow timescales associated with the �uctuations. To a�empt to address
these problems, various alternative techniques have been devised using umbrella sampling
(den O�er and Briels, 2003), possibly combined with �eld-theoretic methods (Smirnova
and Müller, 2015), or by applying deformations through a guiding potential (Kawamoto
et al., 2013), or by stretching a cylindrical vesicle (Harmandaris and Deserno, 2006). For
the Gaussian elasticity κ̄, a method has been proposed which involves the closing of
disk-like lamellae into spherical vesicles (Hu et al., 2012). It has been suggested that a
Fourier analysis of lipid orientation �uctuations, rather than height �uctuations, delivers
more robust results without requiring such large cross-sectional areas (Watson et al., 2012;
Levine et al., 2014). It may also be possible to extract elastic moduli from distributions of
local lipid tilt and splay functions (Johner et al., 2016). Although the stress pro�le through
a membrane is of some intrinsic interest (Ollila and Va�ulainen, 2010), and is o�en used
as a route to the elastic moduli via eqns (2.192) and (2.193) (see e.g. Marrink et al., 2007;
Orsi et al., 2008) it is not clear that results obtained this way agree with those obtained
by other methods (Hu et al., 2012).

Other areas in which simulation may make a signi�cant contribution include the
estimation of the free-energy change to insert molecules (such as proteins or choles-
terol) into the bilayer from the solvent, and the calculation of single-particle di�usion
coe�cients, either of the amphiphiles themselves or of the inserted molecules. �ere is
also considerable interest in phase transitions that occur within the bilayer, especially in
the multi-component case. In principle, these calculations use perfectly standard meth-
ods, such as umbrella sampling (see Chapter 9) and the study of Einstein relations (see
Chapter 8). However, bilayer membranes may require very long simulation times to
obtain statistically signi�cant results, and Tieleman (2010) has highlighted this as a major
concern. For the free-energy calculations, there is concrete evidence that bilayer reor-
ganization during the insertion process may result in systematic sampling errors (Neale
et al., 2011). �e di�usion problem is particularly interesting, being a combination of
quasi-two-dimensional motion with the transfer of momentum to and from the solvent
(Sa�man and Delbrück, 1975; Sa�man, 1976). However, Camley et al. (2015) have argued
that �nite-size e�ects in this situation lead to signi�cant errors in estimating di�usion
coe�cients by simulations using periodic boundary conditions.
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14.7 Liquid crystals
Finally, we turn to a class of systems that exhibit inhomogeneity in orientation space,
namely liquid crystals. As discussed in Section 2.14, the simplest example, the nematic

phase, is characterized by a director n. �e orientational distribution is anisotropic, and
both static and dynamic quantities need to be calculated in a coordinate frame based on n.

A key complication in all these calculations is that the director may vary with time.
For large system sizes, director motion becomes extremely slow, and it is possible to
de�ne an e�ectively static director frame. For smaller systems, it may be necessary to
constrain the director arti�cially (Allen et al., 1996). In principle, the orientation of the
director within the simulation box is arbitrary; it is sometimes convenient to apply a small
orienting �eld along, say, the z-direction, to align the director. �e �eld is then removed,
and the system allowed to equilibrate, before calculating simulation averages.

In smectic phases, the molecules order into layers, so that there is e�ectively long-
range order in one direction (at least). �ere are many types of smectic phase: the simplest,
having only short-range translational order within each layer, are smectic-A, in which
the director is parallel to the layer normal, and smectic-C, in which the director is tilted.
In either case, one can think of the layers as having two-dimensional �uid character,
but molecules are also able to transfer between layers. If the phase is allowed to form
spontaneously, the layers may adopt any orientation commensurate with the simulation
box. As in the case of solid-state simulations, the box dimensions may need to vary in order
to relieve any strain associated with the layers. �e layer orientation may be determined
by calculating the structure factor S (k), based on the particle centre-of-mass coordinates,
for a range of k-vectors compatible with the box. High values of S (k) should correspond
to vectors k perpendicular to the layers, and the layer spacing can be inferred from the
corresponding values of 2π/|k|. �is approach then allows particles to be assigned to
layers. For smectic phases, once the layers are identi�ed in this way, it is possible to
compute spatial correlation functions for pairs of particles which lie in the same layer,
within adjacent layers, and so on (Brown et al., 1998).

Finally, we should mention chiral phases, the simplest of which is the chiral nematic
or cholesteric phase, formed by chiral molecules (which are not superimposable on their
mirror image). Here, the director lies in a plane perpendicular to a certain direction in
space, for example the z-axis, and rotates in a helical fashion:

n = (cosϕ (z), sinϕ (z), 0), ϕ (z) = ϕ0 + kPz (14.52)

where kP = 2π/λP, and λP is called the pitch. Measuring the equilibrium pitch, and relating
it to molecular properties, is a key goal in simulation, theory and experiment.

�e main problem in simulating such systems is ensuring compatibility with the
periodic boundary conditions, since the equilibrium pitch is typically quite long compared
with practical simulation box sizes. One way around this is to abandon periodic boundaries
in the z-direction, and instead simulate the system between parallel �at walls, which
interact with the molecules in such a way as to encourage alignment in the xy-plane,
but otherwise do not in�uence their orientations. In these circumstances, there is no
incompatibility with the change in twist angle ∆ϕ = ϕ (Lz/2)−ϕ (−Lz/2) = kPLz , where Lz
is the box length, which arises from the intrinsic chirality, and the pitch can be measured
directly. �e simplest way of doing this is to de�ne theQ-tensor, eqn (2.194) in a succession
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of slabs de�ned by zi ±
1
2∆z, where zi = i∆z and i is an integer, diagonalize each tensor

to obtain n(zi ), and �t to the expected form, eqn (14.52).
However, the timescales for developing and equilibrating such a structure may be quite

long. An alternative approach is to study the system in periodic boundaries, in which the
twist angle will be forced to have values of ∆ϕ = 0, π, 2π etc., and so k = 0,± 1

2k0,±k0, . . .,
where k0 = 2π/Lz . Additionally, it is possible to devise a modi�ed periodic boundary
convention (Allen, 1993; Allen and Masters, 1993) in which all molecular position and
orientation vectors are rotated by ±π/2 in the xy-plane, when one applies a translation
z → z ± Lz , and this leads to k = ± 1

4k0,±
3
4k0, . . .. Such a system will be (orientationally)

strained, since the imposed pitch will not have its equilibrium value k , kP; measuring
the (orientational) stress for various values of k can yield the desired kP. �e elastic free
energy may be wri�en

F = 1
2VK2

(
k − kP

)2

where K2 is the appropriate elastic constant and V is the volume. It may be shown that

∂F

∂k
= VK2

(
k − kP

)
= 〈Πzz〉

where Πzz = −
1
2

∑
i,j

zi jτ
z
i j = −

1
2

∑
i<j

zi j
(
τ zi j − τ

z
ji

)
,

τ zi j being the z-component of the torque on i due to j , and zi j = zi − zj as usual. �erefore,
two (or more) simulations measuring 〈Πzz〉 at di�erent values of k are su�cient to
determine both K2 and kP. �is, and related, methods are discussed by Allen and Masters
(2001) and Germano et al. (2002).



Appendix A
Computers and computer
simulation

A.1 Computer hardware
In the early days of molecular simulation, it was necessary to have access to one of a
few dedicated computing facilities, housed in national laboratories or other research
institutions. Even as computer hardware became more widespread, it was still possi-
ble to identify a hierarchy of designs: microcomputers, workstations, and mainframes;
high-performance computing facilities relied on special designs such as vector/pipeline
machines, parallel computers with custom-built interconnects, or even special-purpose
chips. �is largely changed with the development of personal computers, and the Internet,
since when the technology has spread through the workplace, the home, and on mobile
devices. In recent years, even high-performance computers have tended to be made out of
commodity building blocks, and are used for �nancial transactions, search engines, data
storage, database management, and scienti�c computing, as well as in gaming platforms.
�e development of cloud computing has challenged the idea that the user needs to have
access to a particular computer, or even know where the computer is.

Although computer architectures may have changed dramatically, many of the under-
lying features remain the same as in the old days. �e fast processing of �oating-point
numbers lies at the heart of most scienti�c computing, and molecular simulation in par-
ticular. Moore’s Law (Moore, 1965) famously gave a rule of thumb that the number of
electronic components on an integrated circuit doubles every year (later revised to every
18–24 months). �is has e�ectively translated into an exponential growth in computer
speed over the subsequent 50 years as the scale of semiconductor fabrication has steadily
shrunk, and this indirectly leads to the growth in scienti�c research performed with
computers, as illustrated in Fig. 1.1. �e reasons for the sustained improvement are, of
course, complicated, and there is no guarantee that it will continue (Golio, 2015; Shalf
and Leland, 2015).

�e speed of access to memory is o�en a rate-limiting step, and Moore’s Law has not
helped this aspect of performance to keep pace with cpu speed. �ere is not the space in
this book to discuss this in detail but the reader should be aware of a few general principles.
Due to the relative costs of fast-access and slow-access memory, it is generally organized
into a hierarchy of memory caches, the fastest and smallest of which is physically closest
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to the processing unit. �e design relies on the principle of locality: if a process uses a
given memory location, it is assumed that it is very likely to require other nearby memory
locations in the future. �erefore, program e�ciency is improved by fetching a contiguous
chunk of memory at once, and storing it in a cache line for subsequent fast access. �is is
the reason why the order of loop indices, when accessing elements of multidimensional
arrays consecutively, is important. An extension of the idea is the vector or pipeline
processor whereby successive low-level operations are conducted on data which are
passed from one processing element to the next, rather like a factory production line: this
also relies on organizing the data into a contiguous chunk.

High performance nowadays cannot be achieved without using a parallel architecture
in which many processors work on the same problem (see Chapter 7). For parallel com-
puters, an important question is whether the processors share memory between them, or
have the memory distributed amongst them so that each processor only accesses its own.
For shared-memory machines, the processors may have to compete for access to the mem-
ory, and this will a�ect program e�ciency. Worse than this is the possibility of di�erent
processors writing to the same memory locations, especially through the intermediate
levels of cache, as this may lead to erroneous results. For distributed-memory machines,
the speed of communications between processors is a key factor determining e�ciency.
�ese architectures also have to organize their communications so as to avoid ‘deadlock’,
which is when two or more processors are each waiting for the other to complete its own
activity before starting their own.

At the time of writing, most high-performance computers typically employ a hybrid
architecture: an internal network connects a set of compute nodes, each carrying its
own memory, which is accessed by a set of cores belonging to the node. �ere might be
hundreds or thousands of nodes, and the number of cores per node varies from just a few,
to a few tens, at present. In recent years there has been increased use of processors based
on gpus, which can be thought of as extremely parallel nodes containing thousands of
cores. �ese usually require programming in a special-purpose language, and memory
management is a critical issue.

A.2 Programming languages
With such a variety of computer architectures available it can be challenging to write a
portable simulation program, especially one which takes advantage of parallel architec-
tures. Nonetheless, several standard packages do this, as mentioned in Chapter 7, where
we try to give a �avour of the kinds of algorithms that are adopted. A slightly di�erent
issue is the choice of computer language. �is is in�uenced more by stylistic preferences,
especially towards one or another programming paradigm: usually a choice between an
object-oriented approach and a procedural approach. Most molecular simulation pro-
grams are wri�en in one of four languages: Fortran, C, C++, and Python. �e �rst two of
these are procedural, based around subroutine and function calls which take in data and
return results. In procedural languages, a modular approach to any large programming
task is recommended: this isolates the e�ects of any routine to its own local variables,
explicitly interacting with the calling routine through a list of arguments and function
return values. �e la�er two languages are object-oriented, based on the concept of objects
which encapsulate both the data structures and the procedures, usually called methods,
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that act on them. �is allows one to build steadily more complicated objects out of simpler
ones, and it is tempting to associate real-world objects (such as molecules) with digital
counterparts.

Both procedural and object-oriented paradigms are intended to lead to code which is
reusable and easy to maintain. In this book we have decided to give examples entirely
using the procedural approach, and Fortran allows us to do this in a very simple and
clear way. Actually, in its recent incarnations, Fortran also supports object-oriented
programming, but we have decided not to follow that route here. For examples of object-
oriented approaches to molecular simulations see Hinsen (2000), Halverson et al. (2013),
and Schultz and Ko�e (2015).

We also supply Python versions of some of the codes online, making extensive use of
the NumPy and SciPy libraries to handle arrays and carry out numerical processing. �e
aim is to make these examples more accessible to those without a Fortran background.

A.3 Fortran programming considerations
�roughout this book, and in the online code

http://www.oup.co.uk/companion/allen tildesley

we use Fortran conforming to a relatively modern standard (2008). �is has some ad-
vantages: a built-in syntax for array operations, a straightforward approach to modular
programming, and a basic simplicity. It is also a compiled language, which means that
it is quite e�cient, and widely used, so it is easy to �nd compilers which are optimized
for di�erent machine architectures. �e common tools for parallelizing scienti�c codes
(openmp and mpi) are compatible with Fortran as well as C. We hope that those who are
used to other program languages will �nd li�le di�culty in understanding these examples
(or the supplied Python alternatives); also we point out the provisions, in current Fortran
standards, for interoperability with C codes. Many of the design decisions in the examples
have been taken with the intention of making the code unclu�ered and easy to follow.
We emphasize that all the so�ware accompanying this book is intended for illustrative
purposes only, and we make no claim of �tness for any purpose, including research
applications. �e so�ware is distributed without any warranty, and the authors disclaim
any liability associated with its use.

For those unfamiliar with Fortran here are a few notes that may help understand
the example codes. Fortran supports multidimensional arrays, with an index notation
such as r(k,i) for particle positions where k might represent the Cartesian coordinate,
taking values 1, 2, 3, for x , y , z, and i is the particle number, taking values between 1
and N . Variable declarations, including arrays, are given at the start of any program or
subprogram, as follows:

REAL , DIMENSION(3,n) :: r

Note that Fortran indices begin, by default, at 1, in contrast to C where the numbering
begins at 0. However, the lower limit may also be speci�ed explicitly, so a quaternion, for
instance, with components (q0,q1,q2,q3), might be declared q(0:3). Array slices may be
accessed using a notation such as r(:,i:j) which selects all the Cartesian coordinates of
those particles whose indices lie in the range i . . . j inclusive. An extension of the notation,
r(:,i:j:2), introduces a stride of 2, that is, particles with indices i , i + 2, etc. are selected.
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Code A.1 Utility modules
�ese �les are provided online. �ey contain a range of routines falling broadly into
the following categories:

1. Routines to handle the input and output of con�gurations, in
config_io_module.f90.

2. Routines to handle the quantities that we wish to average in a simulation, in
averages_module.f90.

3. Routines to generate random numbers, including the Metropolis function, other
mathematical quantities, translational and orientational order parameters, in
maths_module.f90.

! config_io_module.f90
! Routines for atomic/molecular configuration I/O
MODULE config_io_module

! averages_module.f90
! Calculation of run averages with output to output_unit
MODULE averages_module

! maths_module.f90
! routines for maths , random numbers , order parameters
MODULE maths_module

Finally, an entire array may be referenced by r(:,:) or, most simply, by r. We use this
notation extensively in our example programs, in statements such as r=r+v*dt and it
matches the mathematical notation used in the text, where r represents the entire set of
coordinate vectors. Note that when an array such as v is multiplied by a scalar such as
dt, every element of the array is multiplied by the same number. An element-by-element
division of arrays, such as r(:,i)/box(:) is allowed, provided the dimensions match
(here, they are both equal to 3).

We make extensive use of Fortran modules in our examples. A module contains
entities, that is, data and procedures (functions and subroutines), and there is precise
control over which entity identi�ers within the module are accessible outside it (PUBLIC),
and which are not (PRIVATE). In addition, the entities may be PROTECTED against being
changed outside the module. �e USE statement appears at the start of programs and
subprograms wishing to access the contents of a module; although this is optional, we
usually give an explicit list, following the word ONLY, of the data and procedures that are
actually required. Modules are useful for storing reusable pieces of code, that is, e�ectively
libraries of routines. �ree ‘utility’ modules are described in Code A.1. Almost every
online example program uses routines from some or all of these modules. We also use
modules having the same name, stored in di�erent �les, as a convenient way to provide
compatible alternative versions of routines: for instance, force routines with and without
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neighbour lists. Partly for this reason (as will be discussed shortly) each program is built
in its own directory.

For simplicity, we make no use of pointers in our examples, even in Code 3.7 which
handles lists of upcoming collisions, and in Codes 5.2–5.4, which illustrate force and
energy routines using linked lists. It is quite possible to reformulate the algorithms so as
to use standard computing data structures in which pointers play a natural role.

Most computers now are 64-bit (8 bytes), which means that �oating-point variables
should have su�cient precision for most of the purposes of this book. Particular areas
where this is important are in molecular dynamics algorithms, and in the use of accumu-
lators for run-averages, where loss of precision may have unintended consequences. �e
issue is less critical for Monte Carlo algorithms. However, some care needs to be taken in
the source code. For historical reasons, the default precision of REAL variables in many
compilers corresponds to 32 bits (4 bytes) rather than 64. For this reason, it is common to
declare the KIND of variables explicitly using statements such as

INTEGER , PARAMETER :: sp = SELECTED_REAL_KIND (6, 37)
INTEGER , PARAMETER :: dp = SELECTED_REAL_KIND (15, 307)

where the �rst argument of SELECTED_REAL_KIND is the minimum number of digits of
decimal precision and the second argument is the minimum exponent range. Alternatively,
Fortran 2008 provides prede�ned constants, which may be used in a similar way

USE , INTRINSIC :: iso_fortran_env
INTEGER , PARAMETER :: sp = REAL32
INTEGER , PARAMETER :: dp = REAL64

�ese statements are typically placed in a MODULE which may be used throughout the
program, to provide these KIND variables in statements such as

REAL(sp) :: x
REAL(dp) :: y

declaring x as a ‘single precision’ (i.e. 32-bit-equivalent) �oating-point variable, and y as
a ‘double precision’ (i.e. 64-bit-equivalent) one.

In the book, and in the online codes, for simplicity, we do not do this. Instead, we
assume that a compiler option such as -fdefault-real-8 has been used to de�ne the
default REAL variables as corresponding to 8 bytes. �is should be borne in mind when
using the codes. �is compiler option is selected in the supplied SConstruct �le, which
uses scons to compile and build the examples. �e statements near the start of this �le,
de�ning these options, and the locations of various libraries are the most likely ones that
will need changing to suit a given computing platform.

�e scons approach is not the only way to build the codes; one could use make, or
any one of innumerable alternative utilities, or simply give the compilation statement
on the command line. For each individual program, there are very few dependencies and
the process should be simple. �e SConstruct �le itemizes all the required source �les
in each case. It should be noted that each program is built in its own subdirectory, into
which the source �les are copied at the start of the process. �is is the cleanest way of
avoiding con�icts, especially between the names of intermediate module �les which are
produced by the compiler. It is also possible, in principle, to use an integrated development
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environment (ide) which combines the essential functions of source code editing, building,
and debugging.

�e Python versions of the online examples generally have �le names derived from
the corresponding Fortran codes, and we have tried to keep to the same general modular
structure. �ey do not require compiling. �ey do, however, rely on reasonably up-to-
date installations of Python and the numeric and scienti�c computing libraries NumPy
and SciPy, available from www.scipy.org and elsewhere. �e user should be aware that
these libraries are regularly updated, so there is always the risk of incompatibility with a
particular version.

A full list of codes appears at the end of the book.



Appendix B
Reduced units

B.1 Reduced units
For systems consisting of just one type of molecule, it is sensible to use the mass of the
molecule as a fundamental unit, that is, setmi = 1. As a consequence, the particle momenta
pi and velocities vi become numerically identical, as do the forces f i and accelerations,
ai . �is approach can be extended further. If the molecules interact by pair potentials
of a simple form, such as the Lennard-Jones potential (eqn (1.6)), they are completely
speci�ed by a few parameters such as ϵ and σ ; then further fundamental units of energy,
length, etc. may be de�ned. From these de�nitions, units of other quantities (pressure,
time, momentum, etc.) follow directly. Static and dynamic properties of the Lennard-Jones
system are invariably quoted in reduced units

density ρ∗ = ρσ 3 (B.1a)
temperature T ∗ = kBT /ϵ (B.1b)
energy E∗ = E/ϵ (B.1c)
pressure P∗ = Pσ 3/ϵ (B.1d)
time t∗ = (ϵ/mσ 2)1/2t (B.1e)
force f∗ = fσ/ϵ (B.1f)
torque τ ∗ = τ/ϵ (B.1g)
surface tension γ∗ = γσ 2/ϵ (B.1h)

and so on. �e reduced thermodynamic variables determine the state point or, to be
precise, a set of corresponding states with closely related properties. �ite generally,
if the potential takes the form v(r ) = ϵ f (r/σ ), where f is an arbitrary function, there
is a principle of corresponding states which applies to thermodynamic, structural, and
dynamic properties (Helfand and Rice, 1960). �us, the Lennard-Jones potential may
be used to �t the equation of state for a large number of systems (Rahman, 1964; Mc-
Donald, 1972). For the even simpler so�-sphere potential of eqn (1.9), a single reduced
variable(ρσ 3) (ϵ/kBT )

3/ν de�nes the excess (i.e. non-ideal) properties (see e.g. Hoover
et al., 1970; 1971). In the limit of the hard-sphere potential (formally corresponding to
ν → ∞) the temperature becomes a totally redundant variable so far as static quantities
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are concerned, and enters the dynamic properties only through the de�nition of a reduced
time

t∗ = (kBT /mσ
2)1/2t . (B.2)

�e use of reduced units avoids the possible embarrassment of conducting essentially
duplicate simulations. �ere are also technical advantages in the use of reduced units.
If parameters such as ϵ and σ have been given a value of unity, they need not appear
in a computer simulation program at all; consequently some time will be saved in the
calculation of potential energies, forces, etc. Of course, the program then becomes unique
to the particular functional form of the chosen potential. For complicated potentials,
with many adjustable parameters, or in the case of mixtures of species, there is only a
slight technical advantage to be gained by choosing one particular energy parameter,
one characteristic length, and one molecular mass, to be unity. In this case, it is common
practice to de�ne these units in such a way that the quantities appearing in the program
take numerical values that are not too extreme (for instance, lying between 10−6 and 106).

In si units, Coulomb’s law is

v
qq = qiqj/4πϵ0ri j (B.3)

where qi and qj are charges in Coulombs, ri j is the separation in metres, and

ϵ0 = 8.8542 × 10−12 C2 N−1 m−2

is the permi�ivity of free space. In reduced units based on the Lennard-Jones energy and
length parameters, ϵ and σ respectively, the charge, dipole, and quadrupole are

q∗ =
q

√
4πϵ0σϵ

, µ∗ =
µ√

4πϵ0σ 3ϵ
, Q∗ =

Q√
4πϵ0σ 5ϵ

. (B.4)

Many older papers give the moments in electrostatic units (e.s.u.). Useful conversion
factors are

charge: 1 C = 2.9979 × 109 e.s.u.
dipole: 1 C m = 2.9979 × 1011 e.s.u. cm
quadrupole: 1 C m2 = 2.9979 × 1013 e.s.u. cm2.

It is convenient to use an alternative de�nition of the unit of charge, whether or not other
reduced units are employed. In most of this book eqn (B.3) is used without the factor 4πϵ0.
In this case the charge q is divided by (4πϵ0)

1/2 and has units of m N1/2.
Maxwell’s equations describe the classical evolution of the combined electric (E) and

magnetic (B) �elds in a microscopic system. In si units these equations are

∇ · E = ρq/ϵ0 (B.5a)

∇ × E = −
∂B
∂t

(B.5b)

∇ · B = 0 (B.5c)

∇ × B = µ0

(
j + ϵ0

∂B
∂t

)
(B.5d)
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Table B.1 Some atomic units and their conversion to si units.

Dimension Name Symbol Expression si equivalent
length bohr a0 4πϵ0~

2/(mee
2) 5.291 772 × 10−11 m

energy hartree Ha or Eh (mee )
4/(4πϵ0~)

2 4.359 745 × 10−18 J
time ~/Ha 2.418 884 × 10−17 s
dipole ea0 8.478 354 × 10−30 C m
quadrupole ea0

2 4.486 551 × 10−40 C m2

where ρq and j are the charge and electrical current density, respectively, and

µ0 = 4π × 10−7 T m A−1

is the permeability of free space. �ese equations can also be wri�en with 4πϵ0 = 1. In
this case, only eqns (B.5a) and (B.5d) are modi�ed to give

∇ · E = 4πρq (B.6a)

∇ × B =
4πj
c2 +

1
c2
∂B
∂t

(B.6b)

where we have used the identity c2 = 1/µ0ϵ0. Eqn (B.6a), Poisson’s equation, is used
extensively in the discussion of pppm methods in Section 6.3. For the discussion of memd
in Section 6.8, it is more convenient to use the full si version, eqn (B.5).

In discussing the electronic calculations in Chapter 13, and the electrostatic moments
in Chapter 1, atomic units (a.u.) are used in a number of places. �ese units are de�ned
in terms of the electron rest mass, me, the elementary charge, e , and the action, ~. �e
de�nitions of the relevant quantities and the corresponding si values are given in Table B.1.
�e energy unit of a rydberg (Ry) is frequently used for the orbital or density cuto� in

electronic structure calculations; 1Ha = 2Ry.
With a mesoscale approach such as the dpd method described in Section 12.4, it is

convenient to use a set of units in which the mass, mi , of the dpd particle is set to 1.0,
the distances are reduced with respect to rc, the cuto� in the conservative force, and the
energies are scaled by se�ing kBT = 1.0. �is choice leads to a simple form for the code
when considering a one-component �uid (see Code 12.3). In the main, the connection
between the reduced and real variables is the same as that de�ned in eqn (B.1) with ϵ
replaced by kBT and σ by rc. However, the connection between the dpd units and the real
units is not as simple when trying to model a real system. First, there is not a one-to-one
correspondence between the particles: a single dpd bead represents several molecules.
Second, as discussed in Section 12.7.4, for any coarse-grained model, it is not possible to
reproduce the real thermodynamics in a consistent way.

We illustrate the connection between the simulated quantities calculated in reduced
units and the experimental values in Table B.2 for a dpd simulation of the gas–liquid
interface of water. In this study, the model is a density-dependent generalization of the
standard dpd force, where the conservative force depends on the local density (Ghou�
and Malfreyt, 2011). A dpd bead representing water contains Nm=3 water molecules. �e
simulations are performed at 298 K. A number of experimental properties of water at



490 Reduced units

Table B.2 �e conversion from dpd to real units for a simple model of water. ρM
is the mass density of liquid water, M is the molar mass, and Nm is the number
of water molecules represented by a single bead. Reprinted with permission
from A. Ghou� and P. Malfreyt, Phys. Rev. E, 83, 051601 (2011). Copyright (2011)
by the American Physical Society.

dpd simulation Conversion formula Experiment
Parameter Value

r ∗c 1 rc = (ρ∗Nmv)
1/3 8.52 Å

ρ∗ 6.88 ρM = ρ
∗Nm (M/NA)/r

3
c 997 kg m−3

P∗ 0.1 P = P∗kBT /r
3
c 0.67 MPa

γ ∗ 12.4 γ = γ ∗kBT /r
2
c 70.3 mN m−1

β−1∗
T 48.0 β−1

T = (ρkBT /Nm)β
−1∗
T 2.2 GPa

δt∗ 0.01 δt = δt∗ (NmD
∗
beadr

2
c /Dwater) 6.8 ps

this temperature are required to make the conversion: the isothermal compressibility,
βT = 4.55 × 10−10 Pa−1, or its inverse β−1

T = 2.2 GPa; the volume of one water molecule,
v = 30 Å3

= 3 × 10−29 m3, the reciprocal of which is the number density of water molecules
ρ = 3.336 × 1028 m−3; the molar mass, M = 18 × 10−3 kg mol−1 and hence the molecular
mass M/NA = 2.989 × 10−26 kg; and the di�usion coe�cient of the water molecule,
Dwater = 2.43 × 10−9 m2 s−1. Because the numbers of particles in the simulated and real
systems are di�erent, it is necessary to match the mass densities ρM rather than the number
densities.

�e conversion factor for the timestep can be determined by calculating the di�usion
coe�cient of the water bead in the dpd simulation (Groot and Rabone, 2001). D∗bead is
determined from the slope of 〈|ri (t ) − ri (0) |2〉/6 as a function of t . �e conversion factor
is given in the �nal line of Table B.2. Note, the value of the timestep scales linearly with
the number of molecules in the dpd bead.

For a standard dpd �uid, it is possible to estimate the parameter a, which governs the
size of the conservative force (see eqn (12.15)), by appeal to experiment. �is is achieved
by matching the reciprocal of the isothermal compressibility, β−1∗

T , calculated from the
simulated equation of state (Groot and Warren, 1997) with the experimental value of β−1

T
for the �uid. For the density-dependent generalization of dpd, it is possible to �t the two
parameters for the conservative force, a and b, by matching the simulation values of the
experimental isothermal compressibility and the experimental surface tension (Ghou�
and Malfreyt, 2011).



Appendix C
Calculation of forces and
torques

C.1 Introduction
�e correct calculation of the forces and torques resulting from a given potential model
is essential in the construction of a properly functioning molecular dynamics program.
In this appendix, we consider forces and, where appropriate, torques, arising from �ve
complicated potential models:
(a) a polymer chain with constrained bond lengths, but realistic bond angle-bending

and torsional potentials;
(b) a molecular �uid of linear molecules, where the permanent electrostatic interactions

are handled using a multipole expansion;
(c) a �uid of atoms with three-body interactions modelled using the Axilrod–Teller

triple-dipole potential;
(d) a system of ions, where the Coulomb interactions are handled using the Ewald sum;
(e) the Gay–Berne potential for nonspherical rigid bodies.

�e formulae given here will be useful to anyone constructing simulation programs
containing these potential models. In addition, the methods of derivation may assist the
reader in handling a range of more complicated potentials. In most cases, for a given
potential, the force expressions would be derived with the aid of a symbolic algebra
package, and then converted directly into computer code, usually with some purely
cosmetic editing to aid readability. �en, they should be numerically checked; we return
to this at the end of the appendix.

C.2 �e polymer chain
We consider a simple model of a polymer, consisting of na atoms linked by rigid bonds.
�e angle between successive bonds, θa , and the torsional angle ϕa de�ned by three
successive bonds, are both allowed to vary. �e way in which the atoms and angles are
labelled is shown in Fig. C.1 (see also Fig. 1.10). If the bond vector between atoms a − 1

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
© M. P. Allen and D. J. Tildesley 2017. Published in 2017 by Oxford University Press.



492 Calculation of forces and torques

ra−4

ra−3

ra−2

ra−1

ra

ra+1
da−3

da−2

da−1

da
da+1

θa−2

θa−1

θa

θa+1

ϕa−1 ϕa

ϕa+1

Fig. C.1 A polymer chain. �e bending angle θa is the angle between the bond vectors da and
da−1. �e torsional angle ϕa is the angle between the plane de�ned by da and da−1 and that de�ned
by da−1 and da−2.

and a is da = ra − ra−1, then θa may be calculated from

cosθa =
da · da−1
|da | |da−1 |

(C.1)

and ϕa may be obtained from

cosϕa = −
(da × da−1) · (da−1 × da−2)

|da × da−1 | |da−1 × da−2 |
. (C.2)

Actually, to completely determine ϕa (including its sign) one should also calculate sinϕa
from the vectors appearing in eqn (C.2), or use a formula involving the ATAN2 function. In
the following discussion, we assume that the value of cosϕa will be su�cient, but this
depends on the precise form of the torsional potential.

Associated with each θa and ϕa will be potential terms of the kind appearing in
eqn (1.37). �e precise forms are not necessary for the following discussion, however; we
simply assume that they may be wri�en as functions vθa (cosθa ) and v

ϕ
a (cosϕa ) and that

derivatives with respect to these cosines may be wri�en down. �e key quantities to be
calculated, then, are the forces on each atom due to these potentials (as well as contri-
butions from other sources such as non-bonded interactions). Following the approach
of Pear and Weiner (1979), we use the chain rule to calculate these forces. �e position
coordinate of atom a will appear in the bending potentials for angles θa , θa+1 and θa+2,
and also in the torsional potentials for angles ϕa , ϕa+1, ϕa+2 and ϕa+3. Hence there will
be contributions to the force on atom a from all these sources:

fa = −
a+2∑
c=a

∇a v
θ
c (cosθc ) −

a+3∑
c=a

∇a v
ϕ
c (cosϕc )

= −

a+2∑
c=a

(
dvθc (cosθc )

d cosθc

)
∇a cosθc −

a+3∑
c=a

*
,

dvϕc (cosϕc )
d cosϕc

+
-
∇a cosϕc . (C.3)

Here, and henceforth, we use ∇a as an abbreviation for ∇ra . Conversely, a bending term
v
θ
a (cosθa ) will produce forces on atoms a, a−1, and a−2, while a torsional term v

ϕ
a (cosϕa )
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will produce forces on atoms a, a − 1, a − 2, and a − 3, with the labelling of Fig. C.1. In the
following we assume that we wish to consider the potential term by term, and calculate
the gradients of the cosine functions that will help us to do it.

�e formulae are simpli�ed if we de�ne

Cab = Cba = da · db (C.4)
Dab = Dba = CaaCbb −C

2
ab (C.5)

in terms of which the cosines may be expressed

cosθa = Caa−1
(
CaaCa−1a−1

)−1/2
(C.6)

cosϕa = −
(
Caa−1Ca−1a−2 −Caa−2Ca−1a−1

) (
Daa−1Da−1a−2

)−1/2
. (C.7)

Using the vector identity

∇(A · B) = (B · ∇)A + (A · ∇)B + B × (∇ × A) + A × (∇ × B) (C.8)

in which the last two terms vanish for the vectors involved here, it is possible to derive a
simple set of rules governing the vector di�erentiation of the C and D functions:

∇aCaa = 2da
∇aCaa+1 = da+1 − da
∇aCa+1a+1 = −2da+1

∇aCab = db (b , a,a + 1)
∇aCa+1b = −db (b , a,a + 1)
∇aCbc = 0 (b, c , a,a + 1)

and

∇aDaa+1 = 2Ca+1a+1da − 2Caada+1 − 2Caa+1da+1 + 2Caa+1da
∇aDab = 2Cbbda − 2Cabdb (b , a,a + 1)
∇aDa+1b = −2Cbbda+1 + 2Ca+1bdb (b , a,a + 1)
∇aDbc = 0 (b, c , a,a + 1).

Of course, the same rules apply on consistently replacing a → a − 1, a → a − 2, etc. Using
these rules on eqn (C.6) gives

∇a cosθa = −(CaaCa−1a−1)
−1/2

[
(Caa−1/Caa )da − da−1

]

∇a−1 cosθa = (CaaCa−1a−1)
−1/2

[
(Caa−1/Caa )da − (Caa−1/Ca−1a−1)da−1 + da − da−1

]

∇a−2 cosθa = (CaaCa−1a−1)
−1/2

[
(Caa−1/Ca−1a−1)da−1 − da

]
.

�ese equations, together with the derivative (dvθa (cosθa )/d cosθa ), are used to compute
the contributions of the term v

θ
a (cosθa ) to the forces fa , fa−1, and fa−2.
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Applying the rules to eqn (C.7) gives

∇a cosϕa = −(Daa−1Da−1a−2)
−1/2

[
Ca−1a−2da−1 −Ca−1a−1da−2

− D−1
aa−1 (Caa−1Ca−1a−2 −Caa−2Ca−1a−1) (Ca−1a−1da −Caa−1da−1)

]
,

∇a−1 cosϕa = −(Daa−1Da−1a−2)
−1/2

[
Ca−1a−2da −Ca−1a−2da−1

+Caa−1da−2 +Ca−1a−1da−2 − 2Caa−2da−1

− D−1
a−1a−2 (Caa−1Ca−1a−2 −Caa−2Ca−1a−1) (Ca−2a−2da−1 −Ca−1a−2da−2)

− D−1
aa−1 (Caa−1Ca−1a−2 −Caa−2Ca−1a−1)

× (Caada−1 −Ca−1a−1da −Caa−1da +Caa−1da−1)
]
,

∇a−2 cosϕa = −(Daa−1Da−1a−2)
−1/2

[
−Ca−1a−2da +Caa−1da−1

−Caa−1da−2 −Ca−1a−1da + 2Caa−2da−1

− D−1
a−1a−2 (Caa−1Ca−1a−2 −Caa−2Ca−1a−1)

× (Ca−1a−1da−2 −Ca−2a−2da−1 −Ca−1a−2da−1 +Ca−1a−2da−2)

− D−1
aa−1 (Caa−1Ca−1a−2 −Caa−2Ca−1a−1)

× (−Caada−1 +Caa−1da )
]
,

∇a−3 cosϕa = −(Daa−1Da−1a−2)
−1/2

[
−Caa−1da−1 +Ca−1a−1da

− D−1
a−1a−2 (Caa−1Ca−1a−2 −Caa−2Ca−1a−1)

× (−Ca−1a−1da−2 +Ca−1a−2da−1)
]
.

�ese equations, together with the derivative (dvϕa (cosϕa )/d cosϕa ), are used to compute
the contributions of the term v

ϕ
a (cosϕa ) to the forces fa , fa−1, fa−2, and fa−3. When these

expressions are used in a computer program, they may be simpli�ed by identifying various
common factors, as we show in the examples of Section C.7.

C.3 �e molecular �uid with multipoles
�e methods for calculating the force and torque in an interaction site model are described
in Chapters 1 and 5. Here, we discuss the forces and torques which arise from the per-
manent electrostatic interactions within the framework of the multipole expansion. For
simplicity, we take the example of linear (i.e. axially symmetric) molecules, as shown in
Fig. C.2. �e centres of the molecules are separated by a vector ri j = ri − rj , and we de�ne
the unit vector r̂i j = ri j/ri j . θi and θ j are the angles between ri j and the unit vectors
directed along the molecular axes ei and ej , while ϕi j is the angle between the plane
containing ei and ri j and that containing ej and ri j :

cosθi ≡ ci =
ei · ri j
ri j

= ei · r̂i j , cosθ j ≡ c j =
ej · ri j
ri j

= ej · r̂i j ,

cosϕi j =
(ei × ri j ) · (ej × ri j )
|ei × ri j | |ej × ri j |

.
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rj

ri

ej

ei

ri j

θi

θ j
ϕi j

Fig. C.2 �e relative orientation of two linear molecules.

It is convenient to de�ne the angle γi j between the two axis vectors

cosγi j ≡ ci j = ei · ej = cosθi cosθ j + sinθi sinθ j cosϕi j .

If linear molecules i and j have dipole moments µi , µ j , and quadrupole moments Qi , Q j
respectively, then the electrostatic energy is (Gray and Gubbins, 1984, Chapter 2):

vi j = (µiµ j/r
3
i j )

(
ci j − 3cic j

)
+ 3

2 (µiQ j/r
4
i j )

(
ci (1 − 5c2

j ) + 2c jci j
)

− 3
2 (Qiµ j/r

4
i j )

(
c j (1 − 5c2

i ) + 2cici j
)

+ 3
4 (QiQ j/r

5
i j )

(
1 − 5c2

i − 5c2
j + 2c2

i j + 35c2
i c

2
j − 20cic jci j

)
.

Using the chain rule

∇ri j vi j =

(
∂vi j

∂ri j

)
∇ri j ri j +

(
∂vi j

∂ci

)
∇ri jci +

(
∂vi j

∂c j

)
∇ri jc j +

(
∂vi j

∂ci j

)
∇ri jci j .

�e angle γi j is independent of ri j , so the last term vanishes. From the de�nition of ci we
obtain

∇ri jci =
ei
ri j
−

ci

r 2
i j
ri j = r−1

i j

(
ei − ci r̂i j

)
and a similar result for ∇ri jc j . Combining these expressions gives

f i j = −
(
∂vi j

∂ri j

)
r̂i j −

1
ri j

(
∂vi j

∂ci

) (
ei − ci r̂i j

)
−

1
ri j

(
∂vi j

∂c j

) (
ej − c j r̂i j

)
. (C.9)

Now we turn to the evaluation of the torque on molecule i due to molecule j , which is
de�ned by

τi j = −ei × ∇ei vi j .

We should only consider the component of the gradient tangential to the vector ei , but in
fact any non-physical radial component will disappear on taking the vector product, and
so we can ignore this complication. Again applying the chain rule

∇ei vi j =

(
∂vi j

∂ri j

)
∇ei ri j +

(
∂vi j

∂ci

)
∇eici +

(
∂vi j

∂c j

)
∇eic j +

(
∂vi j

∂ci j

)
∇eici j .
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�e �rst and third terms vanish, and we obtain �nally

τi j = −ei ×
[(
∂vi j

∂ci

)
r̂i j +

(
∂vi j

∂ci j

)
ej

]
. (C.10a)

Note that the force and torque on molecule j due to i can be obtained by interchanging the
labels and changing the signs of ci and c j . From eqn (C.9) we see that f i j = −f ji . Applying
this prescription to (C.10a) gives

τji = −ej ×
[(
∂vi j

∂c j

)
r̂i j +

(
∂vi j

∂ci j

)
ei

]
, (C.10b)

and we note that τi j , −τji . Instead,

τi j + τji + ri j × f i j = 0,

which satis�es the requirement that angular momentum is locally conserved.
As an example of the use of these equations, the force and torques between a pair of

dipoles are

f i j = −f ji = 3
µiµ j

r 4
i j

(
(ci j − 5cic j )r̂i j + c jei + ciej

)
, (C.11a)

τi j = −
µiµ j

r 3
i j

ei ×
(
ej − 3c j r̂i j

)
, (C.11b)

τji = −
µiµ j

r 3
i j

ej ×
(
ei − 3ci r̂i j

)
. (C.11c)

�e development in this section is based on a paper by Cheung (1976). Price et al. (1984)
have given a more formal and thorough treatment, which includes the electrostatic
interactions for non-linear molecules. In both these papers, the convention employed is
ri j = rj − ri , which is opposite to that adopted in this book.

C.4 �e triple-dipole potential
In this section, we consider the interaction between triplets of atoms through a potential
of the Axilrod–Teller form

v
AT (ri , rj , rk ) = ν

1 + 3 cosθi cosθ j cosθk
r 3
i jr

3
jkr

3
ki

= ν
r 2
i jr

2
jkr

2
ki − 3CiCjCk

r 5
i jr

5
jkr

5
ki

(C.12)

where ν is a constant, and the geometry is de�ned in Fig. C.3. Here we have de�ned

Ci = rki · ri j , Cj = ri j · rjk , Ck = rjk · rki .

For acute-angled triangles, this energy term is positive, but if one of the angles is obtuse
it can become negative: thus near-linear con�gurations are slightly favoured. �e net
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ri

θi

rj

θ j

rk
θk

ri j
rjk

rki

Fig. C.3 A triplet of atoms. �e internal angles of the triangle are used in calculating the
triple-dipole potential. For maximum symmetry in the force expressions, the relative vectors
are de�ned in a cyclic fashion.

contribution in a liquid, however, is typically positive, and may amount to approximately
10 %–15 % of the total energy in, for example, argon.

�e forces are readily calculated by di�erentiation, f i = −∇ri v
AT (ri , rj , rk ), etc., and

the results are as follows.

f i =
ν

r 5
i jr

5
jkr

5
ki

[
5
(
r 2
i jr

2
jkr

2
ki − 3CiCjCk

) (
r−2
i j ri j − r

−2
ki rki

)
+ 3Ci (Ck −Cj )rjk + 3CjCk (rki − ri j ) + 2

(
r 2
i jr

2
jk rki − r

2
jkr

2
kiri j

)]
,

f j =
ν

r 5
i jr

5
jkr

5
ki

[
5
(
r 2
i jr

2
jkr

2
ki − 3CiCjCk

) (
r−2
jk rjk − r

−2
i j ri j

)
+ 3Cj (Ci −Ck )rki + 3CkCi (ri j − rjk ) + 2

(
r 2
jkr

2
kiri j − r

2
kir

2
i jrjk

)]
,

fk =
ν

r 5
i jr

5
jkr

5
ki

[
5
(
r 2
i jr

2
jkr

2
ki − 3CiCjCk

) (
r−2
ki rki − r

−2
jk rjk

)
+ 3Ck (Cj −Ci )ri j + 3CiCj (rjk − rki ) + 2

(
r 2
kir

2
i jrjk − r

2
i jr

2
jk rki

)]
,

where the last two equations may be obtained by cyclic permutation of the indices in the
�rst one. �e forces will be evaluated in a triple loop as described in Chapter 1.

C.5 Charged particles using Ewald sum
�e interaction between a set of N charges, in a periodic array of cubic boxes, each of
volumeV = L3, is given by the Ewald sum, see Chapter 6. �e potential energy, eqns (6.4)
and (6.6), is

Vqq =
1
2
∑
i

∑
j,i

qiqj
erfc(κri j )

ri j
+

2π
V

∑
k,0

Ĝ (k )ρ̂q (k)ρ̂q (−k) +
∑
i

κ
√
π
q2
i +

2π
3V

�����

∑
i

qiri
�����

2
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where Ĝ (k ) = 4π exp(−k2/4κ2)/k2, ρ̂q (k) = ∑
i qi exp(−ik · ri ), k = 2πn/L is a reciprocal

la�ice vector, and erfc(x ) is the complementary error function.
�e force on charge i is

fqqi = −∇riV
qq = qi

∑
j,i

qj

[
2
√
π
κri j exp(−κ2r 2

i j ) + erfc(κri j )
]
ri j
r 3
i j

+
qi
2V

∑
k,0

Ĝ (k )ik
[
ρ̂q (−k) exp(−ik · ri ) − ρ̂q (k) exp(+ik · ri )

]
−

4πqi
3V

∑
j

qjrj

where we have used the result d erfc(x )/dx = −2 exp(−x2)/
√
π. �e two terms in the

k-space part of the force are equivalent and can be combined to give

fqqi = qi
∑
j,i

qj

[
2
√
π
κri j exp(−κ2r 2

i j ) + erfc(κri j )
]
ri j
r 3
i j

−
qi
V

∑
k,0

Ĝ (k )k Im
(
ρ̂q (−k) exp(−ik · ri )

)
−

4πqi
3V

∑
j

qjrj

where Im(z) is the imaginary part of a complex number.

C.6 �e Gay–Berne potential
�e potential due to Gay and Berne (1981) was de�ned by eqns (1.30)–(1.32). Here we
discuss the handling of the potential cuto�, and the derivation of forces and torques.

�e most common approach to simulations using the Gay–Berne potential is to use a
spherical cuto� at ri j = rc, and shi� the potential such that it is zero at that distance. It
is not usual to apply long-range corrections to energy and pressure, partly because the
potential is o�en used to simulate liquid crystalline phases, the lower symmetry of which
would complicate the calculation somewhat. �e potential therefore takes the form

vGB (ri j , ei , ej ) − vGB (rcr̂i j , ei , ej ), (C.13)

where the orientations are represented by unit vectors ei and ej , and r̂i j = ri j/ri j is the
unit vector pointing along the line of centres. It is important to realize that the extra
potential shi� term depends on molecular orientations relative to the centre–centre vector,
and therefore it acts as an additional source of forces and torques. Also, it is important
that the cuto� distance be su�ciently large. For two particles of elongation κ, in the
end-to-end arrangement, the e�ective Lennard-Jones potential crosses the zero axis at
ri j = κσs, and the a�ractive well then extends over a further distance ∼ σs (see Fig. 1.11).
Instead of a typical Lennard-Jones value of rc = 3.0σs, an appropriate value would be
rc = (κ+2.0)σs. Early simulations of the model used a signi�cantly smaller cuto� distance
(e.g. Berardi et al. (1993), de Miguel et al. (1996), and Brown et al. (1998) all used rc = 4σs
for κ = 3) and this produces noticeably di�erent results.

�e procedure for deriving forces and torques from the potential follows closely
the approach outlined in the previous sections, especially Section C.3. We can see in
eqns (1.30)–(1.32) that vGB depends explicitly on the separation ri j , and through the



�e Gay–Berne potential 499

functions σ and ϵ , on the cosines ci = ei · r̂i j , c j = ej · r̂i j , and ci j = ei · ej . �is is the
general form of the potential considered by Price et al. (1984). Consequently, we can use
eqns (C.9) and (C.10), which simply require the derivatives of the potential with respect
to each of these four variables. �is is a straightforward, if tedious, exercise using the
chain rule (Luckhurst et al., 1990). Writing eqn (1.30) in reduced units with σs = 1,

vGB (ri j , ci , c j , ci j ) = 4ϵ (ci , c j , ci j )
[
ρ−12
i j − ρ

−6
i j

]
,

with ρi j = ri j − σ (ci , c j , ci j ) + 1.0, the derivative with respect to ri j is simply
∂vGB
∂ri j

= −24ϵ
[
2ρ−13

i j − ρ
−7
i j

]
,

while the angular derivatives take the form
∂vGB
∂ci

= 4
[
ρ−12
i j − ρ

−6
i j

] ∂ϵ
∂ci
+ 24ϵ

[
2ρ−13

i j − ρ
−7
i j

] ∂σ
∂ci

(and similarly for c j and ci j ). For the last term, eqn (1.31) becomes (in reduced units)

σ =

[
1 − χ

2

(
(ci + c j )

2

1 + χci j
+

(ci − c j )
2

1 − χci j

)]−1/2

.

De�ning coe�cients C+ = (ci + c j )/(1 + χci j ) and C− = (ci − c j )/(1 − χci j ),
∂σ

∂ci
= 1

2 χσ
3
(
C+ +C−

)
,
∂σ

∂c j
= 1

2 χσ
3
(
C+ −C−

)
,
∂σ

∂ci j
= −

(
1
2 χ

)2
σ 3

(
C2
+ −C

2
−

)
.

Similar, slightly more complicated, expressions come from di�erentiating the energy
expression ϵ of eqn (1.32).

�e forces and torques derived from the cuto� shi� term in eqn (C.13) are calculated
in the same way, but evaluated at ri j = rc, and omi�ing the term involving the derivative
with respect to ri j (the �rst term in eqn (C.9)). �e full form of all these expressions may
be found in the example code (see Section C.7).

�e Gay–Berne potential is readily generalized to the case of non-linear molecules,
in which case it represents (approximately) a biaxial ellipsoid (Berardi et al., 1995; 1998;
Cleaver et al., 1996). �e procedure just outlined is straightforwardly extended to this
case. If the orientation of molecule i is de�ned by a mutually orthogonal set of unit vectors
{eαi }, α = 1, 2, 3, and that of molecule j by a similar set, the force may be wri�en

f i j = −
∂vGB
∂ri j

r̂i j −
∑
e

∂vGB
∂(e · r̂i j )

e − (e · r̂i j )r̂i j
ri j

,

where the sum ranges over all the orientation vectors on both molecules (compare
eqn (C.9)). Similarly the torques may be expressed (compare eqns (C.10))

τi = −
3∑

α=1
eαi ×

*.
,

∂vGB
∂(eαi · r̂i j )

r̂i j +
3∑
β=1

∂vGB

∂(eαi · e
β
j )
eβj

+/
-
,

τj = −
3∑
β=1

eβj ×
*.
,

∂vGB

∂(eβj · r̂i j )
r̂i j +

3∑
α=1

∂vGB

∂(eαi · e
β
j )
eαi

+/
-
.
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Code C.1 Programs to test forces and torques
�ese �les are provided online. test_pot_atom.f90 compares forces for an
atomic system with those computed by numerical di�erentiation of the poten-
tial, while test_pot_linear.f90 performs the same task for forces and torques
for a system of linear molecules. To go with them, we supply additional �les
to show how these quantities are calculated for the potentials discussed in
this appendix: test_pot_bend.f90 (angle bending), test_pot_twist.f90 (angle
torsion), test_pot_dd.f90 (dipole–dipole), test_pot_dq.f90 (dipole–quadrupole),
test_pot_qq.f90 (quadrupole–quadrupole), test_pot_at.f90 (Axilrod–Teller), and
test_pot_gb.f90 (Gay–Berne). All of these �les take the form of a module with name
test_pot_module. Utility module routines (Appendix A) are used to generate random
positions and orientations, and perform rotations.

! test_pot_atom.f90
! Test potential , forces for atoms
PROGRAM test_pot_atom

! test_pot_linear.f90
! Test potential , forces , torques for linear molecule
PROGRAM test_pot_linear

Further discussion of the calculation of forces and torques in this kind of model may be
found elsewhere (Allen and Germano, 2006).

It is worth noting that the lammps implementation of the Gay–Berne potential uses
a di�erent approach to the interactions between two molecules (Everaers and Ejtehadi,
2003), giving a di�erent functional form of the potential, for which analytical expressions
for forces and torques have been published (Babadi et al., 2006). Although in many cases
this version is, numerically, a close match to the form discussed here, the reader should
be aware that the two potentials are not identical.

C.7 Numerically testing forces and torques
In Code C.1 we introduce some simple programs to test the analytical formulae for
forces and torques by comparing with quantities obtained directly from the potential by
numerical di�erentiation. We give examples for most of the potentials discussed earlier in
this appendix. All these codes have been wri�en with the aim of comparing easily with
the analytical expressions given in the earlier sections; some improvements in e�ciency
would normally be possible, for practical implementations.



Appendix D
Fourier transforms and series

D.1 �e Fourier transform
�e structural and dynamic results of computer simulations must o�en be transformed
between time and frequency domains or between normal space and reciprocal space. To
be compared with experiment a time correlation function C (t ) is usually transformed to
produce a spectrum Ĉ (ω)

Ĉ (ω) =

∫ ∞

−∞

dt C (t ) exp(−iωt ) ≡ F
[
C (t )

]
, (D.1a)

and the inverse transform is

C (t ) =

∫ ∞

−∞

dω
2π Ĉ (ω) exp(iωt ) ≡ F−1

[
Ĉ (ω)

]
. (D.1b)

If C (t ) is an even function of time (e.g. a classical autocorrelation function) this may be
wri�en

Ĉ (ω) = 2
∫ ∞

0
dt C (t ) cosωt , (D.2a)

and the inverse transform is

C (t ) =
1
π

∫ ∞

0
dω Ĉ (ω) cosωt . (D.2b)

It should be noted that true (i.e. quantum-mechanical) autocorrelation functions are not
even in time, obeying instead the detailed balance condition (see Section 2.9). �e time-
reversal symmetry of classical cross-correlation functions is discussed in many places
(e.g. Berne and Harp, 1970).

A variety of combinations of numerical prefactors may appear in these de�nitions.
Also, it is sometimes convenient to use, instead of ω the variable ν = ω/2π, when the
de�nitions become symmetrical. We shall stick to ω, reserving ν for use as a discrete
frequency index in the following section.

In practice, the time correlation function is known to some �nite maximum time, tmax,
which is determined by the method of analysis and the simulation run time. �is value

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
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of tmax replaces the upper limit in eqn (D.2a). Useful formulae may be derived from the
orthogonality relations∫ ∞

−∞

dω
2π exp(iωt ) exp(−iωt ′) = δ (t − t ′) (D.3a)∫ ∞

0
dω cosωt cosωt ′ = 1

2πδ (t − t
′). (D.3b)

�e convolution/correlation theorem states that if

C (t ) =

∫ ∞

−∞

dt ′A(t ′)B (t − t ′) ≡
(
A? B

)
(t ) (D.4)

then
Ĉ (ω) = Â(ω) B̂ (ω) (D.5)

while if
C (t ) =

∫ ∞

−∞

dt ′A(t ′)B (t + t ′) (D.6)

then
Ĉ (ω) = Â(−ω) B̂ (ω) = Â∗ (ω) B̂ (ω) (D.7)

where ∗ denotes the complex conjugate, and we take A(t ) and B (t ) to be real. With these
de�nitions Parseval’s theorem is∫ ∞

−∞

dt ���C (t )
���
2
=

∫ ∞

−∞

dω
2π

���Ĉ (ω)
���
2
.

D.2 Spatial Fourier transforms and series
�e spatial analogue of eqns (D.1a) and (D.2b) is

f̂ (k ) =

∫ ∞

−∞

dx f (x ) exp(−ikx ) ≡ F
[
f (x )

]
, (D.8a)

f (x ) =

∫ ∞

−∞

dk
2π f̂ (k ) exp(ikx ) ≡ F−1

[
f̂ (k )

]
, (D.8b)

in one dimension, and

f̂ (k) =
∫∫∫

dr f (r) exp(−ik · r) ≡ F
[
f (r)

]
, (D.9a)

f (r) =
∫∫∫ dk

(2π)3 f̂ (k) exp(ik · r) ≡ F−1
[
f̂ (k)

]
, (D.9b)

in three dimensions. Usually we replace the triple integral notation by a single one for
brevity. Structural quantities such as д(r ) may be related to quantities observed in (say)
sca�ering experiments by a three-dimensional Fourier transform, such as

S (k ) − 1 =
∫∫∫

dr exp(−ik · r) ρ д(r ). (D.10)
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�ese may be treated in a manner analogous to the one-dimensional case. In practice,
when the functions depend only upon the magnitude of their arguments, it is sensible to
integrate over the angular variables to obtain an equation such as

S (k ) − 1 = 4π
∫ ∞

0
dr r 2 sinkr

kr
ρ д(r ) (D.11)

with the inverse transform being

ρ д(r ) =
1

2π2

∫ ∞

0
dk k2 sinkr

kr
(S (k ) − 1). (D.12)

In a periodic simulation box, the Fourier transform becomes a Fourier series, which
we usually write

f (x ) =
1
L

∑
n

f̂ (k ) exp(ikx ), k = n
2π
L

(D.13a)

f̂ (k ) =

∫ L/2

−L/2
dx f (x ) exp(−ikx ), (D.13b)

in one dimension, and

f (r) =
1
V

∑
n

f̂ (k) exp(ik · r), k = n
2π
L
= (nx ,ny ,nz )

2π
L

(D.14a)

f̂ (k) =
∫∫∫

V
dr f (r) exp(−ik · r), (D.14b)

in three dimensions, where we have assumed a cubic box with V = L3. �e sums are
over the discrete wavenumbers or wavevectors that are commensurate with the box;
sometimes these are wri�en as ∑

k rather than ∑
n, with this understanding. In some

contexts, it is convenient to arrange the prefactors di�erently; the current arrangement
means that, as L → ∞, eqn (D.13b) becomes eqn (D.8a), and the sum of eqn (D.13a) goes
over smoothly to the integral of eqn (D.8b)

1
L

∑
n

=
∑
n

∆k

2π →
∫ dk

2π , with ∆k = 2π/L

and similarly in three dimensions. Parseval’s theorem may be wri�en∫ L/2

−L/2
dx ���f (x )

���
2
=

1
L

∑
n

��� f̂ (k )
���
2
, or

∫
V

dr ���f (r)
���
2
=

1
V

∑
n

��� f̂ (k)
���
2
.

�ite o�en in simulations, we deal with the Fourier transforms of single-particle
densities, typi�ed by (Hansen and McDonald, 2013)

ρ (r) =
N∑
i=1

δ (r − ri )
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which is a sum of Dirac delta functions involving the coordinates of all the particles. In a
homogeneous system, one can perform a uniform volume average so that

1
V

∫
V

drδ (r − ri ) =
1
V

⇒
〈
ρ (r)

〉
=

N

V

as expected. �e instantaneous Fourier-transformed single particle density is then

ρ̂ (k) =
∫
V

dr
N∑
i=1

δ (r − ri ) exp(−ik · r) =
N∑
i=1

exp(−ik · ri ).

In a similar way, the charge density and its Fourier transform are

ρq (r) =
N∑
i=1

qiδ (r − ri ), ρ̂q (k) =
N∑
i=1

qi exp(−ik · ri ).

Variables of this kind appear in equations for structural and dynamical functions.

D.3 �e discrete Fourier transform
A discrete Fourier transform pair is de�ned

Ĉ (ν ) =
n−1∑
τ=0

C (τ ) exp(−2πiντ/n) ν = 0, 1, . . . ,n − 1, (D.15a)

C (τ ) =
1
n

n−1∑
ν=0

Ĉ (ν ) exp(2πiντ/n) τ = 0, 1, . . . ,n − 1. (D.15b)

�is may be interpreted as a relationship between a function C (t ) of time, tabulated at n
points, δt apart, so thatC (τ ) = C (τδt ), and a function Ĉ (ω) of frequencyω, also tabulated
at n points, so that Ĉ (ν ) = Ĉ (νδω). �e intervals in time and frequency are related by

n δt δω = 2π. (D.16)

Note however that neither δt nor δω actually appear in eqns (D.15), just the integers τ , ν ,
and n. �e orthogonality relation is

1
n

n−1∑
ν=0

exp(2πiντ/n) exp(−2πiντ ′/n) = δτ τ ′ . (D.17)

�e analogy between these equations and eqns (D.1)–(D.3) is obvious. �ere are, however,
some subtleties involved in the use of the discrete Fourier transforms (Brigham, 1974;
Smith, 1982a,b). In particular, when we use eqns (D.15) and (D.17), we must understand
C (t ) to be periodic in time with period nδt and Ĉ (ω) to be periodic in frequency with
period nδω. Note that the indices here run from 0 to n − 1, rather than taking positive and
negative values (contrast eqns (D.15) with eqns (D.1)). �is is not serious, since a shi� of



Numerical Fourier transforms 505

time origin simply implies multiplication of the transform by a complex number. �ese
transforms may be calculated very rapidly on a computer (Cooley and Tukey, 1965).

�e discrete convolution/correlation theorem is that if

C (τ ) =
n−1∑
τ ′=0

A(τ ′)B (τ − τ ′) ≡
(
A? B

)
(τ ) (D.18)

then
Ĉ (ν ) = Â(ν )B̂ (ν ) (D.19)

while if

C (τ ) =
n−1∑
τ ′=0

A(τ ′)B (τ + τ ′) (D.20)

then
Ĉ (ν ) = Â∗ (ν )B̂ (ν ). (D.21)

�ese equations are used in the computation of correlation functions by the fft method
(Section 8.3). In this application, the τrun data items generated in a run are supplemented
by τrun zeroes, so that n = 2τrun in this case. �is avoids the introduction of spurious
correlations due to the implied periodicity of the functions mentioned earlier.

In Chapter 6 the discrete spatial Fourier transform is used in the calculation of long-
range forces. �e usual de�nitions are modi�ed by the inclusion of a cell length; also we
use sc for the number of mesh points in each dimension. �us

f̂ (k) = `3
∑
rs

f (rs ) exp(−ik · rs )

f (rs ) =
1
s3

c

1
`3

∑
k

f̂ (k) exp(ik · rs )

where (in 3D) the s3
c positions, rs , lie on a mesh of spacing ` = L/sc and the s3

c wavevectors,
k, are from the corresponding Fourier mesh, of spacing 2π/L = 2π/(sc`). Note that these
equations have the same form as eqns (D.14), except that the integral of eqn (D.14a) is
replaced by a discrete approximation. In these units, a convolution is de�ned(

A? B
)
(rs ) = `3

∑
r′s

A(r′s )B (rs − r
′
s ).

D.4 Numerical Fourier transforms
Most functions have to be Fourier transformed numerically. For large values of the
frequency, ω, the integrand in the transform oscillates rapidly and methods such as
Simpson’s rule are inadequate. An accurate method due to Filon (1928) �ts a quadratic
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polynomial between discrete function points and evaluates the resulting integral analyti-
cally. For an integral of the form

Ĉ (ω) = 2
∫ tmax

0
dt C (t ) cosωt . (D.22)

the range is divided into 2n equal intervals, so that

tmax = 2nδt . (D.23)

If we de�ne
θ = ωδt , (D.24)

then
Ĉ (ω) = 2δt

(
αC (tmax) sinωtmax + βCe + γCo

)
, (D.25)

where

α = (1/θ 3)
(
θ 2 + θ sinθ cosθ − 2 sin2 θ

)
,

β = (2/θ 3)
(
θ (1 + cos2 θ ) − 2 sinθ cosθ

)
,

γ = (4/θ 3)
(
sinθ − θ cosθ

)
. (D.26)

Ce is the sum of all the even ordinates of the curve C (t ) cosωt , less one-half of the �rst
and last ones.Co is the sum of all the odd ordinates. �is algorithm, though accurate, does
not preserve the orthogonality of the transform: transformation from t-space to ω-space
and back again will not, in general, regenerate the initial correlation function exactly.
Lado (1971) has suggested a simple algorithm which preserves the orthogonality of the
transform and can be used with the fft method of Cooley and Tukey (1965). �e integral
is replaced by a discrete sum

Ĉ (ν − 1
2 ) = 2δt

n∑
τ=1

C (τ − 1
2 ) cos

[(
τ − 1

2

) (
ν − 1

2

)
π/

(
n − 1

2

)]
. (D.27)

�e back transform is

C (τ − 1
2 ) =

δω

π

n∑
ν=1

Ĉ (ν − 1
2 ) cos

[(
τ − 1

2

) (
ν − 1

2

)
π/

(
n − 1

2

)]
. (D.28)

�e upper limit n of the summations can be replaced by n − 1, since the last term vanishes
in each case. �e points at which the function is evaluated are �xed in this method.
C (t − 1

2 ) means C ((t − 1
2 )δt ) where δt = tmax/(n −

1
2 ) and Ĉ (ν − 1

2 ) means Ĉ ((ν − 1
2 )δω)

with δω = π/tmax. �ese ‘half-integer’ values would usually be calculated by interpolation
from the simulation data. Apart from the trivial ‘half-integer’ phase shi�s, these are
straightforward discrete Fourier transforms, and they may be computed by the e�cient
fft method. �is method is less accurate than that of Filon, being essentially a trapezoidal
rule, but it can be made more accurate by decreasing δt (i.e. calculating the correlation
function at �ner intervals). Sine transforms are tackled in a way analogous to cosine
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Code D.1 3D Fourier transform example
�is �le is provided online. fft3dwrap.f90 performs forward and reverse ffts on a
3D Gaussian function, as described in the text. It is assumed that the fftw library is
installed; in the SConstruct �le, an environment variable may need changing to point
to this library. �e code also uses Fortran’s C-interoperability features. In SConstruct
it is assumed that the compiler �ags will result in variable KIND declarations that
are compatible with the C routines, but this is not guaranteed to be the case on all
systems.

! fft3dwrap.f90
! 3D fast Fourier transform applied to a Gaussian function
PROGRAM fft3dwrap

transforms. �e one-dimensional transform of eqn (D.11) may be calculated by Filon’s
method, if an extra factor of r is incorporated into the function being transformed. Lado
(1971) also discusses in detail the calculation of two- and three-dimensional Fourier
transforms. Further information about the numerical evaluation of Fourier transforms
may be found in Press et al. (2007).

�ree-dimensional Fourier transforms, between real and reciprocal space, can be
calculated using an fft, which evaluates the 3D generalization of the transform pair given
by eqns (D.15). An example is provided in Code D.1. Consider a function д(x ,y, z) which
is periodic in a box of side L (for example this could be the charge density discussed in
Chapter 6). �is function is evaluated on a regular grid

д(i, j,k ) = д
(
i`, j`,k`

)
i, j,k = 0, 1, 2, . . . sc − 1 (D.29)

where the spacing ` = L/sc. For simplicity, L and ` are assumed to be the same in each of
the three coordinate directions.

A 3D array of complex numbers, fin = CMPLX(g, 0.0), is constructed. �e fft is
performed using the C subroutine library fftw (Frigo and Johnson, 2005). In this library
the function call

plan = fftw_plan_dft_3d (sc, sc , sc, fin , fout , &
& FFTW_FORWARD , FFTW_ESTIMATE)

establishes a plan for the complex 3D-fft in the forward direction (from real to recipro-
cal space). �e subroutine fftw_execute_dft (plan, fin, fout) performs the planned
transform. On exit, the array fout(i,j,k) contains the value of the discrete transform,
where the Fourier transform of д(i, j,k ) is

д̂(i, j,k ) = `3 fout (i, j,k ). (D.30)

In the output array, fout(i,j,k), the discrete Fourier transform is arranged in the so-
called wrap-around order. So for a particular index i , the corresponding wavevector
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component kx is

kx,i =



2πi/(sc`) 0 ≤ i ≤ sc/2 − 1
2π(i − sc)/(sc`) sc/2 ≤ i ≤ sc − 1,

(D.31)

with the same pa�ern applying to ky, j and kz,k . �e transform starts at kx = 0 and
increases, in increments of 2π/L, to the most positive value kmax

x = π/`− 2π/L. �e values
of the transform for negative kx follow, starting at kmin

x = −π/` and ascending towards
zero again. �e last stored value is −2π/L. Since the transformed function is periodic in
kx with period 2π/`, the values stored in the upper half of the array also correspond to
the regular continuation of those in the lower half, kx = π/` . . . 2π/` − 2π/L.

To obtain the inverse discrete Fourier transform, fin(i,j,k), a new plan is created
using

plan = fftw_plan_dft_3d (sc, sc, sc, fout , fin , &
& FFTW_BACKWARD , FFTW_ESTIMATE)

and the back transform is performed by calling fftw_execute_dft(plan, fout, fin).
�e original input function can be straightforwardly recovered

д(i, j,k ) =
1
s3

c
fin (i, j,k ). (D.32)

In Code D.1 we apply the forward and backward transforms to the Gaussian function,
д(x ,y, z) = exp

(
−π(x2 + y2 + z2)

)
for which F

[
д(x ,y, z)

]
= exp

(
−(k2

x + k
2
y + k

2
z )/4π

)
.



Appendix E
Random numbers

E.1 Random number generators
Before the develoment of computers, random sequences of numbers had to be generated
by physical methods such as rolling dice, tossing coins, picking numbered balls from an
urn, or analysing noise generated in an electronic valve. To assist workers in this �eld
large tables of pre-calculated random sequences were published (RAND, 2001).

Many applications, including mc and stochastic dynamics simulation, require random
sequences of millions of numbers, which must be generated on the computer. �e �eld of
pseudo-random number generation (so-called because the sequences are generated deter-
ministically and repeatably) is fairly well developed, and the desirable (and undesirable)
features have been studied in detail.

In the current context of liquid-state computer simulations, the raw speed of random
number generation is almost never critical: other parts of the program are almost always
more time-consuming. �e statistical distribution of the numbers should, of course,
conform to the desired one: most commonly, random numbers are generated uniformly
over the unit interval (0, 1), and more complicated distributions are obtained from this.
However, on top of this, the numbers should be uncorrelated, and to investigate this
it is necessary to calculate two-point, three-point, and higher, joint distributions. �e
sequence will typically repeat itself a�er a certain period, and the length of this repeat
cycle should be as long as possible. A ba�ery of tests for random number generators
known as Diehard, due to Marsaglia (1995) has been updated under the name Dieharder
by Brown (2015). A very comprehensive test suite, TestU01 (L’Ecuyer and Simard, 2007),
is also available online (TestU01, 2009).

�e dangers of using a poor random number generator should not be underestimated.
Although mc simulations are o�en (or appear to be) insensitive to the details, occasionally
catastrophic results can result from a poor choice (Ferrenberg et al., 1992; Schmid and
Wilding, 1995; Bauke and Mertens, 2004; Deng et al., 2008). A serious molecular simulator
will want to either research the algorithm used by the built-in generator, or replace it
with one whose behaviour is known, selected from a library (Press et al., 2007; Barash
and Shchur, 2013). Be aware, however, that so�ware library contents can change from
version to version. A collection of random number generators may be found in the Gnu
is not Unix (gnu) Scienti�c Library. A selection is also provided in the Intel Math Kernel
library.

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
© M. P. Allen and D. J. Tildesley 2017. Published in 2017 by Oxford University Press.
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E.2 Uniformly distributed random numbers
�e generation of uniform (pseudo)random numbers is an enormous �eld and several
books are available to give the reader a proper introduction (Knuth, 1997; Gentle, 2003;
L’Ecuyer, 2007; Kroese et al., 2011). Jones (2010) has authored a very useful online paper
giving advice on good practice.

Typically, a sequence of large positive integers is produced, each obtained from the
last by some operation (e.g. multiplication) conducted in �nite modulus arithmetic. �is
is typi�ed by linear congruential generators (lcgs), of the form

Xi+1 = (aXi + b) mod M (E.1)

where the quantities a, b, and M are large positive integer parameters, and mod is the
modulo operation (as for the MOD function in Fortran). �e sequence begins by selecting an
initial seed, X0. �us, each result in the sequence is an integer lying in the range (0,M −1)
inclusive. �e desired random numbers are returned as

ξi = Xi/M .

Note that this excludes the possibility of generating Xi = 1, but allows the possibility of
Xi = 0; in practice, generators may allow neither, either, or both end values to appear. A
special case of this kind of generator is the simple multiplicative congruential generator,
for which b = 0.

�ese basic generators are not usually considered good enough for mc simulation
work, and may be extended in several ways. Multiple recursive generators (mrgs) make
the right-hand side of eqn (E.1) a linear function of several previous values Xk . A linear
feedback shi� register generator uses the same approach, but calculates the output ξi
in a di�erent way. A variation of this method is used in the popular and widespread
Mersenne twister (Matsumoto and Nishimura, 1998). A drawback of this generator is
that it is rather elaborate and complicated to seed properly. Combining mrgs to give a
single, be�er-quality, sequence is a productive approach (L’Ecuyer, 1996; 1999); notable,
and widely available, examples of this type are mrg32k3a (L’Ecuyer, 1999) and various
versions of kiss from Marsaglia. �e well generators (Panneton et al., 2006) are also
promising. All of these choices pass the overwhelming majority of the statistical tests
mentioned in the introductory section.

Increasingly one wishes to generate independent streams of random numbers on
parallel computers. Here, a key issue is the seeding: if the di�erent processes use the same
seeds, they will generate the same sequences of numbers, which will almost certainly
lead to trouble. Calculating a seed from the system clock carries with it the danger that
several of the processes will still start with the same value; combining the clock value
with the processor i.d. number may avoid the problem. On some operating systems it is
possible to use values from the device /dev/random or /dev/urandom.

Fortran provides built in routines RANDOM_SEED and RANDOM_NUMBER for, respectively,
initializing the random number generator and producing random numbers, uniformly
sampled on the range (0, 1). We use these extensively in the supplied examples. Two
points are worthy of comment. First, the RANDOM_SEED routine takes a set of optional
arguments which may be used to �ne-tune the initialization, for example in order to
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reliably repeat a given sequence of numbers, or alternatively to generate a ‘random’
starting point based on (e.g.) the system clock. If called without these arguments, it simply
initializes to a default state. �e gnu documentation for gfortran provides a way of
randomly seeding the built-in generator, using /dev/urandom if available, and combining
the clock and processor i.d. values otherwise. We have reproduced this in the function
init_random_seed provided in the �le maths_module.f90 of Code A.1. Of course, for a
di�erent compiler, a di�erent method may be needed, and there is no guarantee that
/dev/urandom will be available on a given computer. Second, the Fortran standard does
not actually specify that RANDOM_NUMBER uses any particular random number generator:
it depends on the particular compiler, and possibly on the computer. In our code, for
simplicity, we are ignoring most of the preceding advice, and using this routine instead of
including a particular choice of our own. �e gnu documentation for gfortran (at the time
of writing) indicates that one of Marsaglia’s kiss generators is used in RANDOM_NUMBER,
which should be satisfactory.

We o�en wish to generate uniform random integers k within a speci�ed range,
(kmin,kmax) inclusive, for example to choose a particle for an mc move or thermal velocity
randomization. �is is simply, and reliably, computed from a uniformly distributed variate
ξ in the range (0, 1) by

k = kmin +
⌊
ξ (kmax − kmin + 1)

⌋

where bxc is the largest integer less than or equal to x , that is, the FLOOR function in Fortran.
It is sensible to guard against the (very small) danger of roundo� e�ects by ensuring,
a�erwards, that kmin ≤ k ≤ kmax. �is is implemented in the routine random_integer in
the �le maths_module.f90 of Code A.1.

E.3 Generating non-uniform distributions
Using the random number ξ generated uniformly on (0, 1) it is possible to construct
random numbers taken from a variety of distributions. �ere are many distributions
which are of interest to statisticians, but only a limited number which are required in
liquid-state simulation. In this section we discuss generating random variables on the
normal (Gaussian), and exponential distributions. �e interested reader is referred to
the standard texts (Knuth, 1997; Gentle, 2003; L’Ecuyer, 2007; Kroese et al., 2011) for a
comprehensive discussion of other distributions, and proofs of the results quoted in this
section. Many libraries contain routines to generate these distributions automatically.

�e normal distribution, with mean µ, and variance σ 2, is de�ned as

ρ (x ) =
1

σ
√

2π
exp

(
−
(x − µ )2

2σ 2

)
−∞ < x < ∞.

�e expectation values of the �rst two moments are given by

〈x〉 = µ, 〈x2〉 = µ2 + σ 2, or 〈(x − µ )2〉 = σ 2.

A random number ζ ′ chosen from this distribution will be related to a number ζ generated
from the normal distribution with zero mean and unit variance by

ζ ′ = µ + σζ .
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A typical example is the random selection of velocity components (vx , vy , vz ) from the
Maxwell–Boltzmann distribution at temperature T in the Andersen thermostat, when
µ = 0, σ =

√
kBT /m, for each component, where m is the particle mass (see Section 3.8.1).

�e problem is reduced to sampling ζ . One way (of many) to do this involves two
steps and the generation of two uniform random numbers (Box and Muller, 1958):
(a) generate independent uniform random numbers ξ1 and ξ2 on (0, 1);
(b) calculate ζ1 = (−2 ln ξ1)

−1/2 cos 2πξ2 and ζ2 = (−2 ln ξ1)
−1/2 sin 2πξ2.

�is algorithm is provided in the routine random_normal in the �le maths_module.f90 of
Code A.1. �e routine generates ζ1 and ζ2 together, typically returning ζ1 and saving ζ2
for the next call.

In some applications (e.g. Brownian dynamics, Chapter 12) we need to generate
correlated pairs of numbers that are normally distributed. Given two independent normal
random numbers ζ1 and ζ2, with zero means and unit variances, obtained as before, the
variables

ζ ′1 = σ1ζ1, ζ ′2 = σ2
(
c12ζ1 + (1 − c2

12)
1/2ζ2

)
(E.2)

are sampled from the bivariate Gaussian distribution with zero means, variances σ 2
1 and

σ 2
2 , and correlation coe�cient c12.

In the bd simulations described in Section 12.2, we need to sample a large number, n,
of correlated random numbers from a multivariate Gaussian distribution

ρ (x) =
1√

(2π)n |C|
exp

(
− 1

2x · C
−1 · x

)
where for simplicity we consider zero means, 〈xi 〉 = 0, i = 1, . . . ,n, and the (symmetric)
covariance matrix C is de�ned such that 〈xix j 〉 = Ci j . Many libraries include routines
to sample directly from this distribution in an e�cient way. Otherwise, the correlated
set of random numbers ζ ′i , i = 1, . . . ,n, may be obtained from an independent set of
normally distributed random numbers, ζi , given the lower-triangular matrix L which
satis�es C = L · LT (see eqn (12.9)). �is may be obtained by a Cholesky decomposition,
which is once more a common feature of numerical libraries. �e elements of the matrix
are

Lj j =

√√√
Cj j −

j−1∑
k=1

L2
jk

Li j = L−1
j j

*
,
Ci j −

j−1∑
k=1

LikLjk+
-
, i > j

and the calculation typically begins with L11 =
√
C11, followed by successive rows

{L21,L22}, {L31,L32,L33}, and so on. �e expression inside the square root is guaranteed
to be positive provided the matrix C is positive de�nite. �e desired random variables are

ζ ′i =
i∑
j=1

Li jζj .
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Equation (E.2) is just a special case of this equation, with C11 = σ 2
1 , C22 = σ 2

2 and
C12 = C21 = σ1σ2c12. In the bd application, n = 3N , C = D, the di�usion coe�cient, and
the random displacements are given by eqn (12.9)

Ri =
√

2∆t ζ ′i =
√

2∆t
i∑
j=1

Li jζj .

As mentioned in Section 12.2, it cannot be guaranteed that the Oseen tensor is positive
de�nite, so an alternative form for D is usually employed.

Now we turn to the problem of sampling from the exponential distribution

ρ (x ) =



µ−1 exp(−x/µ ) 0 < x < ∞

0 otherwise
(E.3)

where µ is a positive parameter de�ning the mean value 〈x〉 = µ. A suitable method is
(a) generate a uniform random number ξ on (0, 1);
(b) calculate ζ = −µ ln ξ .

One example of the use of such a distribution is the selection of a random angular
velocityω for a linear molecule. �e direction ofω may be chosen randomly in a plane
perpendicular to the molecular axis (see next section), and then the value of ω2 selected
from the exponential distribution with mean value µ = 〈ω2〉 = 2kBT /I , where I is the
moment of inertia.

�is is an example of the general technique of inverse transforms. It relies on being able
to calculate (either analytically or in tabular form) the cumulative probability function

P (x ) =

∫ x

−∞

dx ′ ρ (x ′)

that is, the integrated probability of occurrence of a value less than or equal to x , given
the probability density ρ (x ). More speci�cally, it relies on knowing the inverse function
x (P ). If a random value of P is chosen in the range 0 ≤ P ≤ 1, then the variable x (P )
will be distributed with probability density ρ (x ). In this case, P (x ) = 1 − exp(−x/µ ), the
inverse function is x = −µ ln(1 − P ), and we sample 1 − P , or equivalently P , uniformly
over the range (0, 1).

�is method also works for sampling from a discrete distribution. Consider the problem
of selecting from a set of m alternatives k = 1, 2, . . . ,m according to their assigned
probabilities pk . Suppose that we have already normalized these, so that ∑

k pk = 1, and
that they are stored in an array p. �en the following code snippet is used.

CALL RANDOM_NUMBER(ran)
k = 1
p_cumul = p(1)
DO

IF ( p_cumul >= ran ) EXIT
k = k+1
p_cumul = p_cumul + p(k)

END DO
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�e value of k on exit from the loop identi�es the ‘winner’ with the correct probability. A
moment’s thought reveals that this is the inverse transform method. �e �rst step is to
choose a random number uniformly on (0, 1). �en, the loop determines the �rst value
of k for which the cumulative probability exceeds this number. It is possible to add a
guard against roundo� errors, to ensure that k never exceeds the dimension of the array.
�is method is used in cbmc (see Section 9.3.4), where we typically use un-normalized
weights wk , given by the Boltzmann factors associated with trial moves. In this case, a
trivial modi�cation of the code is used.

w_total = SUM(w)
CALL RANDOM_NUMBER(ran)
ran = ran * w_total
k = 1
w_cumul = w(1)
DO

IF ( w_cumul >= ran ) EXIT
k = k+1
w_cumul = w_cumul + w(k)

END DO

E.4 Random vectors on the surface of a sphere
�ere are a number of suitable methods for generating a vector on the surface of a unit
sphere. �e simplest of these is an iterative procedure using the acceptance–rejection
technique of von Neumann (1951).
(a) Generate three uniform random numbers ξ1, ξ2, and ξ3 on (0, 1).
(b) Calculate ζi = 2ξi − 1 for i = 1, . . . , 3 so that the vector ζ = (ζ1, ζ2, ζ3) is distributed

uniformly in a cube of side 2 centred at the origin.
(c) Form the sum ζ 2 = ζ 2

1 + ζ
2
2 + ζ

2
3 .

(d) If ζ 2 < 1 (i.e. inside the inscribed sphere) take ζ̂ = ζ/ζ as the vector.
(e) Otherwise, reject the vector and return to step (a).

�is is provided as a routine in the �le maths_module.f90 of Code A.1. Marsaglia (1972)
has suggested an improvement.
(a) Generate two uniform random numbers ξ1, ξ2 on (0, 1).
(b) Calculate ζi = 2ξi − 1 for i = 1, 2.
(c) Form the sum ζ 2 = ζ 2

1 + ζ
2
2 .

(d) If ζ 2 < 1 take ζ̂ =
(
2ζ1

√
1 − ζ 2, 2ζ2

√
1 − ζ 2, 1 − 2ζ 2

)
as the vector.

(e) Otherwise, reject the vector and return to step (a).
�is is also provided as an alternative routine. �e method can be readily extended to
choosing points on a four-sphere (suitable for quaternion orientations) and Marsaglia
gives an appropriate algorithm. To obtain random vectors in a plane normal to a given unit
vector ê, simply proceed as just described and project out the component ζ ′ = ζ̂ − (ζ̂ · ê)ê,
then renormalize ζ ′ to unit length.
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E.5 Choosing randomly and uniformly from complicated
regions

von Neumann (1951) suggested the following algorithm for generating random numbers
from an arbitrary distribution ρ (r). �e function is split in the following way

ρ (r) = Ca(r)b (r) (E.4)

where a(r) is a simpler (normalized) distribution function, from which it is easy to sample
a random number, b (r) is a function which lies between zero and one, andC is a constant,
with C ≥ 1. �e following steps generate a random vector sampled from ρ (r).
(a) Sample ζ randomly from the distribution a(r).
(b) Generate a uniform random number ξ on (0, 1).
(c) If ξ ≤ b (ζ ) then ζ is sampled from the distribution ρ (r).
(d) Otherwise, reject ζ and return to step (a).

A simple example illustrates the method. Suppose we wish to generate a vector uniformly
inside the unit circle |r|2 < 1, where r = (x1,x2), but we wish to sample uniformly in the
square −1 < x1,x2 < 1. In this case

ρ (r) =



1/π x2
1 + x

2
2 < 1

0 otherwise
a(r) =




1/4 −1 < x1,x2 < 1
0 otherwise

b (r) = Θ(1 − x2
1 − x

2
2 ) C = 4/π

�e step function Θ ensures that b (r) = 1 inside the region of interest, and zero outside. A
li�le re�ection shows that in this case the von Neumann algorithm simpli�es considerably:
(a) Sample ζ randomly inside the square.
(b) If ζ lies within the circle then ζ is sampled from the distribution ρ (r).
(c) Otherwise, reject ζ and return to step (a).

It is not necessary to know the value of C . It will be noticed that the basic mc sam-
pling method discussed in Section 4.2 is based on this approach, as well as the rejection
techniques for generating random orientations discussed in the previous sections. �is
approach can be readily extended to higher dimensions and more complicated regions of
interest.

Mc simulation of molecules relies on generating small random rotations: a new vector
should be sampled uniformly on the surface of the unit sphere, but within a given solid
angle of the old vector. A very simple implementation, using the approach just described,
is given in a routine in the �le maths_module.f90 of Code A.1. �is is, however, not the
most e�cient approach, and several be�er alternatives are also provided. In general, the
secret of success with the rejection method is to choose a(r) so as to be convenient to
sample the random variates (a hypersphere, hyperellipsoid, etc.) and which covers the
whole of the region that is of interest, but is not too much larger. �e closer the match,
the smaller the fraction of rejected tries.
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E.6 Generating a random permutation
In the Lowe–Andersen thermostat (Lowe, 1999) discussed in Sections 3.8.1 and 12.4, it is
necessary to examine pairs of particles and, with a certain probability, randomize their
relative velocity. It is essential to do this in a random order; the best way is to prepare
the desired list (which typically contains all pairs within a certain interaction range) in a
systematic way (looping over particle indices) and then shu�e it. �e standard in-place
algorithm for doing this is quite simple (Knuth, 1997) and is illustrated by the following
code snippet, which shu�es an array a of quantities (numbered from 1 tom).

! INTEGER :: q, p, m
! REAL , DIMENSION(m) :: a
! REAL :: tmp
DO p = 1, m-1

q = random_integer ( p, m )
tmp = a(p)
a(p) = a(q)
a(q) = tmp

END DO

In words: a single sweep through the array is undertaken, and each element is swapped
with a randomly selected element from further up the array. �e function random_integer
appears in the �le maths_module.f90 of Code A.1 and returns an integer chosen randomly
in the speci�ed range p . . .m inclusive.



Appendix F
Con�gurational temperature

In this Appendix we discuss the calculation of the con�gurational temperature, introduced
in Chapter 2 and de�ned in eqn (2.56) for a simple atomic system. Two possible sources
of confusion arise: the formula to use for the con�gurational temperature, and the proper
counting of interaction terms when it is evaluated in a simulation program.

F.1 Expression for con�gurational temperature
In the microcanonical ensemble, the exact expression for the con�gurational temperature
is (Rugh, 1997; Jepps et al., 2000; Rickayzen and Powles, 2001; Powles et al., 2005; Travis
and Braga, 2006)

β =
1

kBT
=

〈
∇ ·

(
∇V

∇V · ∇V

)〉
=

〈
∇2V

∇V · ∇V
− 2
∇V∇V :

(
∇∇V

)
(∇V · ∇V )2

〉
, (F.1)

where, as usual,V stands for the potential energy. �e gradient ∇ refers to all coordinates
of all atoms, and

(
∇∇V

)
is a 3N × 3N Hessian matrix, which is doubly contracted with

∇V . �e Hessian term arises from the chain rule

∇ ·

(
∇V

∇V · ∇V

)
=

∇2V

∇V · ∇V
−
∇V · ∇

(
∇V · ∇V

)
(∇V · ∇V )2

and the vector identity (C.8) se�ing A = B = ∇V , which makes the curl terms vanish.
�is Hessian term is easily seen to be O (1/N ) for an N -atom system, and is o�en dropped,
to give an equation very similar to eqn (2.56) which applies in the canonical ensemble.
�e remaining discrepancy, also O (1/N ), relates to whether the numerator ∇2V and
denominator ∇V · ∇V of the leading term are averaged separately (as in eqn (2.56)) or
whether their ratio is computed before averaging (as in eqn (F.1)).

F.2 Implementation details
To illustrate how this works in practice, we assume a central pairwise form ∑

i<j v(ri j ) for
the interaction potential, with ri j = |ri − rj |. �e gradient, and Laplacian, of the function
v(r ), with respect to r = (x ,y , z), are

∇v(r ) =
v
′

r
r ≡ v

(1) (r ) r, ∇2
v(r ) = 2

(
v
′

r

)
+ v
′′ ≡ v

(2) (r ),

Computer Simulation of Liquids. Second Edition. M. P. Allen and D. J. Tildesley.
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where v
′ = dv/dr , v′′ = d2

v/dr 2, and we have de�ned the functions v
(1) (r ) and v

(2) (r )
for convenience later. �e gradient terms, for each atomic pair, are combined to give the
overall gradient, in a way that is familiar from the force calculation in an md program

∇iV =
∑
j,i

v
(1) (ri j ) ri j = −

∑
j,i

f i j = −f i .

Hence
∇V · ∇V =

∑
i

f i · f i =
∑
i

���f i
���
2
,

the sum of squared forces on each atom. Each f i is calculated inside a double loop over
atoms, typically looking at each distinct pair ij just once, but using f i j = −f ji to make sure
no contributions are missed. �e Laplacian term may be calculated in the same double
loop, as a sum of terms of the form

∇2
i v(ri j ) = ∇

2
j v(ri j ) = v

(2) (ri j )

but it should be remembered that for a given pair ij , both the i and j terms in this equation
contribute to the total.

If it is desired to keep the O (1/N ) Hessian term, a li�le more calculation is required.
�e 3 × 3 Hessian of the pair potential function is

H(r) = ∇∇v(r ) =
v
′

r
1 +

(
v
′′

r 2 −
v
′

r 3

)
rr = v

(1) (r )1 + v
(3) (r )rr

where 1 is the 3 × 3 unit matrix, rr is a 3 × 3 dyadic matrix, and we have de�ned the
function v

(3) (r ). �e full 3N × 3N Hessian matrix can be built up from 3 × 3 matrices of
this kind for each pair of atoms and is then combined twice with the gradients ∇V or
equivalently the force vectors f . �e required components are

∇i∇i v(ri j ) = ∇j∇j v(ri j ) = H(ri j ), ∇i∇j v(ri j ) = ∇j∇i v(ri j ) = −H(ri j ).

Hence, having evaluated the total forces f i = −∇iV on each atom, the contribution of
pair ij to the Hessian term may be expressed

[
∇V∇V :

(
∇∇V

)]
i j
= (f i − f j ) (f i − f j ) :: H(ri j )

= v
(1) (ri j ) (f i − f j ) · (f i − f j ) + v

(3) (ri j )
[
(f i − f j ) · ri j

]2
.

Let us give an example to show how this translates into computer code. For the
Lennard-Jones potential, v(r ) = 4ϵ

(
(σ/r )12 − (σ/r )6

)
,

v
(1) (r ) = −24ϵ

(
2(σ/r )12 − (σ/r )6

)
r−2,

v
(2) (r ) = 24ϵ

(
22(σ/r )12 − 5(σ/r )6

)
r−2,

v
(3) (r ) = 96ϵ

(
7(σ/r )12 − 2(σ/r )6

)
r−4.

�e �rst double loop accumulates contributions to the forces and the Laplacian, and we
highlight the appearance of these variables in Code F.1. Notice that the Laplacian term is
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Code F.1 Calculating the con�gurational temperature
Here we give the heart of a force loop, in which additional statements accumulate the
quantities needed to compute the con�gurational temperature. epslj and sigma hold
the values of the Lennard-Jones parameters ϵ and σ respectively, and rcut holds the
cuto� distance.

DIMENSION (3) :: rij , fij
DIMENSION(3,n) :: r, f
sigma_sq = sigma **2
rcut_sq = rcut **2
eps4 = epslj * 4
eps24 = epslj * 24

pot = 0.0
lap = 0.0
f = 0.0

DO i = 1, n-1
DO j = i+1, n

rij = r(:,i) - r(:,j)
rij = rij - box * ANINT ( rij / box )
rij_sq = SUM ( rij**2 )
IF ( rij_sq < rcut_sq ) THEN

r2 = 1.0 / rij_sq
sr2 = sigma_sq * r2
sr6 = sr2**3
sr12 = sr6**2
v = eps4 * ( sr12 - sr6 )
v1 = eps24 * ( sr6 - 2 * sr12 ) * r2
v2 = eps24 * ( 22 * sr12 - 5 * sr6 ) * r2
pot = pot + v
fij = -v1 * rij
f(:,i) = f(:,i) + fij
f(:,j) = f(:,j) - fij
lap = lap + 2 * v2

END IF
END DO

END DO

fsq = SUM ( f**2 )
beta = lap / fsq



520 Con�gurational temperature

Code F.2 Correction to con�gurational temperature
�is loop implements the O (1/N ) correction to β , from the terms involving the
Hessian of the Lennard-Jones pair potential. Notice that fij in this double loop has a
di�erent meaning to the same variable in Code F.1.

sigma_sq = sigma ** 2
rcut_sq = rcut **2
eps24 = epslj * 24
eps96 = epslj * 96

hes = 0.0

DO i = 1, n-1
DO j = i+1, n

rij = r(:,i) - r(:,j)
rij = rij - box * ANINT ( rij / box )
rij_sq = SUM ( rij**2 )
IF ( rij_sq < rcut_sq ) THEN

r2 = 1.0 / rij_sq
sr2 = sigma_sq * r2
sr6 = sr2**3
sr12 = sr6**2
v1 = eps24 * ( sr6 - 2 * sr12 ) * r2
v3 = eps96 * ( 7 * sr12 - 2*sr6 ) * r2**2
fij = f(:,i) - f(:,j)
ff = SUM ( fij**2 )
rf = SUM ( rij*fij )
hes = hes + v1 * ff + v3 * rf**2

END IF
END DO

END DO

fsq = SUM ( f**2 )
beta = beta - 2.0* hes/(fsq **2)

incremented by 2v(2) so as to count the contributions of both i and j , as mentioned earlier.
�e leading term in the expression for β appears at the end, ready for averaging over the
course of the simulation. �en a second double loop accumulates the Hessian terms, if
they are required, and this is shown in Code F.2.
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avb Aggregation-Volume-Bias Monte Carlo method 9.3
b3lyp Becke, 3-parameter, Lee–Yang–Parr: a hybrid

density functional
1.3, 13.2

bcc Body Centred Cubic 10.7
bd Brownian Dynamics 9.3, 12.2, 12.3,

12.5, E.3
bg/l Blue Gene/L: an ibm computer 7.4
bg/p Blue Gene/P: an ibm computer 6.10, 7.4
bg/q Blue Gene/Q: an ibm computer 7.4
bgk Bhatnagar–Gross–Krook 12.6
blyp Becke–Lee–Yang–Parr: a density functional 13.2
bo Born–Oppenheimer 1.3, 13.2, 13.3,

13.6
camcasp Cambridge package for Calculation of

Anisotropic Site Properties
1.4

clayff ClayFF: a class-II force �eld 1.5
castep CAmbridge Serial Total Energy Package: an

electronic structure code
13.2

cbmc Con�gurational-Bias Monte Carlo 9.3, 9.4, E.3
ccp5 Collaborative Computational Project 5 0.0
cecam Centre Européen de Calcul Atomique et

Moléculaire
0.0

cff Consistent Force Field: a class-II force �eld 1.5
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cg Coarse-Grained 12.7
charmm Chemistry at HARvard Molecular Mechanics: A

class-I force �eld and simulation package
1.3, 1.5, 3.5,
5.7, 9.3

cmd Centroid Molecular Dynamics 13.4
cndo Complete Neglect of Di�erential Overlap

semi-empirical method
13.3

compass Condensed-phase Optimized Molecular Potentials
for Atomistic Simulation Studies: a class-II force
�eld

1.5

cp Car–Parrinello 13.2, 13.3
cp2k Car–Parrinello 2K: an electronic structure code 13.2
cpmd Car–Parrinello Molecular Dynamics: an

electronic structure code
13.2, 13.3

cpmd-qm CPMD-�antum Mechanics: molecular
mechanics option in the cpmd package

13.3

cpu Central Processing Unit 3.3, 5.3, 5.7,
7.3, 7.4, A.1

cuda Compute Uni�ed Device Architecture 7.1, 7.4
dynamo Dynamics of discrete Objects 3.7
dfs Damped Force-Shi�ed 6.10
dft Density Functional �eory 13.2, 13.3, 13.6
dl poly Daresbury Laboratory Polymer simulation: a

simulation package
1.5

dna DeoxyriboNucleic Acid 1.4, 1.5
dolls a shear-�ow algorithm 11.3
dpd Dissipative Particle Dynamics 3.8, 11.5, 12.4,

12.5, B.1
dvr Discrete Variable Representation 13.2
eb End Bridging 9.3
fb Force Bias 9.3
fcc Face Centred Cubic 1.3, 1.5, 2.2,

5.6, 10.7, 11.5
fci Full Con�guration Interaction 13.5
fciqmc Full Con�guration Interaction �antum Monte

Carlo
13.5

fene Finitely Extensible Nonlinear Elastic model 1.3, 4.8, 11.5
ffs Forward Flux Sampling 10.1, 10.6
fft Fast Fourier Transform 6.1, 6.3, 6.4,

6.6, 6.10, 7.4,
8.3, 13.4, D.3,
D.4

fftw Fastest Fourier Transform in the West: C library
for discrete Fourier transforms

6.3, D.4

fm Force Matched 5.2, 6.4, 6.10



List of Acronyms 523

fmm Fast Multipole Method 6.1, 6.6, 6.7,
6.10, 7.4

fs Force Shi�ed 6.10
golp Gold–Protein: a polarizable force �eld 1.5
gaff General Amber Force Field 1.5
gcmc Grand Canonical Monte Carlo 4.6, 9.2, 9.3,

14.5
gga Generalized Gradient Approximations 13.2
gnu Gnu is Not Unix E.1, E.2
gpu Graphics Processing Unit 3.2, 7.1, 7.4,

A.1
gromacs GROningen MAchine for Chemical Simulations 3.5, 4.9, 5.7,

7.4, 7.5
gromos GROningen MOlecular Simulation: a class-I force

�eld and simulation package
1.3, 1.5, 3.11,
13.3

hf Hartree–Fock 13.2, 13.3
hmc Hybrid Monte Carlo 12.3
hoomd Highly Object Oriented Molecular Dynamics 7.1
hpc High Performance Computing 7.1
ibi Iterative Boltzmann Inversion 12.7
ibisco It is Boltzmann Inversion so�ware for COarse

graining simulations
12.7

ide Integrated Development Environment A.3
idr Intramolecular Double Rebridging 9.3
ik Irving–Kirkwood 2.12, 14.1, 14.5
imc Inverse Monte Carlo 12.7
ips Isotropic Periodic Sum 6.4, 6.10
kiss Keep It Simple Stupid: a random number

generator
E.2

ks Kohn–Sham 13.2, 13.6
kthny Kosterlitz–�ouless–Halperin–Nelson–Young 8.2
l2l Local-to-Local 6.6
lammps Large-scale Atomic/Molecular Massively Parallel

Simulator
1.5, 5.7, 7.1,
7.4, C.6

lapack Linear Algebra PACKage 3.4
lb La�ice-Boltzmann 12.6, 12.7
lcg Linear Congruential Generator: a class of random

number algorithms
E.2

lda Local Density Approximation 13.2
lincs LINear Constraint Solver 3.4, 7.5
lrc Long Range Correction 14.1
ls1 mardyn large systems 1: molecular dynamics 1.1
magic MagiC coarse-grained simulation package 12.7
m2l Multipole-to-Local 6.6
m2m Multipole-to-Multipole 6.6
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maniac Mathematical Analyzer, Numerical Integrator,
And Computer: an early Los Alamos computer

1.1, 4.1

martini MARrink’s Toolkit INItiative: a coarse-grained
force �eld

1.3, 1.5

mbar Multi-state Benne� Acceptance Ratio 5.5, 9.2
mc Monte Carlo
mcccs towhee Monte Carlo for Complex Chemical Systems:

Towhee package
9.3

mcpro Monte Carlo simulation for biomolecules package 9.3
mcyna Matsuoka–Clementi–Yoshimine non-additive

model of water
1.3

md molecular dynamics
memd Maxwell Equation Molecular Dynamics 6.1, 6.8, 6.10,

7.4, B.1
milc-shake Matrix Inverted Linear Constraints shake: a

constraint algorithm
3.4

mm Molecular Mechanics 1.5, 13.3
mm4 Molecular Mechanics 4: a class-II force �eld 1.5
mmff Merck Molecular Force Field: a class-II force �eld 1.5
mop Method Of Planes 14.1
mp4 Møller–Plesset 4th order 13.2
mpcd MultiParticle Collision Dynamics 12.5
mpi Message Passing Interface 5.3, 7.1, 7.3,

7.4, A.3
mrg Multiple Recursive Generator: a class of random

number algorithms
E.2

msm Multilevel Summation Method 6.7, 6.10, 7.4
namd NAnoscale Molecular Dynamics 7.4
nemd NonEquilibrium Molecular Dynamics 11.1–11.5,

11.7, 11.8
nmr Nuclear Magnetic Resonance 4.9
ns Nested Sampling 9.2
opencl Open Computing Language 7.1, 7.4
openmp Open Multi-Processing 7.1, 7.2, 7.4,

A.3
opls Optimized Potentials for Liquid Simulations: a

class-I force �eld
1.5

pb Poisson–Boltzmann 6.5
pbe0 Perdew–Burke–Ernzerhof: a hybrid density

functional
13.2

pdb Protein Data Base: a �le format 5.7
pimd Path-Integral Molecular Dynamics 13.2, 13.4
pme Particle Mesh Ewald 6.3–6.5, 6.10,

7.4
ppip Pairwise Point Interaction Pipeline 3.5
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pppm Particle–Particle Particle–Mesh 6.1–6.3, 6.6,
6.7, 6.10, 7.4,
14.1, B.1

put Pro�le Unbiased �ermostat 11.7
pw91 Perdew–Wang ’91: a density functional 13.2
qdo �antum Drude oscillator model of water 1.3
qm �antum Mechanical 13.3
qm/mm �antum Mechanics/Molecular Mechanics 1.1, 12.7,

13.1–13.3
reaxff Reactive Force Field: a class-III force �eld 1.5
rattle a constraint algorithm 3.4, 7.5, 13.2
remc Replica Exchange Monte Carlo 4.9, 9.2
remd Replica Exchange Molecular Dynamics 4.9
resp Restrained ElectroStatic Potential 1.4, 1.5, 13.3
rest Replica Exchange with Solute Tempering 4.9, 9.2
rms Root Mean Square 2.3, 2.5, 3.2,

3.5, 3.6
rna RiboNucleic Acid 1.5
rpmd Ring Polymer Molecular Dynamics 13.4
rumd Roskilde University Molecular Dynamics 7.1
saft Statistical Associating Fluid �eory 12.7
settle a constraint algorithm 3.4
shake a constraint algorithm 3.4, 7.5, 13.2,

13.4
si Système International 3.6, 6.8, B.1
siesta Spanish Initiative for Electronic Simulations with

�ousands of Atoms: an electronic structure code
13.2

sllod a shear-�ow algorithm 11.3, 11.5, 11.7
smc Smart Monte Carlo 9.3, 12.3
spam Smoothed Particle Applied Mechanics 12.4
spc Simple Point Charge: a model of water 1.3, 6.3
spc/e Simple Point Charge/Extended: a model of water 1.3, 6.4, 6.5,

6.10, 9.4, 13.4,
14.5

sph Smoothed Particle Hydrodynamics 12.4
spmd Single Program Multiple Data 7.1
spme Smooth Particle Mesh Ewald 6.3, 6.10, 7.4,

14.1
spres Stochastic Process Rare Event Sampling 10.6
ta Test Area 14.1, 14.5
tddft Time-Dependent Density Functional �eory 13.2, 13.6
tiger Temperature Intervals with Global Energy

Reassignment
4.9

tip3p Transferable Intermolecular Potential with 3
Points: a model of water

1.3, 3.5, 4.9,
6.4–6.7, 6.10
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tip4p Transferable Intermolecular Potential with 4
Points: a model of water

1.3, 7.4

tip4p/2005 TIP4P/2005: a generalized model of water 1.3, 14.2
tip5p Transferable Intermolecular Potential with 5

Points: a model of water
1.3

tis Transition Interface Sampling 10.1, 10.6, 10.7
tps Transition Path Sampling 10.1, 10.5, 10.7
tst Transition State �eory 10.1–10.4
ub Unbonding–Bonding Monte Carlo method 9.3
uff Universal Force Field: a class-II force �eld 1.5
vasp Vienna Ab initio Simulation Package: an

electronic structure code
13.2

vmd Visual Molecular Dynamics 5.7
votca Versatile Object-oriented Toolkit for

Coarse-graining Applications: a coarse-grained
simulation package

12.7

well Well-Equidistributed Long-period Linear: a class
of random number algorithms

E.2

wham Weighted Histogram Analysis Method 9.2
wiggle a constraint algorithm 3.4
xyz XYZ: a �le format 5.7
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We give the principal sections in which the symbols are de�ned or used.

α polarizability tensor 1.3
α Cartesian component = x ,y , z 1.3
α underlying transition matrix 4.3
αP thermal expansion coe�cient 2.5
β Cartesian component = x ,y , z 1.3
β inverse thermal energy 1/kBT 2.3
βS adiabatic compressibility 2.5
βT isothermal compressibility 2.5
Γ phase space point 2.1
γ damping constant 12.2
γ̃ interfacial sti�ness 14.4
γ surface tension 2.12, 14.1
γ general transport coe�cient 2.7
γV thermal pressure coe�cient 2.5
δ (x ) Dirac delta function 2.2
δt timestep 3.2
ϵ relative permi�ivity (dielectric constant) 6.2
ϵxc exchange functional 13.2
ϵ Lennard-Jones energy parameter 1.3
ε barostat strain variable 3.9
ϵ0 permi�ivity of free space 1.3
ϵs relative permi�ivity of surroundings 6.2
ζ surface friction coe�cient 11.5
ζ random number 4.2
η thermostat variable 3.8
η shear viscosity 2.7
ηV bulk viscosity 2.7
Θ(x ) Heaviside step function 5.2, 14.1
θ contact angle 14.5
θ angle 2.6
κ,κ ′ Gay–Berne anisotropy parameters 1.3
κ transmission coe�cient 10.3
κ charge screening parameter 6.2, 6.5
κ bending modulus 2.13
κ̄ saddle splay modulus 2.13
Λ thermal de Broglie wavelength 2.2
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λ undetermined multiplier 3.4
λ Hamiltonian perturbation parameter 11.6
λT thermal conductivity 2.7
µ chemical potential 2.1
µ,ν Gay–Berne exponents 1.3
µ �ctitious mass 13.2
µ dipole moment 1.3
µ0 permeability of free space 6.8, B.1
ν stoichiometric coe�cient 9.5
ξ fugacity fraction 4.7
ξ friction coe�cient 3.8, 12.2
ξ random number E.2
π transition matrix 4.3
ϱ density operator 13.1
ρ (z) single particle density pro�le 14.1
ρ number density 2.1
ρ electron density 13.2
ρ (Γ) phase space distribution function 2.1
ρ (2) pair density function 14.1
σ (A) root-mean-square �uctuation of A 2.3, 8.4
σ Lennard-Jones range parameter 1.3
τ torque 1.3
τ discrete time or trial index 2.1
ϒ wave function 13.5
ϕ electrostatic potential 1.3, 6.1
ϕ angle 2.6
φ angle of rotation 3.3
Φ total wave function 13.1
χab intramolecular constraint 3.4
χ nuclear wave function 13.1
ψi orbital 13.2
ψ angle 1.5
Ψ electronic wave function 13.1
Ψ thermodynamic potential 2.1
Ω molecular orientation 1.3
ω molecular angular velocity 2.7
ω frequency 2.7
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We give the principal sections in which the symbols are de�ned or used.

A generic dynamical variable 2.1
A Helmholtz free energy 2.2
A surface area 14.1
A rotation matrix 3.3
a atomic index within molecule 1.3
a molecular acceleration 3.2
a quaternion 3.3
B generic dynamical variable 2.3
B second virial coe�cient 1.4
b atomic index within molecule 1.3
B magnetic �eld 6.8, B.1
C0 spontaneous curvature 2.13
C1,C2 principal curvatures of a surface 2.13
CAB (t ) non-normalized time correlation function 2.7
cAB (t ) normalized time correlation function 2.7
ci coe�cient in the plane-wave expansion 13.2
CP constant-pressure heat capacity 2.5
CV constant-volume heat capacity 2.3
D di�usion coe�cient 2.7, 13.5
D di�usion tensor 12.2
dab intramolecular bond length 3.4
〈D〉 interface width 14.1
|D〉 Slater determinant 13.5
E electric �eld 1.3
E total internal energy 1.3
e molecular orientation vector 3.3
F external perturbing force 11.2
F Landau free energy 2.13
Fqu quantum force 13.5
f force 1.3
fi orbital occupation number 13.2
f time-dependent probability distribution function 12.6
f fugacity 4.7
f i j force on i due to j 2.4
F`,m regular solid harmonic 6.6
G Gibbs free energy 2.2
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Ĝ in�uence function 6.3
G Green’s function 13.6
G matrix of Gaussian random variables 12.2
G metric tensor 2.10
G symmetry function for neural network 5.2
g constraint force 3.4
д number of degrees of freedom 3.8
д Kirkwood д-factor 6.2
дk j switching probability between quantum states 13.6
G`,m irregular solid harmonic 6.6
д(r ) pair distribution function 2.6, 8.2
дab (rab ) site–site pair distribution function 2.6
д``′m (r ) spherical harmonic coe�cients of д 2.6, 8.2
д(ri j ,Ωi ,Ωj ) molecular pair distribution function 2.6
H Hamiltonian 1.3
H magnetic �eld strength 6.8
H occupation histogram 9.2
H enthalpy 2.2
~ Planck’s constant h/2π 2.9
h indicator function 10.2
H (x ,∆x ) top-hat function 9.2, 14.1
I ionic strength 6.5
I moment of inertia tensor 3.3
i atomic or molecular index 1.3
j electric current 6.8
j atomic or molecular index 1.3
K kinetic energy 1.3
k wavevector 1.6
k rate constant 10.2
kB Boltzmann’s constant 1.3
L Lagrangian 3.1
L simulation box length 1.6
iL Liouville operator 2.1
` molecular angular momentum 3.3
` grid spacing 13.2
L`,m local expansion coe�cient 6.6
m vector of integers 6.2
m possible outcome or state label 4.3
m molecular mass 1.3
MI mass of the nucleus I 13.1
M`,m multipole expansion coe�cient 6.6
N number of atoms or molecules 1.3
n axis of rotation 3.3
n nematic director 2.14, 14.7
n possible outcome or state label 4.3
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O octopole moment 1.3
P number of processors in a parallel computer 7.4, 13.4
P pressure 2.1
P pressure tensor 14.1
P instantaneous pressure 2.4
p molecular momentum 1.3
PI nuclear momentum 13.4
P` Legendre polynomial 2.14
Q thermostat inertia 3.8
Q quadrupole moment 1.3
Q partition function 2.1
Q orientational order tensor 2.14
q generalized coordinate 1.3
q charge 1.3
q(r) reaction coordinate 10.1
q† transition state 10.2
r position 1.3
ri j i–j separation 1.3
rab a–b site–site separation vector = ria − rjb 1.3
rc potential cuto� distance 1.6
re equimolar dividing surface 14.5
RI nuclear position 13.1
ri j i–j separation vector = ri − rj 1.3
rs, m mechanically de�ned radius of tension 14.5
S entropy 2.2
S action 13.6
s 2D position = (x ,y ) 2.12
s box-scaled position vectors 4.5
s statistical ine�ciency 8.4
s imaginary time 13.4
sc number of cells 6.3
T instantaneous temperature 2.4
T temperature 2.1
T transformation matrix 9.3
t time 2.1
tA correlation time 2.7
U propagator 3.2
uia normal modes 13.4
V volume 2.1
V potential energy 1.3
v molecular velocity 2.7
v(ri j ) i–j pair potential 1.3
W weighting function 9.2
W barostat inertia 3.9
W charge assignment function 6.3
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W instantaneous total virial 2.4
W work 11.6
w Wiener process 12.2
w(ri j ) pair virial 2.4
X instantaneous total hypervirial 2.5
x (ri j ) pair hypervirial 2.5
Y`m spherical harmonic function 2.6
Z con�gurational integral 2.2
z valence 6.5
z activity 4.6
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Celledoni, E., Fassò, F., Säfström, N., and Zanna, A. (2008). �e exact computation of the
free rigid body motion and its use in spli�ing methods. siam J. Sci. Comput. 30, 2084–
2112.

Ceperley, D. M. and Alder, B. J. (1980). Ground state of the electron gas by a stochastic
method. Phys. Rev. Le�. 45, 566–569.



Bibliography 549

Ceperley, D. M., Chester, G. V., and Kalos, M. H. (1977). Monte Carlo simulation of a
many-fermion study. Phys. Rev. B 16, 3081–3099.

Cerio�i, M., Tribello, G. A., and Parrinello, M. (2011). Simplifying the representation of
complex free energy landscapes using sketch-map. Proc. Nat. Acad. Sci. 108, 13023.

Cerio�i, M. and Markland, T. E. (2013). E�cient methods and practical guidelines for
simulating isotope e�ects. J. Chem. Phys. 138, 014112.

Cerio�i, M., Parrinello, M., Markland, T. E., and Manolopoulos, D. E. (2010). E�cient
stochastic thermosta�ing of path integral molecular dynamics. J. Chem. Phys. 133,
124104.

Chacón, E. and Tarazona, P. (2003). Intrinsic pro�les beyond the capillary wave theory:
a Monte Carlo study. Phys. Rev. Le�. 91, 166103.

Chandler, D. (1978). Statistical mechanics of isomerization dynamics in liquids and the
transition state approximation. J. Chem. Phys. 68, 2959–2970.

Chandler, D. (1982). Equilibrium theory of polyatomic �uids. �e liquid state of ma�er:

�uid simple and complex. Studies in Statistical Mechanics. 8, 275–340. Ed. by
E. W. Montroll and J. L. Lebowitz. Amsterdam: North Holland.

Chandler, D. (1987). Introduction to modern statistical mechanics. New York: Oxford
University Press.

Chandler, D. and Berne, B. J. (1979). Comment on the role of constraints on the structure
of n-butane in liquid solvents. J. Chem. Phys. 71, 5386–5387.

Chandler, D. and Wolynes, P. G. (1981). Exploiting the isomorphism between quantum
theory and classical statistical mechanics of polyatomic �uids. J. Chem. Phys. 74,
4078–4095.

Chandra, R., Kohr, D., Menon, R., Dagum, L., Maydan, D., and McDonald, J. (2000). Parallel
programming in OpenMP. Morgan Kaufmann.

Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Rev. Mod. Phys.

15, 1–89.
Chapela, G. A., Saville, G., and Rowlinson, J. (1975). Computer simulation of the gas/liquid

surface. Faraday Disc. Chem. Soc. 59, 22–28.
Chapela, G. A., Saville, G., �ompson, S. M., and Rowlinson, J. S. (1977). Computer

simulation of a gas–liquid surface. 1. J. Chem. Soc. Faraday Trans. II 73, 1133–1144.
Chapela, G. A., Martinez-Casas, S. E., and Alejandre, J. (1984). Molecular dynamics

for discontinuous potentials. 1. General method and simulation of hard polyatomic
molecules. Molec. Phys. 53, 139–159.

Chapman, W. and �irke, N. (1985). Metropolis Monte Carlo simulation of �uids with
multiparticle moves. Physica B 131, 34–40.

Chapman, W. G., Jackson, G., and Gubbins, K. E. (1988). Phase equilibria of associating
�uids. Molec. Phys. 65, 1057–1079.

Chapman, W. G., Gubbins, K. E., Jackson, G., and Radosz, M. (1989). saft: equation-of-
state solution model for associating �uids. Fluid Phase Equilibria 52, 31–38.

Chapman, W. G., Gubbins, K. E., Jackson, G., and Radosz, M. (1990). New reference
equation of state for associating liquids. Ind. Eng. Chem. Res. 29, 1709–1721.

Chat�eld, C. (1984). �e analysis of time series. An introduction. 3rd ed. Chapman and Hall.
Chayes, J. T. and Chayes, L. (1984). On the validity of the inverse conjecture in classical

density functional theory. J. Stat. Phys. 36, 471–488.



550 Bibliography

Chayes, J. T., Chayes, L., and Lieb, E. H. (1984). �e inverse problem in classical statistical
mechanics. Commun. Math. Phys. 93, 57–121.

Chen, B. and Siepmann, J. I. (2000). A novel Monte Carlo algorithm for simulating
strongly associating �uids: applications to water, hydrogen �uoride, and acetic acid.
J. Phys. Chem. B 104, 8725–8734.

Chen, L. J. (1995). Area dependence of the surface tension of a Lennard-Jones �uid from
molecular dynamics simulations. J. Chem. Phys. 103, 10214–10216.

Chen, S. and Doolen, G. D. (1998). La�ice Boltzmann method for �uid �ows. Ann. Rev.
Fluid Mech. 30, 329–364.

Chen, S., Wang, H., Qian, T., and Sheng, P. (2015). Determining hydrodynamic boundary
conditions from equilibrium �uctuations. Phys. Rev. E 92, 043007.

Chen, T., Smit, B., and Bell, A. T. (2009). Are pressure �uctuation-based equilibrium
methods really worse than nonequilibrium methods for calculating viscosities?
J. Chem. Phys. 131, 246101.

Cheng, H., Greengard, L., and Rokhlin, V. (1999). A fast adaptive multipole algorithm in
three dimensions. J. Comput. Phys. 155, 468–498.

Chesnut, D. A. (1963). Monte Carlo calculations for the two-dimensional triangular la�ice
gas: supercritical region. J. Chem. Phys. 39, 2081–2084.

Cheung, P. S. Y. (1976). On e�cient evaluation of torques and forces for anisotropic
potentials in computer simulation of liquids composed of linear molecules.
Chem. Phys. Le�. 40, 19–22.

Cheung, P. S. Y. (1977). On the calculation of speci�c heats, thermal pressure coe�cients,
and compressibilities in molecular dynamics simulations. Molec. Phys. 33, 519–526.

Cheung, P. S. Y. and Powles, J. G. (1975). �e properties of liquid nitrogen. IV. A computer
simulation. Molec. Phys. 30, 921–949.

Cho, K., Joannopoulos, J. D., and Kleinman, L. (1993). Constant-temperature molecular
dynamics with momentum conservation. Phys. Rev. E 47, 3145–3151.

Chodera, J. D., Swope, W. C., Pitera, J. W., Seok, C., and Dill, K. A. (2007). Use of
the weighted histogram analysis method for the analysis of simulated and parallel
tempering simulations. J. Chem. �eor. Comput. 3, 26–41.

Christiansen, D., Perram, J. W., and Petersen, H. G. (1993). On the fast multipole method
for computing the energy of periodic assemblies of charged and dipolar particles.
J. Comput. Phys. 107, 403–405.

Chu, J.-W., Izveko, S., and Voth, G. A. (2006). �e multiscale challenge for biomolecular
systems: coarse-grained modeling. Molec. Simul. 32, 211–218.

Chu, J.-W., Ayton, G. S., Izvekov, S., and Voth, G. A. (2007). Emerging methods for
multiscale simulation of biomolecular systems. Molec. Phys. 105, 167–175.

Chung, K. L. (1960). Markov chains with stationary state probabilities, Vol. 1. Heidelberg:
Springer.

Cicco�i, G. and Jacucci, G. (1975). Direct computation of dynamical response by
molecular dynamics: mobility of a charged Lennard-Jones particle. Phys. Rev. Le�.
35, 789–792.

Cicco�i, G. and Ryckaert, J. P. (1980). Computer simulation of the generalized Brownian
motion. 1. The scalar case. Molec. Phys. 40, 141–159.



Bibliography 551

Cicco�i, G. and Ryckaert, J. P. (1986). Molecular dynamics simulation of rigid molecules.
Comput. Phys. Rep. 4, 345–392.

Cicco�i, G., Orban, J., and Ryckaert, J. P. (1976a). Stochastic approach to the dynamics

of large molecules in a solvent. Tech. rep. cecam. Rapport d’activité scienti�que du
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Delhommelle, J. and Millié, P. (2001). Inadequacy of the Lorentz–Berthelot combining
rules for accurate predictions of equilibrium properties by molecular simulation.
Molec. Phys. 99, 619–625.

Dellago, C., Bolhuis, P. G., and Geissler, P. L. (2002). Transition path sampling. Adv. Chem.

Phys. 123, 1–78.
Dellago, C. and Hummer, G. (2014). Computing equilibrium free energies using non-

equilibrium molecular dynamics. Entropy 16, 41–61.
den O�er, W. K. and Briels, W. J. (2003). �e bending rigidity of an amphiphilic bilayer

from equilibrium and nonequilibrium molecular dynamics. J. Chem. Phys. 118, 4712–
4720.

den O�er, W. K. and Clarke, J. H. R. (2001). A new algorithm for dissipative particle
dynamics. Europhys. Le�. 53, 426–431.

Deng, L.-Y., Guo, R., Lin, D. K. J., and Bai, F. (2008). Improving random number generators
in the Monte Carlo simulations via twisting and combining. Comput. Phys. Commun.

178, 401–408.
Denniston, C., Orlandini, E., and Yeomans, J. M. (2000). Simulations of liquid crystal

hydrodynamics in the isotropic and nematic phases. Europhys. Le�. 52, 481–487.
Denniston, C., Orlandini, E., and Yeomans, J. M. (2001). La�ice Boltzmann simulations of

liquid crystal hydrodynamics. Phys. Rev. E 63, 056702.
Deserno, M. and Holm, C. (1998). How to mesh up Ewald sums. I. A theoretical and

numerical comparison of various particle mesh routines. J. Chem. Phys. 109, 7678–
7693.

De�mann, C. P. and Morriss, G. P. (1996). Hamiltonian formulation of the Gaussian
isokinetic thermostat. Phys. Rev. E 54, 2495–2500.

D’Evelyn, M. P. and Rice, S. A. (1981). Comment on the con�guration space di�usion
criterion for optimization of the force bias Monte Carlo method. Chem. Phys. Le�. 77,
630–633.

d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., and Luo, L. S. (2002). Multiple-
relaxation-time la�ice Boltzmann models in three dimensions. Phil. Trans. Roy. Soc. A
360, 437–451.

Di Felice, R. and Corni, S. (2011). Simulation of peptide–surface recognition. J. Phys.
Chem. Le�. 2, 1510–1519.



Bibliography 555

Dijkstra, M. (1997). Con�ned thin �lms of linear and branched alkanes. J. Chem. Phys.

107, 3277–3288.
Ding, W., Palaiokostas, M., Wang, W., and Orsi, M. (2015). E�ects of lipid composition on

bilayer membranes quanti�ed by all-atom molecular dynamics. J. Phys. Chem. B 119,
15263–15274.

Dinur, U. and Hagler, A. T. (1991). New approaches to empirical force �elds. Rev. Comput.

Chem. 9. Chap. 4, 99–164. Ed. by K. B. Lipkowitz and D. B. Boyd. vch Publishers.
Dixon, M. and Hutchinson, P. (1977). Method for extrapolation of pair distribution

functions. Molec. Phys. 33, 1663–1670.
Dixon, M. and Sangster, M. J. L. (1976). �e structure of molten NaCl from a simulation

model which allows for polarization of both ions. J. Phys. C 9, 5–9.
Do, H., Wheatley, R. J., and Hirst, J. D. (2010). Gibbs ensemble Monte Carlo simulations of

binary mixtures of methane, di�uoromethane, and carbon dioxide. J. Phys. Chem. B

114, 3879–3886.
Do, H. and Wheatley, R. J. (2013). Density of states partitioning method for calculating

the free energy of solids. J. Chem. �eor. Comput. 9, 165–171.
Do, H., Hirst, J. D., and Wheatley, R. J. (2011). Rapid calculation of partition functions and

free energies of �uids. J. Chem. Phys. 135, 174105.
Dodd, L. R., Boone, T. D., and �eodorou, D. (1993). A concerted rotation algorithm for

atomistic Monte Carlo simulation of polymer melts and glasses. Molec. Phys. 78, 961–
996.

Doi, M. and Edwards, S. F. (1988). �e theory of polymer dynamics. International Series of
Monographs on Physics. Oxford University Press.

Doll, J. D. and Dion, D. R. (1976). Generalized Langevin equation approach for
atom/solid–surface sca�ering: numerical techniques for Gaussian generalized
Langevin dynamics. J. Chem. Phys. 65, 3762–3766.
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Malijevský, A. and Jackson, G. (2012). A perspective on the interfacial properties of

nanoscopic liquid drops. J. Phys. Cond. Mat. 24, 464121.
Malins, A., Williams, S. R., Eggers, J., and Royall, C. P. (2013). Identi�cation of structure

in condensed ma�er with the topological cluster classi�cation. J. Chem. Phys. 139,
234506.

Mandell, M. J. (1976). Properties of a periodic �uid. J. Stat. Phys. 15, 299–305.
Marais, P., Kenwood, J., Smith, K. C., Ku�el, M. M., and Gain, J. (2012). E�cient

compression of molecular dynamics trajectory �les. J. Comput. Chem. 33, 2131–2141.
Marcelli, G. and Sadus, R. J. (2012). Molecular simulation of the phase behavior of noble

gases using accurate two-body and three-body intermolecular potentials. J. Chem.

Phys. 111, 1533–1540.
Marconi, U. M. B., Puglisi, A., Rondoni, L., and Vulpiani, A. (2008). Fluctuation–

dissipation: response theory in statistical physics. Physics Reports 461, 111–195.
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Romero-Bastida, M. and López-Rendón, R. (2007). Anisotropic pressure molecular
dynamics for atomic �uid systems. J. Phys. A Math. Gen. 40, 8585–8598.

Rosenbluth, M. N. and Rosenbluth, A. W. (1955). Monte-Carlo calculation of the average
extension of molecular chains. J. Chem. Phys. 23, 356–359.

Rosenbluth, M. N. and Rosenbluth, A. W. (1954). Further results on Monte Carlo equations
of state. J. Chem. Phys. 22, 881–884.

Rossky, P. J., Doll, J. D., and Friedman, H. L. (1978). Brownian dynamics as smart Monte
Carlo simulation. J. Chem. Phys. 69, 4628–4633.

Rosta, E., Buchete, N.-V., and Hummer, G. (2009). �ermostat artifacts in replica exchange
molecular dynamics simulations. J. Chem. �eor. Comput. 5, 1393–1399.
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atomic units, 489
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at neighbouring state points, 290
calculation of, 60
ensemble, 49
in path-integral simulations, 433
long-range corrections to, 79, 191–193
quantum corrections to, 81–83, 426
time, 46

bandwidth, 259
basis sets for atomic orbitals, 412–413
Born–Oppenheimer approximation, 5, 408
Born–Oppenheimer dynamics, 409, 418
boundary conditions, 35

periodic, see periodic boundary conditions
spherical and hyperspherical, 44

Brownian dynamics, 383–389
in the solution of the Schrödinger equation, 437
link with molecular dynamics and Monte Carlo,

388
memory functions, 386

capillary-wave theory, 89
Car–Parrinello dynamics, 409, 414–418
centroid molecular dynamics, 436
charge assignment function, 225
charge density, 218
chemical potential, 65, 303, 315

test particle method, 202
cluster identi�cation, 275, 470
coarse graining, 33
colloids, 1, 376, 394, 397, 464
commi�or surface, 350
computer experiment, 4–5
computer hardware, 481–482
con�gurational integral, 53
conservation

of angular momentum, 96
of energy, 99, 101, 190, 415, 417
of linear momentum, 96, 141

constraints, 83, 113, 415
contact angle, 476
Coue�e �ow, 364
Crooks �uctuation theorem, 377
crystal nucleation, 353

density functional theory, 410–414
dielectric constant, see relative permi�ivity

distribution functions, 69
calculation of, 272–274
extrapolating to contact, 290
inhomogeneous systems, 87, 451–453
site–site, 71
smoothing and extending, 291
spherical harmonic coe�cients, 71

Ehrenfest dynamics, 409, 419
Einstein relation, 74, 293
ensembles, 46–60

constant-µVT or grand canonical, 55
constant-NPTPNT , 477
constant-NPzzT , 466
constant-NPH or isobaric–isoenthalpic, 140,

465
constant-NPT or isothermal–isobaric, 54
constant-NPTγ , 477
constant-NV E or microcanonical, 52
constant-NVT or canonical, 53
nonequilibrium, 355–357
semi-grand, 55
transforming between, 58–60
transition path, 350–352

entropy, 52
and disorder, 57

equations of motion, 95
for hard-sphere systems, 125
Hamiltonian, 96
Lagrangian, 95
quaternion, 110
rotational, 107–111

equilibration, 207
ergodicity, 49
error estimation

in equilibrium averages, 282–287
in �uctuations, 287
in structural quantities, 287
in time correlation functions, 287

exchange–correlation energy, 411–412

�nite-di�erence methods, 97–100
�uctuations, 66–69
force, 95

calculation of, 491–500
e�cient evaluation of, 185
mean-square, 62, 77, 82, 202

force �eld, 29–33
class I, 30
class II, 32
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Fourier transform, 501–508
discrete, 504–505
numerical evaluation, 505–508
of the density �uctuations, 73
of the number density, 72
of the total correlation function, 73
of the velocity autocorrelation function, 77
of time correlation functions, 279
spatial, 502–504

Frank elastic constants, 93
free energy, 64

calculation of, 298–317
summary of methods, 315

Helfrich, 91
Landau, 85, 90, 93, 313
nonequilibrium, 376–379

free-energy di�erences
by non-Boltzmann sampling, 301–303
by the acceptance ratio method, 307–310
by thermodynamic integration, 299
by umbrella sampling, 304–307
from energy distributions, 299

friction coe�cient, 372
fugacity, 168
fugacity fraction, 168

д2, 72
graphics processing unit, 260
Green–Kubo, see transport coe�cients

Hamiltonian, 5, 96, 97, 145, 364, 406
Kohn–Sham, 412
nonequilibrium, 357, 379
ring polymer, 430
shadow, 105, 106

heat capacity, 60
hydrogen bond, 19

importance sampling, 151
inner loop, 24
interaction tensors, 14, 15, 17, 222
intermediate sca�ering function, 77
intermolecular potential, see potential
intrinsic surface, 458–459
isothermal compressibility, 66–68

Jarzynski relation, 377

Kirkwood д-factor, 72, 224

Lagrangian, 19, 95, 113, 248, 409, 414
latency, 259
Liouville operator, 48
liquid crystals, 20–22, 72, 92–94, 294, 464, 479–480
liquid drop, 469–476

equimolar dividing surface, 472
radius of tension, 472

liquid–liquid interface, 464

local expansion, 240
long-range corrections

in the planar interface, 454
long-range forces

choice of schemes, 254–257
comparison of particle–mesh methods, 230
dipole–dipole interactions, 221
Ewald sum, 217–224, 497
fast multipole method, 239–243
force-matching method, 234
in a slab geometry

2D Ewald method, 250
3D Ewald method, 250
Hautman–Klein method, 253
Lekner method, 251–253

in�uence function, 227–228, 231
isotropic periodic sum, 232–234
Maxwell equation method, 247–249, 489
multilevel summation method, 243–247
particle mesh Ewald method, 229
particle–particle particle–mesh method,

224–231
Poisson–Boltzmann method, 238
reaction �eld, 235

image charge approach, 237
smooth particle–mesh Ewald method, 229–230
Wolf method, 231

Lorentz–Berthelot combining rule, 27

Markov chain, 153
transition matrix, 153
underlying matrix, 153

Maxwell equations, 247
mechanical models, 1
melting point, 465–466
membranes

elastic moduli, 91, 478
�uid, 90–92, 475–478
lipid, 2, 22, 33

mesoscale simulation
Brownian dynamics, 383–387
dissipative particle dynamics, 390–392, 489
Langevin dynamics, see mesoscale simulation,

Brownian dynamics
la�ice-Boltzmann method, 394–397
Lowe–Andersen method, 391
multiparticle collision dynamics, 392–394
stochastic rotation dynamics, see mesoscale

simulation, multiparticle collision
dynamics

microscopic reversibility, 154
minimum image convention, 39
mixtures, 161, 167, 168, 335–337
molecular dynamics, 2, 95–146

accuracy, 97, 99, 121–125
constant-µVT , 144
constant-NPH , 140–144
constant-NPT , 140–144
constant-NVT , 130–140

deterministic methods, 132
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stochastic methods, 130
history, 2
metadynamics, 347
nonequilibrium, 355–381
of atoms, 97–106
of hard molecules, 129
of hard spheres, 126–129
of molecules, 106–120
of polarizable systems, 145–146
of rough spheres, 129
path-integral, 430
replica exchange, 179
with constraints, 113–120
rattle method, 114
shake method, 114
alternative methods, 118

Monte Carlo, 2
of mixtures, 167
cavity biased, 320
concerted rotation, 329–332
con�gurational-bias, 323–329
constant-µVT , 164
constant-NPT , 161
constant-NVT , 155
force-bias, 320
Gibbs ensemble, 298–336
Gibbs–Duhem, 336–338, 465
history, 2, 147
integration, 147–150

hit and miss, 148
sample mean, 148

multicanonical method, see Monte Carlo,
Wang–Landau method

nested sampling method, 314–315
of glasses, 180
of hard molecules, 160, 173
of mixtures, 163, 168
of non-rigid molecules, 173–177
of rigid molecules, 169–173
of ring polymers, 428–433
other ensembles, 183
parallel tempering, see Monte Carlo, replica

exchange
preferential sampling, 317–320
reactive, 338–341
replica exchange, 177–183
semi-grand, 168–169
smart method, 322, 388
solute tempering, 181–182
virial-bias, 323
Wang–Landau method, 310–313

multiple-timestep method, 120–121
for non-bonded interactions, 200–201

multipole expansion, 239–240, 494–496
multipole moment, 12, 28, 32, 488

neighbour list, 193–200
linked, 195–200
Verlet, 193–195

nonequilibrium molecular dynamics

expansion and contraction, 367
extensional �ow, 365–367
heat �ow, 368
inhomogeneous systems, 370–376
spatially homogeneous perturbations, 361–365
spatially periodic perturbations, 357–361

order parameter
hexatic, 275
orientational, 209
translational, 207

organizing the simulation, 210–215
orientational order tensor, 92
Ornstein–Zernike equation, 292
Oseen tensor, 386

parallel simulation, 482
constraints, 269
distributed-memory, 259
domain decomposition, 265–269
Ewald sum, 220
fast multipole method, 243, 244
message passing interface, 259
particle mesh, 231
replica exchange, 262
shared-memory, 259–262

partition function, 53
peculiar velocity, 379
periodic boundary conditions

cubic, 35–37
Kraynik–Reinelt, 366
Lees–Edwards, 364
non-cubic, 37
three-body potentials, 44

phase separation, 209
Poisson equation, 224
polarizability, 19, 27, 28, 33
polarization, 11, 15
polydisperse systems, 169, 331, 338, 341
polymers, 2, 175, 176, 327, 328, 397, 464, 491–494
potential, 5

angle-bending, 30, 491
angle-torsion, 19, 30, 491
argon, 7
atom–atom, see potential, site–site
Axilrod–Teller, 8, 44, 455, 496–498
building a model, 26–28
coarse-grained, 20–24, 397

force-matched, 399
structure-matched, 400

Coulomb, 22
cuto�, 40
Drude oscillator, 18
e�ective pair, 8
�uctuating charge, 17
force-matched, 188, 234
Gay–Berne, 21–22, 498–500
hard-sphere, 9, 488
Kohn–Sham, 411
Kremer–Grest, 22
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Lennard-Jones, 2, 8, 19, 22, 24, 26, 40, 77, 487
Mie, 23
multipole–multipole, 13
neural network, 189
peptide–surface, 34
point polarizable, 15
shi�ed, 188
shi�ed-force, 188
site–site, 11, 24, 26
so�-sphere, 9, 487
spline-�t, 188
square-well, 9, 128
table look-up, 187
triple-dipole, see potential, Axilrod-Teller
truncation, 39–40, 188
water, 16
Weeks–Chandler–Andersen, 10

pressure, 62–64
of hard particle systems, 202, 291
pressure tensor, 88, 91, 93

ionic �uid, 463
liquid drop, 472
planar interface, 448–451

probability density, 47
programming languages, 482–483

building with scons, 485
Fortran 2008, 24, 483–485
Fortran interoperability with C, 483
Python, 24, 214, 483

proteins, 2, 22, 31, 33, 120, 123, 181–183, 322, 398
pseudopotentials, 413

quantum mechanics/molecular mechanics
methods, 422–426

quantum Monte Carlo
full con�guration interaction, 441

quantum simulations
ab-initio molecular dynamics, 406, 408–420
Car–Parrinello method, 414–418
excited states, 443
Green’s function Monte Carlo, 442
of fermions, 440
path-integral methods, 407, 426–437

normal mode transformation, 432, 436
staging transformation, 432

quantum dynamics, 444
quantum random walks, 437–442

quaternions, 110–111, 171

random variables, 509–516
exponential, 513
from complicated regions, 515
Gaussian, 511–513
on the surface of a sphere, 514
permutations, 516
uniform, 510–511

rare events
Benne�–Chandler approach, 345–346
simulation of, 342–354
transition interface sampling, 350–353

transition path sampling, 347–350
reaction coordinate, 346
reaction path, 346
reduced units, 487–490
relative permi�ivity, 218, 223–224, 235, 256
reptation, 175
ring polymer molecular dynamics, 434–435
rotation matrix, 107–110, 393
Rotne–Prager–Yamakawa tensor, 387

slip length, 372
solid–liquid interface, 464–469

interfacial energy, 466–469
starting con�guration, 204

initial positions, 205
initial velocities, 206
slab geometry, 446

statistical ine�ciency, 154, 283
statistical mechanics, 46

�uid membranes, 90
homogeneous systems, 46–86
inhomogeneous systems, 86–90
liquid crystals, 92

structure factor, 72
surface tension, 89

liquid drop, 473–475
test-area method, 474

planar interface, 454–462
capillary-wave �uctuations, 456
�nite-size scaling, 459–462
molecular �uid, 462
test-area method, 456

solid–liquid, see solid–liquid interface,
interfacial energy

T-tensor, see interaction tensor
temperature, 61

con�gurational, 62, 517–520
thermal pressure coe�cient, 66–69
threads, 259–262
time correlation functions, 73–79

calculation of, 274–281
by fast Fourier transform, 279–281
using windowing functions, 281

linear velocity, 75
momentum, 78
pressure tensor, 75, 361
quantum, 434

time reversibility, 97, 113, 249
Tolman length, 473
torque, 107

calculation of, 491–500
mean-square, 82

transition matrix, 153
Barker solution, 154
Metropolis solution, 153

transition state approximation, 343–344
transport coe�cients, 73–79

bulk viscosity, 76, 367
calculation of, 292–296
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di�usion coe�cient, 75, 368
in a nematic phase, 294

shear viscosity, 76, 358
for a hard system, 294

thermal conductivity, 76, 368
transverse current, 359
transverse momentum, 359

van Hove function, 77
Verlet algorithm, 100–106

leapfrog version, 102
velocity Verlet, 101

virial coe�cient, 29

we�ing and drying phenomena, 476
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